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3) Il ¥ a un assez grand désaccord entre la valeur théorique de 3#%/.7 et la valeur
expérimentale. Ceci semble un fait assez général dans les noyaux impairs qui pré-
sentent la bande de rotation X = 0. On constate que plus la déformation du noyau est
importante, plus la valeur théorique de 3/%/.# est voisine de la valeur expérimentale.

Pour Ho'®® (déformation é = 0.3) le rapport Fihéorique/ 7 expérimental €St €gal &
1.02. Pour Lu!72, pour lequel § = 0.26, ce rapport est ¢gal a 1.14. Dans notre cas,

ce rapport a pour valeur 1.4 et la déformation est de I'ordre de 0.23.
Il v a lieu de noter toutefois que le niveau X = 0 est un niveau excité dans le cas
de Lul”? et Tal?®, tandis qu'il est niveau fondamental de Ho'°®. La divergence

entre le résultat théorique et le résultat expérimental s’expliquerait peut étre par ce
fait, plut6t que par la variation de la déformation *°).

Nous tenons a remercier M. M. Valadares, directeur du Centre de Spectrométrie
nucléaire et de Spectrométrie de masse (C.N.R.S.) qui nous a aimablement permis
d’utiliser les spectrographes de son laboratoire.
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ELECTRON-ELECTRON SCATTERING CROSS-SECTION
TAKING INTO ACCOUNT HARD-PHOTON RADIATION
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Abstract: Radiation corrections for the electron-electron scatiering cross-section are caleulated, taking
into account hard photon radiation, by a numerical integration of the precise formula for brems-
strahlung in an electron-electron collision. The corrections are found to be 15.8 ¢ and 10.6 o
for a scattering angle of 40°, and 19.6 % and 14.4 % for that of 90 for electrons with energies of
100 MeV and 500 MeV in the c.m.s., respectively. Analytical expressions are obtained for the

asymptotic behaviour of hard photon contribution in the limit of rather hard photons and rel-
atively soflt photons.

1. Iniroduction

Electron-electron colliding beam experiments with two intersecting electron beams
with energies 100 to 500 MeV are now planned to check the applicability of quantum
electrodynamics at small distances (see refs. *+2)). Since quantum electrodynamics is a
quantitative theory any deviation of experimental cross-sections from those calculated
theoretically will point to the breakdown of quantum electrodynamics at small
distances. In this connection it is especially important to estimate correctly all
theoretical contributions to the electrodynamic cross-sections.

In the lowest order of perturbation theory the electron-electron scattering cross-
section is known to be given by the Maller formula *

2 & e 4 4
doo(9) = -2 [S A e +qi1 dQ. (1.1)

S}J qiﬂ- qiq:l' iEra'-1-

Here r is the classical electron radius, y = Efm, E the electron energy and s = p+p’,
4 =p—po, 4 = p—py. In the c.m.s. we have

g = —2p*(l—cos 9), q* = —2p*(1+cos ), s =4E> (1.2)
For ultra-relativistic electrons in the c.m.s. the Moller formula assumes the form
r2 (3—[—:0513 Z
da,(3) = ) de.
o(%) 49* \ sin’® & (5

To estimate the accuracy of this formula it is necessary to calculate the contribu-
tions of the subsequent terms of the perturbation theory series in the coupling

T We use the system of units # = ¢ = 1, metrics (ab) = g,hy—a- b, e — 1/137.
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constant e. i.e. to obtain the radiation corrections. The latter were calﬂl:llated to the
| 3=9y 1n this case it is necessary t0 consider the graphs given in fig. I,

A Ao A p2
i e =iy (9]
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Fig. 1. Graphs of electron-electron scattering in ¢! order.

adding to them the exchange p, < ps- The graph cﬂntaiuing‘ the proper el.e-:tu‘*nn
self-energy are not given in fig. 1 since they are eliminated in the regularization
performed by the standard methods ***'). The matrix elements of graphs 1, 2,
4 and 5 also diverge in the integration in the region of small momenta of virtual
photons (infrared catastrophe). The fact is that the very concept of elastic process
is purely conventional in quantum electrodynamics since soft quanta are radiated in
each scattering event; the cross-section of their radiation also diverges in the region
of small frequencies but the total elastic and inclastic scattering cross-section contains
no diversence. Thus, to eliminate the infrared divergence it is necessary to take into
account the graphs with the radiation of real photons (exchange graphs should
be added to these graphs, fig. 2) in order to obtain the total elastic and inelastic
cross-section containing no infrared divergence (however, this cross-section will
depend on the maximum energy of the radiated photons £). The quantity & is determi-
ned by the parameters of the scattered particle detectors.
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Fig. 2. Graphs of photon bremsstrahlung in electron-clectron collisions.

—

It should be noted that for high energies the expansion parameter in quanium
electrodynamics is (after the infrared divergence has been elininated) not e* but
e’In 9(Efm)In 2(Els), where g and p are 0 or 1. The “twice-logarithmic” terms
e In(E/m)n (Efs) prove to be especially essential since for sufficiently small & the
expansion parameter may be of the order of unity; at the same time for the cnergies
attainable at present e? In(E/m) < 1. Consequently, to obtain the contributions from
the twice-logarithmic terms, it is necessary to sum the perturbation theory series,
while the other terms can be taken into account in the e° order of perturbation theory.
If only twice-logarithmic terms are taken into account the total elastic and inelastic
scattering cross-section '*) is of the form

2
da(8) = doy(3) exp [— 8% lu% In JEEjl : (1.4)

-
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Thus, two different situations are possible depending on the quantity &: (1) if e
is small (¢ < E), the main contribution to the radiation corrections comes from
the twice-logarithmic terms, the energies of the radiated photons are much less than
the electron energy and the quantum radiation process is classical; (2) if the quantity
¢ is comparable with the electron energy, the contribution from the twice-logarithmic
terms is small, but at the same time processes with hard photon radiation are essentijal.
It is the latter case that occurs in the contemplated experiments, in which scattered
electrons are detected by pairs of counters arranged for coincidence,

Taking into account the hard photon radiation complicates a great deal the problem
of calculating the radiation corrections and the result obtained depends rather
essentially on the specific conditions of the experiment. The attempt to take into
account the hard photon radiation when detecting scattered electrons with a pair of
coincidence-circuit counters was undertaken in ref. ). However, this investigation
contains in this part several unwarranted neglects and inaccuracies. In this paper the
contribution of hard photons to the radiation corrections for the electron-electron
scattering cross-section is calculated correctly for high energies under the same
experimental conditions.

Sect. 2 gives the precise formula for the bremsstrahlung cross-section in the electron-
electron collision. This formula is analysed in sect. 3. Sect. 4 gives the numerical
calculation of the contribution of hard photons to the radiation corrections. The
dependence of the radiation corrections on the characteristic parameters of the problem
1$ considered in sect. 5. Sect. 6 analyses the limiting cases in which an analytical
cxpression can be obtained for the hard photon contribution; the details of the calcula-
tion are given in appendix 1. Appendix 2 presents the estimate of the bremsstrahlung
cross-section values at the maxima. Appendix 3 shows the equivalence of the use of

negatons and positons to check the applicability of quantum electrodynamics at
small distances.

2. Garibyan’s Formula

The precise formula for the radiation electron collision cross-section (e+e — e+
e+7) was obtained by Garibyan '*) (see fig. 2). If it is assumed that the electron
momenta before the collision are p(p, £), p'(—p, E) after the collision py(p,. Eg),
Po(—po. Eg) and the radiated quantum momentum is k(k, @), the conservation laws
in the c.m.s. are of the form

2E = Eg+Ep+o, po—potk = 0. (2:1)

The radiation collision cross section is T
do = jfr:ddeRRp, (2.2)

t The factor 2 omitted in ref. ) is restored.
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where | 3. Analysis of the Garibyan Formula
2 |
g = E_ﬁ‘:l% @, o = - : Po e (2.3) We consider the following experimental set-up for the colliding beam experiment
2(2m) E*E,E} [Iﬂ:l 4 |_Fﬂ| + |Ifi L ﬂ’] : ; (fig. 3): the scattered electrons are registered by pairs of counters with the angular
Eig Eq aperture o and threshold resolution E; (electrons with energics £ < E; are not
ok registered). It is assumed that we have a point source of scattered electrons. This
cosy = [_PW : condition is adequate to the experiment at least in the case when the beams cross at a

small angle and the counters are located in the plane of the beams.
If we discard the terms containing m/E, m {Ep, m|E, (i.e. regard both initial and final

electrons as ultra-relativistic) we have

fiy2 : 1 L : |
R =2 [( e ——) ¢4 ¢5(Po Po) + ( = —) ¢z¢4(pp) | <

g1¢€4 203 gyCa  GaCy

b=

8 (i ) eiedomors (-~ ) eseslo'2)| 2020 o0

g1€;1 data g16€a {J2C3

P ¥ [ 1 1 . ] I !
ot {PF:}}(P Fu}] _Eﬂ# |:('-'-'=4 Pp—Cy Fﬂp)(PFﬂ) (g 3 "3 ol ) ar (':‘l Pp—C3P H){Hﬂ P ﬂ) Fig. 3. Scheme of colliding beam experiment.
11 264
1 I F i : o
5 ey + (¢4 Pop— €2 Po,)(PP') == |k (¢2P,— €3 Pou)(P'Po) Registered under this experimental scheme are the radiation collisions for which
g2tz 9161 gi1€2 Hata

the following conditions are fulfilled:

1 1 : ! 1
fx e o +(E3Pp—clpﬂ)(FﬂPﬂ) o 5 Po- 1
g2€3 G1C2 gafi data E; > E;, By > By, ~|[' | > COS o, (3.1)
| Po

; nasl 1
+(E1P03_E4Pup)@1’) o e ; 7 :
g3Cs Hatlz if it is assumed that an electron with momentum pj has penetrated into one of the
; : Cs ¢y 1 1 counters and the vector n determines the direction to the centre of this counter.
+ exchange terms (p, < py)+4HPo Pﬂ]( + T ) These conditions implicitly contain restrictions which determine the integration limits

g193C1 G294 G19a 9293 : . ; ; o . :
X4 S i in eq. (2.2). To obtain the cross-section of interest it is necessary to perform, besides

+4(pp’)( Lo G .. Sle _1_) —4(ab)(pp)(po Po); (2.4) the integration over the final photon states d3k, the integration over the solid angle
g193€2 9294C4 F193 G284 dQ of one of the scattered electrons within the counter.

hE Since the integration is quite complicated let us first discuss the integrand function.

: f The integral over dk diverges at k — 0 (infrared catastrophe). However, in the total

a,= Pop , Pou _ Ru_. il : . elastic and radiation scattering cross-section this divergence is cancelled, as has been

g3€2 G262 - G203  H14 indicated, by the divergence arising the elastic scattering cross-section when the radia-

m . ~ tion corrections are taken into account. Therefore, it is convenient to divide the in-

: r tegral over radiated photon momentum into two parts: the integral over soft photons

¢1 = (P'k), c2 = (o 'I‘:)P ¢ = (pk), ¢4 = (Pok): up to k = AE < E and the integral over k from AE to &. The former integral can be

gy = (p—04)% g2 = (p'—p0)’s 95 = (p—po)’s ga = (p'— Ph). (2.5) explicitly calculated since in eq. (2.4) we can keep merely the terms cclfk” and the

r other expression can be taken for k& = 0. The sum of this expression with the elastic

' . scattering cross-section does not contain divergences, but depends on the limit
parameter AE. This sum was calculated in several papers (see ref. 1), for example)
and is of the form

Since we are interested in the cross-section of the process in which both electrons get

into the counters, the integration limits in eq. (2.2) are determined from this co ndition.
This problem is dealt with in the next section.

.
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2 b I 4
do g+ do.g r—“‘?dﬂ l:& +f HF f FJ
8y q q°4q
e -
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+ terms with q° < g'*.

It is necessary to add to this sum the integral over hard photons from k = AE
to I = &. If AE is chosen sufficiently small for eq. (3.2) to hold, the result will not
depend on AE but will contain only the quantity &.

An important peculiarity of eq. (2.4) is the presence of four high and narrow
peaks (see appendix 2) reflecting the fact that the probability for the radiation of a
photon along the direction of motion of electrons (both initial and final) is a maximum.
The qualitative picture of the distribution of radiated photons is given in fig, 4.
These peaks, given by the terms containing lfc, (n = 1... 4}, make the integration
over d3k by the conventional quadrature formulae difficult. On the other hand, the
evaluation of the contribution from very hard photons is facilitated for the same
reason (see sect. 6). Note also that the dependences on the angles determining the

directions of scattered electrons are very smooth.

Fig. 4. Qualitative picture of the distribution of hard photons radiated in electron-electron collision.

Fig. 5 represents the graphs of the function $Rk@E™ (eqgs. (2.3) and (2.4)) versus
the polar angle of the photon emission 3, for different azimuthal angles of the photon
emission ¢, and different photon energies &, for 500 MeV initial electron energy and
a scattering angle of 50° for one of the electrons. These graphs represent different
cross-sections of fig. 4 for a certain photon energy. The polar axis is directed along the
momentum of a scattered electron and the plane ¢, = 0 coincides with the electron
scattering plane. The graph shows narrow maxima along the direction of the momenta
of the initial and final electrons, the peaks being narrower the higher the energy
of the radiated photon. Curve 1 gives the graph for k/E = 0.3, ¢, = 0, and the peak
half-width is 9, =~ 0.5°. Curves 2 and 3 are plotted for k/E = 0.1 and the angles
@, — 0° and ¢, — 90° respectively. It is clear that the peak width increases as the pho-
ton energy decreases (9, &~ 1.5°). At the angle ¢, = 90° the cross-section is essentially
less and has no peak, which reflects the fact that the peaks are located in the scattering
plane. Curves 4-6 are plotted for k/E = 0.02 and the angles ¢, = 0°, 45° and 90°
respectively; the peak half-width continues to increase (9, &~ 3.5°); here the peaks
are so wide that their mutual influence is evident.

e

e  —  — s —

= = e iy e e

ELECTRON-ELECTRON SCATTERING CROSS-3ECTION 319

It is shown in appendix 2 that for k/E < 1 the peak half-width is 8, = 2m/k when
@, = 0 and the quantity R at the peak

- N(S—I—cnsz 3')12(5—_@
o Em®>

sin® 9

| (0 RheE)

g

g
N2
.

=

o
&

-

e
=2 g &'ﬂ Jﬂ -"T?.g'
(Jigr‘waﬁj

Fig. 5. Function & RikpE® {I::qs. (2.3)-(2.4}).

In this case the angle between scattered electrons is §, = (k/E)sin 3, so that only
those inelastic processes for which (fc/E)sin §; < « can be registered. For example,
for o = 3.5° and k/E = 0.02, k/E = 0.1, k/E = 0.3 the processes for which J, are
arbitrary, 9, < 36° and 9, < 10° are registered. Thus, the processes with the hard
photon radiation yield contributions only at small angles of photon emission with
respect to the direction of a scattered electron momentum.

4. Radiation Cellision Cross-Section for k > AE

To obtain the total radiation corrections we must add to eq. (3.2) the integral over
hard photons taking into account the restrictions (3.1). The calculation of this
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sultidimensional integral of a highly cumbersome function (2.4) cannot be made
with sufficient accyracy considering the rate of present electronic computers. Hence,
the problem of decreasing the number of integrations. The following integration
scheme was chosen on the basis of the above analysis: integration over d*k was
performed (since the integrand function has sharp peaks) under the assumption
that one of the electrons passed through the centre of the counter and then the
expression obtained (smooth function) was averaged over the angular aperture of
the counter, The above three-dimensional integral was calculated accurately to within
2 %. The results of the calculations are given in table 1 (E = 100 MeV, E; = 50 MeV

and o = 1.25°) and table 2(E = 500 MeV, E; = 10 MeV and a = 3.5%). Note that

TABLE 1
Radiation corrections for the case E = 100 MeV, £; = 50 MeV and « = 1.25°

Scattering

angle 40° 50° 60° 70° 80° 90°
Cross-section
doy 1+ dog,n—do —14.5 —6.76 —3 .85 —2.59 —2.05 —1.89
dr:_rh %.09 4.01 2.22 1.46 1.14 1.03
doy = ndoy, 2.10 3.60 2.00 1.32 1.03 (.95
o(%) 15.8 17.4 18.3 18.9 19.4 19.6
TaBLE 2

Radiation corrections for the case E = 500 MeV, E;, = 10 MeV and ¢ = 3.5

Scattering

angle 440 50° 60° 70° 50° 90°
Cross-section
A6y + dogey —da, —16.7 — 757 —4.36 —2.93 =33 —2.13
doy, 12.8 5.73 3.16 2.09 1.63 1.49
d? = ndoy 12.4 5.51 3.03 2.01 1.57 1.43
6(%) 10.6 12,1 13.2 13.7 14.1 14.4

the cross-sections in tables 1-3 are given in the units 10* ¢°/16n?E>. The first line gives
thﬂ'ql'lﬂﬂtit}' doy+do..;,—do, (eq. (3.2)) and the second line the hard photon
radiation cross-section deg;, at AE = 1.0 eV in table 1 and 4E = 10 eV n table 2.
T]:.m sum of these quantities must not, naturally, depend on the quantity AE at all;
this was checked at one of the points by changing AE by a factor 10 or 100, the total
resulF remaining the same, The actual choice of AE was determined mainly by
considerations of convenience of integration.

Above it is indicated that one of the electrons was assumed to pass through the
centre of the counter. The averaging with respect to the counter was performed as
follows: for the scattering angle $ = 90° the dependence of the quantity da, on the
spot where one of the electrons enters the counter was calculated. If the origin of

s

—_—

éf

1t
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the polar system of coordinates is placed at the centre of the counter it appears that
within the accuracy of the calculations the cross-section da,, does not depend on the
polar angle but depends appreciably on the radius. For the scattering angle 90°
this dependence is given in table 3; the distance from the centre of the counter is

TABLE 3
Cross-section doy, as function of the point where the electron enters the counter

Bt SN0 R I oo oS Note

Cross- i - ﬁ
S endon L 146 142 132 122  E= 500 MeV,a= 3.5% 4 = 90°

Tk I angle § Q@ 025500 0.5 TSR 1°

s

.
Cross= ™~ 105 102 100 005 08 E= 100 MeV, a= 1.25°, #=90°
section day, .

given in angular units: at the edge of the counter § is 3.5° for £ = 500 MeV and
1.25° for E = 100 MeV. It is clear that there is a characteristic edge effect leading to
the decrease of the cross-section doy, at the edge of the counter, this decrease being
the more appreciable the smaller the counter. This situation seems natural and is con-
nected, roughly speaking, with the fact that not all the peak of the integrand function
reaches the edge of the counter inside the solid angle of the counter. This effect
becomes more appreciable as the energy decreases since the width of the peak in-
creases in the process. With the results of table 3 it is possible, e.g. by cubic inter-
polation, to plot the function with which the averaging with respect to the counter

is performed. This function is of the form

f(B) = 1—0.0168+0.0166%>—0.00714°, E = 500 MeV, 0= 8 =35,
f(B) = 1 —0.05268—0.0688%—0.2138°, E =100 MeV, 0=f =1

The averaging itself with respect to the counter was performed in this way: the

averaging coefficient n = (1/f,) jﬁﬂ f(B)df was obtained for fo = 3.5 and f, = 1.25;

this coefficient depends on energy and the chosen size of the counters, but does not
depend, within the accuracy of the calculations, on the electron scattering angle.
Therefore the value do, obtained under the assumption that an electron gets at the
centre of the counter was then multiplied by #. The following values of the averaging
coefficient were obtained: 1 = 0.962 for E = 500 MeV and o = 3.5% and = 0.90
for E — 100 MeV and « = 1.25°. The cross section thus averaged is given in the
third line of tables 1 and 2. The total cross-section of theprocess may be represented

45
o = da e 6 = dirg (1= 0): (4.2)

In the fourth line the radiation corrections ¢ to the Meller formula are given in
percent.
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Note that the calculation of the cross-section and averaging with respect to the
counter were performed accurately to within = 2. However, in the expression
for the total cross-section do there arises a difference of two large numbers and the
final result is obtained with a lower accuracy which may be estimated ~ 57/,

Egs. (4.1) are of independent interest since they characterise the averaging by the
counter of the radiation collision cross-section.

5. Dependence of the Radiation Collision Cross-Section on Threshold Energy

The condition E, > E;, E4; > E; may become essential if the quantity E, is
sufficiently large. This problem has not been considered so far. Fig. 6 gives the depend-
ence of the total cross-section (doy—dg) on E; for E = 100 MeV, « = 1.25°,
3 = 90°, when one of the electrons passes through the centre of the counter.

(do, —ds) .
2971
085
nes

nar ¢

f&d ¢

QAT 1

o ¢

a3

£y (e

2r 4P fid #0
Fig. 6. Cross-section (do,—de) as function of registration threshold Energy.

Of considerable interest is the variation of the radiation corrections with the
characteristic parameters of the problem, the electron energy, the dimensions of the
counters and the registration threshold energy. The dependence is illustrated by table 4.

TAnBrE 4

Radiati i :
diation correction as function of the parameters of the problem (without averaging over the
counter)

Radiation correction 8 in %

Parameters
for scattering angles &
: E(MeV) o E(MeV) 40° 50°
30 125 100 13.-é ]ii. .
5 1.25° 100 13 15.0
2] 3.5¢ 100 1.9 9.0
5 g 500 9.5 10,9
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6. Limiting Cases

In this section we consider situations in which the analytical expressions for doy
can be calculated. This proves to be possible in the limit of soft quanta as well as
in that of very hard photons. ‘

Suppose we are inferested in the cross-section for radiation collision with emission
of relatively soft photons k < E. If k < Ex the condition pg * pof|po||Po| > cos @
imposes no restriction on the photon emission angles and there remains only the
condition AE < k < &, where ¢ < Ex and & < E. In this case the integral over d{;
can be taken with respect to all directions, and terms of the type (1/k*W(E, k) only
kept in eq. (2.4); we can take y/(E, k = 0). As a result we obtain

2 e
doy(3) = dog( ) I (2 s —1) : (6.1)
TR T m

In the other limiting case, that of very hard photons, an analytical expression can
be obtained by assuming the counters sufficiently narrow. Then the condition
Po ° Pollpollpol = cos « for the case when one of the electrons passes through the
centre of the counter can approximately be written as k sin 8, < Ee and for k > AE,,
we get sin &, < Ex[AE,. For narrow counters, such that Ex/AE; <1, the quantity
9, becomes very small. Consequently the integration over d€2; must be performed in
this case in the narrow cones around the directions pg, p, so that the main contribu-
tion to the integral comes from the terms containing

1 1 1 1

B ’ T T

SN Mcns'p R il -P—d- cos v’
E, Eq

The integrand can be represented as a series in powers of (1 —cos y)(1+cos y’):

L Y(cosy = 1) . _f,!f(cosy = — 1)

+const+O[(1—cos y)(1+cos y)],

1— |pol cosy 1+ M cos v’ . (6.2)
L0 0
Cos § = M-, cos y’ = f% jul ;
[pol[ | o ]

In integrating over dQ, the first two terms yield large logarithms of the type In(E?/m?)
and the subsequent terms are of the order Eu/AE,. If we confine ourselves to the
first two terms we obtain an expression with relative accuracy of the order (Eu/AE,)
In™*(E*/m?). Estimates show that accuracy of the order of several per cent can l;e:
reached for AE; ~ 100 MeV (at E = 500 MeV).

Proceeding from the above consideration we obtain (see ppendix 1)t y
ol 1 1 C 1

2e”

do (AE — == I
ﬂ-h( 1 < k g3 El) dﬂr{] - J(Rls 'ICD): (6.3)
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fﬂg
where 4 }
PP kﬂ( 0 11.9) -yﬁ(f}-{r]n —“) —2k1-(1+1n ﬂ)
I{LI_ = }I-.ﬂ) = In k—ﬂ (]H kukl 1) _1'"'%' 1 ‘_%' kl 0 kﬂ kl

+2k, (1 1n ;i) +3(1—ko) [A—In (1—ko)]=3(1 = F1)*[2~1n (1~ ky)]

4]

] zji_k“ délné
+(1=ko)2—1n (1 =ko)] —(1—k)[2-In (1= 61)]+ e (6.4)
Here we have
A Eo :
k1=mi11{5—1, En }’kﬂ=_El,}{ =—, 8 =E—E,. (6.5)
E m<+Ea i

Eq. (6.3) gives the cross-section for clectron-electron scattering with emission of
very hard photons whose energies lie in the interval AE; < k < g; and AE, > Eu.
It should be noted that the entire angle dependence in the expression forday (eq. (6.3))
'« contained in the factor do, (Moller cross-section) since I(ky, ko) (eq. (6.4)) does
not depend on the scattering angle. From comparison with the numerical result
it is clear that eqg. (6.3) approximates the integration result sufficiently well: thus
for E — 500 MeV, o = 3.5°and AE; = 150 MeV, the numerical result is I(k,, ko) =
5.05 for the scattering angle 8§ = 40° and I(ky, ko) = 5.01 for the scattering angle
9 = 90°: from eq. (6.4) we obtain I{(k,, k) = 5.07.

The authors wish to thank V. Synakh for valuable advice, V. Sidorov for discussions '
and O. Kapranova, L. Sekerina and B. Butenko for their encouragement and assist-
ance in the calculations.

Appendix 1

DERIVATION OF THE RADIATION COLLISION CROSS-SECTION IN THE CASE OF
HARD PHOTON RADIATION

On the basis of the analysis performed in sect. 6 let us keep in eq. (2.4) only the
terms proportional to 1/c, (the terms oc 1fe, give the same contribution and therefore
it is sufficient to calculate the contribution from the terms with 1/c, and then double
the result). As a result we have

e , o [me _ 2pep! : ,
R = {— [ea(pp') +c3(p'Po)] — [— =y )] [{pp : (ca+(pop0))
€291 194 €2 ‘1 91
220 (0,4 (ppo) + 22 ] + exchan terms (py > 7o)
g1 g4

4 2r) [¢4_(pﬂ 50 (.{"*‘L2 5 E(Pﬂ)]} : (A1)

9a C3 €1

.
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For the sake of simplicity let us consider the case when one of the electrons passes
through the centre of the counter (y = 8,). In this case we have

i (3+cn51 5)3(2E g _m _2') _ (A.2)

¢, \ sin® 3 L T R

We must calculate the integral (2.2): |
e?dQ E—k A3
dﬁh(dEl il = El) = EIEE ijfdkdﬂf __E:_ R1 ( : )

the integral being taken over the solid angle of one of the counters. As was indicated
the integration limits are

AE, < k < &, AE,> Eu (A.4)

The condition pg - pallPallpol = cos « (for ¥ = 9.) can be written as
aE* 2’E? Al
cnsSk}l——EE, cos 9, < —1+ 7 (A.5)

In the integration over one of the counters only the first of these conditions remains.
Calculating the integral

i il | B —1 E2g2j252 ©
do(AE; < k < g) = day =L ( dk « -j—--—j dx
L AE| B 0
{ Eptx(2—x
% |: — Po ( ) 1] (A.ﬁ}
ED_IP{J[(IFJ:) k (Eu_anl(l‘”x))
2y (ME  [E+(E—K)*, EX(E—k)’a® 2E(E—k
AR L )
k m-k | k*

=

2
T E AEy

we obtain eq. (6.3).

Appendix 2
BEHAVIOUR QF THE FUNCTION R NEAR MAXIMA
If we put the angle 3, = 0 in eq. (A.2), we obtain

2 2 .
Rm:m R (3 ++Eﬂzs S) E{EF—E) 3 (\A‘?)
sin” 3 Em*

the half-width of the peak being given by the formula

2 MEE—kK) /4B E—k)
97 = Bl [ + bt il 3,
(E—k)* I Kkt W )
For the case k < £ we have
B 4”12
'q'r e .'-:,2 = (A.g)'
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Appendix 3

A CHECK OF THE APPLICABILITY OF QUANTUM ELEC-

REMARKS CONCERNING ELEETRGN SCATTER]HG E}{PER[MEHTS

TRODYNAMICS AT SMALL DISTANCES IN

If we assume that quantum electrodynamics does not apply at small distances,

in the one-photon electron-exchange approximation (the terms containing the anom-

alous electron magnetic moment being neglected) we obtain the following expression

for the negaton-negaton scattering cross-section:
4

*:ff f"‘[q’ﬂ . (A.10)

o T'I -54-1— &k 254 L D i ) 8
o) = 28 [ e el @

o
The function f(g?) can be connected with the change of the electron-photon 1nterac-
tion vertex as well as with the modification of the photon distribution function at
high energies (for more detail see ref. '*)). The restriction to the one-photon ex-
change is justified since graphs with exchange of two or more photons do not yield
large logarithmic contributions. If we assume that the form factor f(g®) can be
expanded in series:

flg®) = 1-a*q’, (A1)
the negaton-negaton scattering cross-section can be represented as
6 (8) = oom(P)—Aow(9). (A.12)
It appears that the relative change of the cross-section (c.m.s.) 1s
(da(ﬂ}) 0 24p*a? sin* § . (A.13)
gold) /M 3+ cos® 8

In the case of negaton-positon scattering we obtain

3,2 34_1_ 14 2 ré .r-:T-_Jr_ 4
O = [T+ 2 @+ LEL )|
8y q 5°q g

'3

— oon(9)—Aday(9).  (A.14)

For ultra-relativistic electrons the formula for negaton-negaton scattering (Bhabha
formula) has the simpler form (in the c.m.s.)

re {3+cos® 8\? .
> .9:-“( ) (A.15)
o) 169> \ 1 —cos 3

If it 3s assumed that the expansion of the form factor for time-like and space-like

momentum transfers is the same and is of the form (A.11) it appears that the relative
change of the cross-sections is the same

e,

ELECTRON-ELECTRON SCATTERING CROSS-SECTION 3z7

Thus, under the assumption made, despite the fact that for the case of negaton-
positon scattering the scattering can be measured through an angle larger than 90°,
where large momentum transfers occur, the maximum deviation from the electro-
dynamic cross-sections takes place for the scattering angle 90° just as in the case of

negaton-negaton scattering. In this sense the possibilities for e™-e~ scattering and
g -e" scattering experiments prove equal,
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