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The aim of this communication is to once more focus attention 
on a specific form of nonlinear system instability -- the so-called 
stochastic instability. This type of instability must be taken into 
consideration especially during the development of the so-called 
nonlinear accelerators which are recently attracting considerable 
attention. 

The paper presents certain results of numerical calculations 
for the undamped nonlinear oscillations caused by an external 
periodic perturbation. The motion of the oscillator is described by 
an exact system of difference equations: 

ωn+1 = ωn — εωn sign (n — ½), (1) 
n+1 = {n + ωn+1 + ε -ε |n½|} • n+1 = {n + ωn+1 + 4 -ε |n½|} • 

The equations are in the difference form because the external 
perturbation is chosen in the form of very short pulses whose rela­
tive magnitudes are characterized by a parameter ε. The reduction 
of the differential equations to difference equations allows a 
reduction of the calculational error to a minimum determined by the 
rounding off errors. This is essential for the study of the 
behavior of the oscillator over extended intervals of time. 

In the system of equations (l), ω(w) is the frequency which, 
because of nonlinearity, is characterized by the energy of the 
oscillator; is the phase of the oscillations, having a period 1; 
index n is the number of the pulse; {} denote the fractional part 
of the argument. 

The results of the integration of the system (l) are shown 
in the figure for two values of the characteristic parameter εω. 
For εω « l and ωo - k « l (k ≠ o, integer) the difference equations 
may be approximately substituted by differential equations [l]: 
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ω'≈ — εων(), 
} '≈ ω—k, } (2) 

where v ( ) is a stepwise function with unit amplitude, while the 
differentiation is carried over n. The system (2) may be trans­
formed into a phase equation 

"+ εων ( ) ≈ 0 , (3) 

from which it can be seen that, within the approximation under 
consideration, the frequency (and energy) of the oscillator 
describes limited so-called phase oscillations with a frequency and 
amplitude ~ √ ε ω . The rigorously bounded solution of the exact 
system (1) (for t → ∞) with εω « 1 is extremely complicated. A 

The example of stochastic instability of nonlinear 
oscillations: 

ω(w) -- The frequency of the nonlinear oscillator 
depending on the energy; N -- the number of oscil­
lations; 1 -- the motion of the oscillator for 
ωo = 64; ε = ; 0 = ¼; 2, 3 -- average changes 
in frequency during stochastic motion; 4 -- the 
motion of the oscillator with ωo = 1; ε = 1/32; 
o = ¼. Dashed line -- the magnitude of a single 
pulse for the last mentioned case (the lowest scale 
N refers to curves 3 and 4, the upper to curves 1, 2). 

solution can be obtained from similar works [2, 3] although this 
was never rigorously proved. The results of the present calcula­
tions are likewise in agreement with such a solution. The figure 
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contains the value of the oscillator frequency averaged over phase 
oscillations (curve 4). Even over the extent of a million oscilla­
tions, we did not observe any tendency towards a systematic change, 
and the oscillations did not exceed 1 percent. 

The motion for εω » 1 (curve 1) is of a completely different 
character. Even during only 500 oscillations, the frequency changes 
by almost a factor of three although the relative pulse intensity 
(recalculated per single oscillation) is 16 times smaller than in 
the previous case. In agreement with deliberations mentioned 
earlier [4, 5], this time the motion must have a stochastic 
character or, as it is customary to say in the theory of dynamic 
systems, it must be a motion with statistical fluctuations. 

Alternative 
number ω0 ε εω0 N η ()½ ()½ - []T½ 

Number 
of 
cases 

1 64 1/8 8 500 +0,17 0,11 +0,41 5,7 0,63 - - 11 
2 64 1/8 8 1000 +0,17 0,23 —0,49 0,67 1,20 — — 5 
3 
4 

7000 
7000 

0,01 
0,01 

70 
70 

3,5.106 
7.106 } —0,08 0,04 —0,22 3,4 0,74 0,01 0,05 40 

N o t e . η= - 1 ; ηT=0; = ( ) 2 
-1; T==0; ∆ω=ω-; ∆=-½ I n d e x " T " N o t e . η= - 1 ; ηT=0; = (∆ω)T

2 -1; T==0; ∆ω=ω-; ∆=-½ I n d e x " T " 

denotes the theoretical value. The quantities without a "T" 
index are from numerical calculations. 

The change in frequency (and energy) of the oscillator in 
this case can be described naturally by the distribution function 
f(ω, t) which for ε « 1 obeys the Fokker-Planck-Kolmogorov kinetic 
equation: 

∂f = ε
2 ∂2 (ω2ƒ). ∂t = 2 ∂ω2 (ω2ƒ). (4) 

For inital and boundary conditions 

f(ω, 0) = δ(ω-ω0), 
} 

f(∞,t = f(0,t) = 0 

} 
(5) 

the solution of (4) is in the form of 

ƒ (ω, t) = (4πτ)-½ ( ω0 )2 exp × ƒ (ω, t) = (4πτ)-½ ( ω )2 exp × 

×{-
(In ω 

-τ)2 }• ×{-
(In 

ω0 -τ)2 }• ×{- 4τ }• (6) 

A quantitative estimate of the stochastic character of the 
motion was carried out by comparison of the mean value of the 
frequency and the root mean square spread = from 
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the results of calculations utilizing the values from the distribu­
tion (6). The results of the comparison are given below. In 
addition, we showed the characteristics of the phase, n , distribu­
tion which should be uniform for a stochastic motion. 

It is obvious from the results of the present work that the 
stability region corresponds to εω ~ 1. In this manner, we confirm 
the general criterion for stochastic behavior obtained earlier [4, 
5]. Apparently, the first criterion of such a type of instability 
was already established in 1953 [6] by numerical calculations; how­
ever, as far as we know, the study of the observed instability was 
not carried out and its connection with the stochastic property was 
not taken into consideration. In our notation, the instability 
criterion [6] has the form εω > π∙ Note that in the general case 
there is no sharp limit on the εω parameter. For εω ~ 1 depending 
on the initial conditions, one can generate motions of various types 
including also the purely resonant one [5]. 

We use the occasion to express our thanks to V. M. Logunov 
and V. S. Synakh for their help during calculations. 
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