= ЭЛЕКТРОМАГНИТНЫЕ ВЗАИМОДЕЙСТВИЯ =

УДК 539.11

ИЗУЧЕНИЕ ПРОЦЕССА $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ В ОБЛАСТИ ЭНЕРГИИ 1 < \sqrt{s} < 2 ГэВ С ДЕТЕКТОРОМ СНД

© 2013 г. М. Н. Ачасов^{*, **}, К. И. Белобородов^{*, **}, А. В. Бердюгин^{*}, А. Г. Богданчиков^{*}, А. А. Ботов^{*}, А. В. Васильев^{*, **}, В. Б. Голубев^{*, **}, Т. В. Димова^{*, **}, В. П. Дружинин^{*, **}, Д. П. Коврижин^{*}, И. А. Кооп^{*, **}, А. А. Король^{*, **}, С. В. Кошуба^{*}, А. Е. Образовский^{*, **}, Е. В. Пахтусова^{*}, С. И. Середняков^{*, **}, З. К. Силагадзе^{*, **}, А. Г. Харламов^{*, **, 1},
Ю. М. Шатунов^{*}, Л. В. Кардапольцев^{*, **}, А. С. Купич^{*, **}, К. А. Мартин^{*}, К. А. Гревцов^{*, **}, И. К. Сурин^{*}, К. Ю. Сковпень^{*}, Д. А. Штоль^{*}, А. Н. Скринский^{*}, Ю. А. Тихонов^{*, **}, Ю. В. Усов^{*}, А. Ю. Барняков^{*}, Д. Е. Беркаев^{*, **}, Д. Б. Шварц^{*}, Ю. А. Роговский^{*, **}, А. С. Касаев^{*}, А. Н. Кирпотин^{*}

*Институт Ядерной Физики им. Г.И. Будкера, Новосибирск **Новосибирский Государственный Университет, Новосибирск ¹e-mail: A.G.Kharlamov@inp.nsk.su

Поступила в редакцию 30.05.2013 г.

В эксперименте с детектором СНД на e⁺e⁻ коллайдере ВЭПП-2000 измерено сечение процесса e⁺e⁻ $\rightarrow \pi^+\pi^-\pi^0\pi^0$, в интервале энергии $\sqrt{s} = 1000-2000$ МэВ. Статистическая точность измерения составила 1–2%, систематическая неопределенность – менее 10%. В области энергии $\sqrt{s} = 1400-2000$ МэВ сечение измерено впервые. При исследовании структуры конечного состояния выделен процесс e⁺e⁻ $\rightarrow \omega\pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$.

Ключевые слова: ВЭПП-2000, СНД, векторные мезоны. **DOI:** 10.1134/S2079562913090017

1. ВВЕДЕНИЕ

Сечение процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ в области энергии 1 < \sqrt{s} < 2 ГэВ определяется переходом векторных мезонов $V(\rho, \rho', \rho'')$ в состояние $\pi^+\pi^-\pi^0\pi^0$. Основными промежуточными механизмами являются $\omega\pi^0$ и $a_1\pi$, $\rho\rho$, $f_0\rho$: Соответствующие этим процессам диаграммы изображены на рис. 1.

В данной области энергии сечение $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ доминирует в полном сечении e^+e^- аннигиляции в адроны и вносит значительный вклад в поляризацию вакуума адронами [1].

Сечение процессов $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$, $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$ в диапазоне энергий 0.98–1.38 ГэВ измерено с точностью ~8% в работе [2].

2. ЭКСПЕРИМЕНТ

Детектор СНД [3] работает с 2009 года на коллайдере ВЭПП-2000 [4] в энергетическом диапазоне 360—2000 МэВ. Детектор включает в себя несколько подсистем. Трековая система представляет собой дрейфовую камеру с ячейкой струйного типа. Трехслойный электромагнитный калориметр на основе кристаллов NaI(Tl). В состав мюонной системы входят сцинтилляционные счетчики и 2 слоя стримерных трубок. Энергетическое и пространственное разрешения калориметра зависят от энергии фотонов следующим образом: $\sigma_E/E(\%) = 4.2\%/\sqrt[4]{4E(\Gamma \ni B)}$ и $\sigma_{\phi,\theta} = 0.82^\circ/\sqrt{E(\Gamma \ni B)} \oplus 0.63^\circ$. Разрешение трековой системы составляет 0.5° и 2° для азимутального и полярного углов соответственно.

В данном анализе использовалась статистика двух экспериментов: Mhad10 и Mhad11, набранная в 2010–2011 годах. Интегральная светимость в эксперименте Mhad10 составила 5 пб⁻¹, в эксперименте Mhad11–25 пб⁻¹. Интегральная светимость измерялась двумя независимыми способами: по событиям электрон-позитронного рассеяния и аннигиляции в два фотона. Систематическая неопределенность светимости оценивалась по разности этих двух измерений и составила ~2%.

Эксперименты проводились методом сканирования энергетического диапазона.

3. ОТБОР СОБЫТИЙ

Во время эксперимента первичный триггер выбирал события с энерговыделением в калори-

АЧАСОВ и др.

Рис. 1. Диаграммы для процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$.

метре более 100 МэВ и одним и более треками в дрейфовой камере. При реконструкции на записанные события накладывались условия так называемого "вычисленного триггера", которые являются немного более "жесткими", чем экспериментальные условия отбора триггера. Такая процедура позволяет избежать неопределенностей, связанных с работой электроники. При определении эффективности регистрации на события моделирования также накладываются условия "вычисленного триггера".

Для анализа отбирались события удовлетворяющие следующим условиям:

Рис. 2. Распределение по параметру $\chi^2_{4\pi}$ для событий моделирования (гистограмма) и экспериментальных данных (точки) энергия 2E = 1500 МэВ, отобрано 8334 события. Стрелкой показано условие отбора.

2 или более заряженных трека;

4 или более реконструированных фотона;

расстояние от оси пучков до любого из треков в $R-\phi$ плоскости $\rho < 1$ см;

|Z| < 10 см, где Z — координата пересечения трека с осью пучков.

Условие на координату Z определяются размером места встречи. Условие на расстояние р определяется разрешением дрейфовой камеры. Оба условия служат для подавления событий пучкового фона и космических мюонов. Продольный раз-

Рис. 3. Измеренное сечение реакции $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ в сравнении с результатами других экспериментов.

Рис. 4. Распределение по массе π^0 -мезонов после реконструкции в модели $\pi^+\pi^-4\gamma$. Точки с ошибками – экспериментальное распределение, гистограмма – моделирование.

мер места встречи зависит от энергии пучков и менялся в эксперименте от 2 до 2.5 см.

Для отобранных в указанных условиях событий проводилась процедура кинематической реконструкции в гипотезах:

$$\begin{split} e^+e^- &\rightarrow \pi^+\pi^-\pi^0\pi^0, \\ e^+e^- &\rightarrow \pi^+\pi^-4\gamma. \end{split}$$

Для формирования π^0 -мезонов перебирались все возможные комбинации фотонов в событии, и выбиралась комбинация с минимальным значением χ^2 -реконструкции. Такая процедура позволяет отбросить "ложные" фотоны, образующиеся за счет ядерного взаимодействия π -мезонов с веществом или за счет пучкового фона. Инвариантная масса π^0 -мезонов показана на рис. 4.

Рис. 5. Распределение по параметру $M_{3\pi}$ – масса системы 3-х π -мезонов в реконструкции $\pi^+\pi^-\pi^0\pi^0$ наиболее близкая к массе ω -мезона. Точки с ошибками – экспериментальные данные, гистограмма – моделирование.

ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ том 4 № 9–10 2013

Далее накладывалось дополнительное условие отбора на χ^2 -реконструкции: $\chi^2_{4\pi} < 40$. Данное условие отбора выработано по моделированию (см. рис. 2). Всего отобрано 152920 событий.

4. СЕЧЕНИЕ ПРОЦЕССА И РАЗДЕЛЕНИЕ ЕГО МЕХАНИЗМОВ

Эффективность регистрации определялась методом Монте-Карло и слабо зависит от энергии. Среднее значение эффективности регистрации во всем диапазоне энергии для промежуточного состояния $a_1\pi$ равно 33.5 ± 0.4 %, а для промежуточного состояния $\omega\pi^0 - 32.5 \pm 1.4$. Разница в эф-

Рис. 6. Распределение по параметру $M_{3\pi}$ — масса системы 3-х π -мезонов в реконструкции $\pi^+\pi^-\pi^0\pi^0$ наиболее близкая к массе ω -мезона. Точки с ошибками — экспериментальные данные, заштрихованная гистограмма сумма событий моделирования процессов не- $\omega\pi^0$, линия — аппроксимирующая кривая. Энергия в с.ц.м. 1400 МэВ. nW— число событий сигнала механизма $\omega\pi^0$, nR — число событий механизма ρ , nf — число событий механизма $f_0\rho$, nA — число событий механизма $a_1\pi$.

Puc. 7. Измеренное сечение реакции $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$ и $e^+e^- \rightarrow \text{He}-\omega\pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$.

фективности регистрации для различных механизмов реакции $\pi^+\pi^-\pi^0\pi^0$, объясняется различными угловыми распределениями для различных промежуточных состояний.

Сечение процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ в каждой точке по энергии определялось по формуле:

$$\sigma(E) = \frac{N_{4\pi}(E)}{IL(E)\varepsilon(E)(1+\delta(E))},\tag{1}$$

где $N_{4\pi}$ — число зарегистрированных событий искомого процесса, IL(E) — интегральная светимость в данной точке по энергии, ε — эффективность регистрации, δ — радиационная поправка. Измеренное сечение изображено на рисунке 3.

Рис. 9. Измеренное сечение реакции $e^+e^- \rightarrow he-\omega\pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0$ в области порога рождения барион-анти барионных пар.

Рис. 8. Измеренное сечение реакции $e^+e^- \to \omega \pi^0 \to \pi^+ \pi^- \pi^0 \pi^0$ в области порога рождения барион-анти барионных пар.

Радиационная поправка вычислялась методом Монте-Карло и плавно менялась с энергией от – 0.12 при 1000 МэВ до 0.14 при 2000 МэВ.

Для разделения промежуточных механизмов реакции использовалось распределение по инвариантной массе системы $\pi^+\pi^-\pi^0$, при этом выбиралась комбинация, наиболее близкая по массе к ω-мезону. В области энергии ниже 1400 МэВ распределение по данному параметру хорошо описывается моделированием (рис. 5), в данной области доминирует промежуточный механизм $\omega \pi^0$. Распределение по данному параметру для каждого из механизмов реакции фиксировалось из моделирования с помощью техники ядерных оценок [5]. Для выделения промежуточного механизма ωπ⁰ производилась аппроксимация распределения по инвариантной массе системы $\pi^+\pi^-\pi^0$ четырьмя распределениями с фиксированной формой (рис. 6). Всего было 4 свободных параметра. Сечения рождения $\omega \pi^0$, полученное таким способом и сечение рождения системы $\pi^+\pi^-\pi^0\pi^0$ за вычетом сечения $\omega \pi^0$ изображены на рис. 7. В области энергии 1900-2000 МэВ наблюдается изменение поведения сечения с энергией для промежуточных состояний $\omega \pi^0$ и не- $\omega \pi^0$ см. рис. 8, 9.

5. ЗАКЛЮЧЕНИЕ

В эксперименте с детектором СНД на коллайдере ВЭПП-2000 измерено сечение процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ в интервале энергии $\sqrt{s} = 1000-2000$ МэВ. Сечение согласуется с предыдущими измерениями и имеет наилучшую сегодня точность, статистическая неопределенность составляет 1–2%, систематическая неопределен-

ЯДЕРНАЯ ФИЗИКА И ИНЖИНИРИНГ том 4 № 9–10 2013

ность не превышает 10%. В области $\sqrt{s} > 1400 \text{ МэВ}$ данное сечение измерено впервые. Произведено разделение промежуточных механизмов реакции $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$, выделен механизм промежуточного состояния $\omega \pi^0$.

Работа частично поддержана грантами Президента РФ МК-4345.2012.2 и HШ-5320.2012.2, грантами РФФИ 11-02-00276-а, 12-02-00065-а, 12-02-01250-a, 13-02-00418-a, 13-02-00375, 12-02-31515 мол а, 12-02-31692 мол а, 12-02-31488 мол а. Работа выполнена при финансовой поддержке Минобрнауки России, грант № 14.518.11.7003.

СПИСОК ЛИТЕРАТУРЫ

- 1. Davier M., Descotes-Genon S. et al. Eur. Phys. J. C 2008. V. 56. P. 305-322.
- 2. Achasov M.N. et al. J. Exp. Theor. Phys. 2003. V. 96. P. 789.
- 3. Achasov M.N. et al. Nucl. Instrum. Meth. Phys. Res. A 2000. V. 449. P. 125 (11 July 2000).
- 4. Skrinsky A.N. In Proc. Workshop on Pysics and Detectors for DAONE. Frascati, Italy. 1995. P. 3.
- 5. Cranmer K.S. Comp. Phys. Comn. 2001. V. 136. P. 198.

Study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ Process in the Energy Range $1 < \sqrt{s} < 2$ GeV with the SND Detector

M. N. Achasov^{*a*, *b*}, K. I. Beloborodov^{*a*, *b*}, A. V. Berdyugin^{*a*}, A. G. Bogdanchikov^{*a*},

A. A. Botov^a, A. V. Vasil'ev^{a, b}, V. B. Golubev^{a, b}, T. V. Dimova^{a, b}, V. P. Druzhinin^{a, b}

D. P. Kovrizhin^a, I. A. Koop^{a, b}, A. A. Korol^{a, b}, S. V. Koshuba^a, A. E. Obrazovskii^{a, b},

E. V. Pakhtusova^{*a*}, S. I. Serednyakov^{*a*, *b*}, Z. K. Silagadze^{*a*, *b*}, A. G. Kharlamov^{*a*, *b*, *, Yu. M. Shatunov^{*a*}, L. V. Kardapol'tsev^{*a*, *b*}, A. S. Kupich^{*a*, *b*}, K. A. Martin^{*a*}, K. A. Grevtsov^{*a*, *b*},}

I. K. Surin^a, K. Yu. Skovpen^a, D. A. Shtol^a, A. N. Skrinskii^a, Yu. A. Tikhonov^{a, b},

Yu. V. Usov^a, A. Yu. Barnyakov^a, D. E. Berkaev^{a, b}, D. B. Shvarts^a,

^a Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences,

pr. Akademika Lavrent'eva 11, Novosibirsk, 630090 Russia

^b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

*e-mail: A.G.Kharlamov@inp.nsk.su

Received May 30, 2013

In the experiment with the SND detector at the VEPP-2000 e^+e^- collider, the cross section for the $e^+e^- \rightarrow$ $\rightarrow \pi^+\pi^-\pi^0\pi^0$ process has been measured in the energy range $\sqrt{s} = 1 - 2$ GeV with a statistical accuracy of 1-2% and a systematic error of less than 10%. The cross section in the energy range $\sqrt{s} = 1.4 - 2$ GeV has been measured for the first time. The $e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ channel has been separated when analyzing the structure of the final state.

Keywords: VEPP-2000, SND, vector mesons

Ya. A. Rogovskii^{*a*, *b*}, A. S. Kasaev^{*a*}, and A. N. Kirpotin^{*a*}