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COLLECTIVE EXCITATIONS IN FERMI SYSTEMS
by V. M. GALITSKY

The present paper is devoted to collective excitations in Fermi systems at
zero temperature. As applied to various specific systems, this problem was
considered in the papers by Pines and Schrieffer. The purpose of this
paper is to give a discussion of the problem from a general point of view and
a study of the general method of considering collective excitations.

I. In many cases, weakly excited states of a system of interacting
particles may be described approximately as an assemblage of clementary
excitations, quasiparticles. The elementary excitations do not represent
stationary states of the system, which fact results in damping of the quasi-
particles. Damping of a quasiparticle with momentum P is proportional to

P — Pgl2, (1)

so that a description of excited states in terms of quasiparticles is all the
more exact, the closer the quasiparticle momenta are to Pp.

In a Fermi system, the quasiparticles have spin { and, consequently, are
Fermi quasiparticles. This means that no single quasiparticles can be
created or destroyed. For this reason, the simplest excited state is an as-
semblage of two quasiparticles or of a quasiparticle and a quasihole. An
essential feature of such states is the interaction between quasiparticles. If
this interaction leads to scattering of quasiparticles, the excitation energy is
equal to the energy of the quasiparticles at infinity:

E =¢lp1) —elp2), P=p1—ps (2)

However, in a number of cases the interaction leads to the appearance of
states which can be interpreted as bound states of quasiparticles. Such
excited states are what we call collective excitations.

En::-].lecti_ve exeitations are conveniently investigated by means of the two-
particle Green’s function:

PK(12534) = <T{y(1)pH(2)p(3)y(4)D. ' (3)
In the case &1 = 3 > #3 — #; the function can be written in the form
(K (125 34) = 3, 14(12)7,(34), (4)
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where
25(12) = <Olp(1)wH(2)|s> (9)

can be interpreted as a wave function describing the behaviour of a particle
and a hole i the S-state. After a Fourier transformation, expression (4)
assumes the form of a Lehmann expansion for the function K, which shows
that the two-particle Green’s function has poles corresponding to the energy
of particle and hole. To the bound states — collective excitations — there
corresponds an 1solated pole of the function K and the wave function

foe.(1, 2) = Olp(yH2)lee. (4

This wave function 1s a matrix element between the ground state of the
system and the state of collective excitation of the density matrix, and in
the classical limit it goes into a Fourier component of the distribution
function. Thus, the problem of investigating collective excitations reduces
to a consideration of the two-particle Green's function and to finding the
isolated poles of this function. The solution of this problem turns out to be
different in two possible cases: repulsion and attraction between particles.

2. Let us first consider the case of repulsion 1). In this case the ground
state of free particles passes into the ground state of the system when the
interaction is switched on adiabatically. Therefore, use may be made of the
ordinary procedure of the S-matrix and Green’s functions.

i {'\\

Fig. 1

Ac has been shown in the works of Schwinger ?) and Gell-Mann and
Low 3), the equation for function K is of the form shown in fig. 1 or,

analytically,
K(12; 34) = — iG(1 — 462 — 3) + ¢G(1 — 263 — 4) +
+ i [G(1 — 5)G(6 — 2}I'(56; 78)K(78; 34)d5d647d8, (6)

where I'is a quadrupole irreducible m‘rith respect to a particle and a hole.
The inhomogeneous term of this equation describes the propagation of non-
:nteracting particle and hole and does not contain frequencies corresponding
to bound states. For this reason, extraction of the function %, which de-
scribes collective excitations, leads to the following homogeneous equation

for ye.e.:

ree(l,2) = i/ G(1 — 5)G(6 — 2)T(56; 78)c.0.(78)d506d7d8. (2
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We have thus obtained an eigenvalue problem, the solution of which yields
the energy of the collective excitations and the wave function.

g

Fig. 2

» As a first example let us consider the case of weak interaction. For
excitations with total spin zero, the irreducible quadrupole is determined,
to a first approximation, by two graphs in fig. 2, and the equation for the
function y can be written in the following form:

) MolD A+ K[2) — mo(p — K2)
Kxem = S -'":P

A V(@itol P + @dg — 2V (K) [ 7,,(P)APS- (8)

Here k and o are the total momentum and excitation frequency, p 1s the

relative momentum of the particle and hole, # = m = 1.

In the case of Coulomb interaction, V{«) has a pole at « — 0, and so the
second term is much greater than the first. Confining ourselves to the case
of small « we obtain the kinetic equation in the self-consistent field approxi-

mation:
— k(2ffop) ,

L 9

Fxw {P} =

with the solution

w2 = wp.o.2 = dme*n,

which corresponds to plasma oscillations.
In the case of short-range forces, V{x) and V(g) may be replaced by the
zeroth Fourier component of the potential Vp, and the equation for y takes

on the form:

— K(dfo/op)
— ] : |74 Ydp'. 10
x.!-.'r.u (p} % P EP ﬂfxxm(P}CP l:: }
In this case we obtain what is known as zero sound;:
w= Sk, S= Pp(l | 2e1%) (11)
Pl
g = T

For excit:%tiﬂns with total spin unity, I' is determined only by the first
graph of fig, 2_; for this reason, for these excitations an equation of type (8)
does not contain the second term. The resulting equations have no solutions.
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As a second illustration, we consider a dilute gas with a large short-range
interaction potential. In this case, in place of the potential we must use the
group of “ladder” diagrams for two particles shown in fig. 3, that is, the
effective potential ). The irreducible quadrupole I"is determined by the

i }{}{4. i d s

Fig, 3
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Fig. 4

two graphs of fig. 4. To the first approximation (as regards powers of densi-
ty), the effective potential is equal to the real part of the scattering ampli-
tude taken with inverse sign and divided by 4m. Introducing the notation
a — — Re f/4= (for the case of hard spheres, @ is equal to their radius), we
obtain equation (10}, in which Vg 1s substituted by a. Accordingly, the ex-
pression for frequency of zero sound is obtained from (11) by a similar
substitution.

Thus, in the case of repulsion, the collective excitations represent either
zero sound (short-range potential) or plasma waves (Coulomb interaction).
The absence of solutions corresponding to the propagation of ordinary sound
obtained in hydrodynamics can be explained as follows. As can be seen from
equation (8), the particles participating in collective excitation are situated
in a narrow layer close to the Fermi surface of width of the order of K.
Therefore, the damping of these particles is proportional to K2, and the
mean free path, to A% Consequently, for long waves the mean free path is
always greater than the wavelength of sound, and the hydrodynamical
approximation cannot be applied. . : _

3 Let us consider the case of attraction °). In this case, there is a Bose

condensate of coupled pairs in the ground state, and the ordinary graphical
method is incorrect 8). To account for the rearrangement caused by pairing,
the original Hamiltonian with direct interaction between particles must be

transformed to the operators of quasiparticles & and «* applying for instance
the Bogolyubov method 7). After transformation, the Hamiltonian assumes

the form:

Sl (12)
where Hyp is the Hamiltonian of free quasiparticles.
Hy = Zip &(p){epotopo + aprtop) i

s(p) = V(32 — w)? + 42

Ph}rsiﬂa XXVI
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and A’ is the Hamiltonian of interaction between quasi-particles. This
interaction is obtained from the original interaction by means of a canonical
transformation and transition to a N-product. As a result of the canonical
transformation, there appears (in place of operator a) either of the operators
o OT o™, 50 that to the interaction H’ corresponds a set of different vertex
parts depicted in fig. 5.

For a consideration of collective excitations we introduce the two-
particle Green’s function constructed from the operators of quasi-particles:

’LK{IE, 34} = {T{mlmgcﬁ3+mq_"}}. H“'l-}

Let us now consider the graphs for function K on the assumption of the
smallness of interaction. In the first approximation, the interaction Hamil-
tonian H' contains only one graph (fig. 5, graph a). In the second approxi-

X a2

a b =

I'ig, 5

mation there appear three graphs shown in fig. 6. It is not difficult to see
that graphs a and & are of the same order of magnitude as the graph of the
first approximation. Indeed, the total momentum of the quasi-particles in
the intermediate state of the graphs is fixed and is equal to the excitation
momentum «. Integration with respect to the relative momentum in the
case of interest of small « yields In @/4; this compensates the smallness
of the interaction potential. The appearance of this logarithm is natural and
follows from the existence of bound states of particles with total momentum
different from zero but small 8). In contrast, in graph ¢, in which the total
momentum of the quasi-particles is not given in the intermediate state, the
total momenta are essentially large and the compensating logarithm is

absent.
a b i

Fig. 6

) Th}ls, the two-quasi-particle Green’s function, K, is determined by an
WL SeAuence. of graplisiaiany b, fig. 6. This sequence is similar to the
system of graphs for a single-particle Green’s function in a2 Bose gas 9), For
this reason, the subsequent consideration is best conducted in similar
manner, by introducing (in addition to the K function) a second two-particle

. T P P

- — - ————

COLLECTIVE EXCITATIONS IN FERMI SYSTEMS S 179

Green's function, X
1 K((12; 34) = {T{m1+¢2+ﬁ3+#4+}}_ (15)

For functions K and K it is easy to construct a set of equations similar to
(5-2) of reference ). This system is depicted graphically in fig. 7. Discarding

the inhomogeneity, we obtain the equations for the functions:

el P) = <0121 (2, 0 %a—(xs2y, 11C-€:2 (16)
Pl P) = {D{ﬂ";—{xm}, ( '5‘5;';7-{,:.*9}, /€€,
which are of the following form,
I
Ko P) = P L K2 elp—K2 —w ;
(1 dpy11(pD ) el @) — S AP V12(2D ) Pual P)}
I .
Tl D= e(p + k/2) + &(p — K/2) + w
A [ Adp Y (PP )t P) — [dpyea(Pd ) un( D)} (17)
where x and @ are the momentum and energy of excitation.
yu =y = V" 'f“';:+{xfﬂ“p'—{¥;2: iy ”;»Hx.m}“"i -;:f;z}fj:i:;:r; :if;‘;*;ms} gl
2 (P — (j23¥p+ (ei2) (18)

= = V'{'H gy ;_{rllr?‘}*—ﬂﬂ_i_{mllﬂ}'ﬂpr
== e +(x/2) D ;
g g | — Vp_(x/2) ¥p'+ (xi2))
Due to the degeneracy of the kernels (18), the system of integral equations
::llir:es to an algebraic set, the condition of solubility of which yields an
;:Ll’ltiﬂﬂ for determining the dependence w(i). For small momenta we obh-

A1 :
t Py

MZSH, 58— —3'_ “?}
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that is, ordinary sound. The appearance, in a system with attraction, of
excitations of the type of ordinary sound may be explained as iollows, The
formation of coupled pairs signifies that each particle is enclosed in a space
of the order of the volume of the pair. In other words, the mean free path of
the particles is of the order of the dimensions of the pair, Pr/d. This is why
for waves with wavelength 1 much larger than the dimensions of the pair,
the hydrodynamical approximation holds. This inequality can be written as

P
4> TFNSK: w. (20)

In such form, this inequality means the impossibility of decay of the sound
quantum into excitations — a condition that is not fulfilled in the absence of
pairing.

T'he solution of (19) is obtained on the assumption of constancy of inter-
action on the Fermi surface. If the potential has sphericali harmonics
different from zero, the system (17) also has solutions that correspond to
collective excitations with angular momentum different from zero. These
excitations have been considered by N. N. Bogolyubov, V. V. Tol-
machev and D. V. Shirkov 19), and Schrieffer 11),

I i AN

Ifg. 8

When Coulomb interaction is taken into account, expression (18) does not
hold. In this case, it is necessary to take into consideration that the vertex
parts @ and & (fig. 5) contain in particular graphs of fig. 8. These graphs
nclude the nonshielded Coulomb potential, since the polarization graphs are
already taken into account in thé set of equations in fig. 7*). Solution of the
equations with Coulomb interaction leads to plasma waves (see also 1)

L}
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EXTENSION OF DIAGRAM TECHNIQUE .OF FIELD
THEORY TO FERMI SYSTEMS WITH PAIRING
PHENOMENON

(WITH APPLICATION TO SPHERICAL NUCLEI)
by S. T. BELIAEV

Considerable progress has recently been made in the theory of many-
particle systems through the use of the methods of quantum field theory.
However, it has not always been possible to utilize directly the methods of
field theory. Two important problems may serve to ﬂlu:strate when ordinary
graphical methods are not applicable, namely, a ﬂnn-a‘deal Bose gas and a
superconductor, that is, a Fermi system with attraction.

The existence of a large number of particlesin the p = Ostate (cnndensat:j:]
does not permit applying ordinary methad? in.the case of a Bose gas. TI.HS
difficulty may be circumvented by considering (in place of the initial
only particles outside the condensate 1) 2). Hﬂwever, t.he new sygtem
is no longer closed, and transitions become possible of pairs of ‘pa}'tlcles
(p, — p) into the condensate and reverse I?r.ﬂcesses, for a I‘:-[E‘:Sl‘_':l‘lptlﬂrl -?f
which it is necessary to introduce, in addition to the ordinary Green's

functions G = — KT{PPH, (1)

system)

also two other functions:
F— — KT{PPY; Ft=— «KT{FED (2)

: id of functions (1) and (2).
et all eraphs with the aid o ‘
Elﬂ;l‘;; czﬂsilsgfficsuper%cnpductnr has much in common with a Bose gas. Here,

: i densate (consisting of Cooper pairs)
' .~ in the ground state 1s a con ' .
llk?wm?’ i qutile to the applications of ordinary graphical methods. By
Wh;fh : :,rith :che Bose gas, it 1s also possible in this case to introduce
analogy )

'« functions (2) 8) and then consider the totality of graphs constructed
i}reen{;ﬁj and (2). It should be stressed that, whereas for a Bose system this
rom :

d is rigorously cubstantiated 1), for a superconductor we are still
mﬂtl.m : h proof, and the substantiation is rather intuitive.
lackmgdmflj: itgneqslwe consider below the case of a finite Fermi system,
4 ;ﬁarizallnnuch;us, although the general formulas can very easily be re-

written for an infinite system.
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