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influence of the multiple scattering on the large 
angle θ = 50 mrad. 
The very important goal made with this orien­

tation is the high value of the calculated linear 
polarization i.e., 78% at the first peak. This was 
first pointed out Uberall (5). 
He suggested a different orientation; for expe­

rimental convenience we used the previously 
mentioned one. 
During these measurements the γ-ray beam 

intensity was 1010 eQ/m, but an upper limit of 
5 × 1011 e Q/m can be reached. 
We thank G. Diambrini for his constant interest 

and useful collaboration at this work. 
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DISCUSSION 
WINICK: What are your plans for measuring the polariza­
tion of the peaks you observe? 
BOLOGNA: We plan to use a second crystal inside the pair 

spectrometer, as proposed by G. Barbiellini, G. Bologna, 
G. Diambrini and G. P. Murtas (Nuovo Cimento 28, 435, 
1963). 
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In the movement of electrons and positrons 
in a magnetic field the emission of protons, as 
shown in ref. (1), leads to their polarization. 
Thoug the probability of the emission with the 
change of spin direction is very small compared 
with the general probability of emission, high-energy 
electrons and positrons may appear to be 
highly polarized after a long time rotation in the 
modern storage rings (see for ex. (3)). The po­
larization time is in a homogeneous field equal to 

τpol = 

5√3 
αm( 

ε )2( Η )3, α = 

1 
[1] τpol = 

8 
αm( 

m )2( ΗO )3, α = I37 
[1] 

here Ho • m2/e = 4,4• 1013 e. In a storage ring with 
the energy of E = 6 BeV and the field being 
H = 8 • 103 e, τpol, = 190 sec. 

In order to keep the arising particle polari­
zation in the storage ring, it is necessary to 
select the particle energy ε so that there would 

arise no depolarizing resonances in the system 
due to the radial and azymuthal constituents of 
the magnetic field on a particle trajectory. Pre­
cisely, the resonance condition. 

G 
ε 

= k + 1Q2 + mQR + nQx, , k, 1, m, n - integers [2] G 
m 

= k + 1Q2 + mQR + nQx, , k, 1, m, n - integers [2] 

is to be fulfilled for as high values 1, m, n as pos­
sible. Here G = g — 2 = a/2π stands for the ano­
malous part of g — factor of the electron, Qz,k,x 
for the oscillation number on the orbit for ver­
tical, z, radial k and phase x-oscillations. The 
summands 1Q and m QR arise due to the pre­
sence of terms z1 and rπ (r = R — Ro, Ro is an equilibrial 
radius) in the fields HR, Hx, and the 
term n Qx takes into account the synchrotron 
energy oscillations and the corrections to the 
frequencies connected with these oscillations. 
For a correct choice of the energy ε one needs 
to have a detailed analysis of a particular storage 
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ring taking into account the specific magnetic 
field nonlinearity, etc. 
We admit that the energy e may be chosen so 

that the depolarization effects due to the action 
of resonances [2] are non-essential. It turns to 
be that at an appropriately high energy there 
arises one more possibility of depolarization due 
to the quantum character of photon emission. 
This is also realized in the presence of perturbing 
fields HR and Hx, only, but the fulfillment of the 
resonance condition [2] is not necessary for the 
moment. The effects is due to the fact that the 
energy jumps due to the quantum character of 
photon emission on being expanded in Fourier 
integral contain, in particular, harmonics giving 
the resonance [2]. Hence, the essence of the 
phenomenon lies in resonance too with that un­
pleasant peculiarity that it cannot be avoided 
by means of the choice of ε. 
We would like at the same time to emphasize 

here that we failed in finding some other clas­
sical or quantum effects leading to beam depo­
larization, so that on elimination of the most 
dangerous perturbation field harmonics one can 
sharply decrease depolarization effects. This may 
be also true for the effect to be considered below. 
The treatment of quantum depolarization can 

be carried out in the approximation when electron 
trajectory is regarded to be classical while the 
particle energy undergoes jumps in the each 
event of photon emission so that 
- d (∆ε)2 

= 
55 √3 1 

( 
ε 

)3 , = 
2 

( 
ε 

)4 

rom 

dt 
= 

48 R ( m 
)3 , = 

3 ( m )4 R2 

[3] 

here stands for the classical power of photon 
emission by electron and ro for a classical electron 
radius. 
Equations for the 4-vector electron spin Si, ta­

king into account the perturbing fields HR and Hx, 
are of the form [2] 

dSi 
= G 

eH ( ε 
)2 S2 - (1 + G ε

2 

) 
eHR 

S3 [4] 
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S3 [4] 
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dS3 
= (1 + G) 

eHR 
S1 + [G 

eH P dz 
- (1 + G) -

eHx 
]S2 

[6] 

dτ 
= (1 + G) 

m 
S1 + [G 

m m dτ 
- (1 + G) -
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[6] 
dS4 

= G 
eH εp 

S2 - G 
eHR εp 

S3 [7] 
dτ 

= G 
m m2 

S2 - G 
m m2 

S3 [7] 

where τ = tm/ε, H is an equilibrial field. One 
can easily see that both spatial and time varia­
tions of the field H do not lead to depolarization 
which is, of course, evident from the outset. 
Terms with HR and Hx can give the resonant turn 
round of the spin, but we assume that the con­
dition [2] is not fulfilled. Since the effect under 
consideration depends just indirectly on the type 
of beam focusing in the storage ring, we consi­
der, for simplicity, an azymuthal symmetric 
weakly focusing field in which there act the k-th 
perturbation harmonics HR = h cos [k eH/m • 
• (τ-τo)] (for z = 0), so that the field on a real or­
bit perturbed over a vertical z = ZH can be written 
as 

HR = -
k2h 

cos [k 
eH 

(τ - τo)], Zk = 
R h 

[8] HR = -
HR - k2 

cos [k 
m 

(τ - τo)], Zk = 
H n - k2 

[8] 

ZH = zK cos [k 
eH 

(τ - τo) [9] ZH = zK cos [k 
m 

(τ - τo) [9] 

Since the r -oscillation in the linear in h appro­
ximation gives no contribution to the effect, we 
shall consider r to be equal to zero. The calcu­
lation of the effects due to the free z-oscillations 
in a non-homogeneous field as well as the field 
Hx can be carried out in the similar manner, and 
the corresponding results are given in the con­
cluding part of the paper. 
We write down the solutions of the equations 

[4]-[7] in the first order approximation in h in 
the rest particle system. In order to perform a 
transformation to this system, one is to perform 
the Lorentz transformation and the usual turn 
round to a small angle 

= 
m dz 

= 
h k 

sin [k 
eH 

( τ - τ o ) [10] = 
Ρ dτ 

= 
H n - k2 

sin [k 
m 

( τ - τ o ) [10] 

In this system (which is denoted by the script 

" c ") So4 = 0 

(S)2 + (SC
2)2 = s2 = σ2 + σ2σ, 

h Gk 
F [11] (S)2 + (SC

2)2 = s2 = σ2 + σ2σ, 
H n - k2 

F [11] 

(Sc3)2 = Sz2 = σz
2 - σσz 

h Gk 
F [12] (Sc3)2 = Sz2 = σz

2 - σσz 
H n - k2 

F [12] 

F = 
1 + k (ε/m) 

sin { 
eH 

[(k - G 
ε 

)τ - kτo]} -F = 
k — G (ε/m) 

sin { 
m 

[(k - G 
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)τ - kτo]} -

- 1 - k (ε/m) 
sin { 

eH 
[k + G 

ε 
)τ - kτo]} [13] 

-

k + G (ε/m) 
sin { 

m 
[k + G 

m 
)τ - kτo]} [13] 
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where σz, σ are constant with the constant par­
ticle energy, and 

σ2 + σz2, = [14] 

Values Sz and Se have the meaning of the instan­
taneous spin projections on the axis z and on its 
perpendicular plane in the rest electron system; 
σz and σ have the meaning of the means near 
which there occur low oscillations of the projec­
tions Sz and S. 
Due to the fact that the relative probability 

of the spin turn round at the moment of photon 
emission is negligibly small compared with 
that of emission without the spin turn round, 
the values of the true spin projections. Sz and 
S do not change at the moemnt of photon, emis­
sion. However, at the moment of photon emis­
sion there occurs a jump-like change of F in the 
formulas [11], [12] proportional to the jump 
Δε. Since Sz and S are unchanged this leads 
to the jump-like change of the mean values σz 
and σ . The compensation of the energy loss due 
to photon emission by the accelerating system of 
the storage ring makes the value F (more pre­
cise, the values of amplitudes in [13] come back 
to the initial one, but the set of such random 
jumps leads to the stochastic swing of σz and σ  
and, consequently, to the swing of Sz and S . 
For the appropriately high energy G (ε/m)» 1, 

at which the effect under consideration is of inte­
rest, the main contribution to the process of 
swing is given by the jums of the denominator 
in the first term [13]. In this case a main part is 
played by the harmonics k for which G (ε/m) ~ k. 
This gives the following change of the angle θ 
between the spin direction and the axis z: 
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mR3 ( R )2( m 
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here Zk is the amplitude of the induced z-oscillations 
excited by the perturbation. 
From [15] it is seen that the effect most 

strongly depends on the particle energy and 
highly depends on the number of the nearest 

resonant harmonics k, as well as on the distance 
to the resonance k - G (ε/m) and on the quan­
tity Zk. W e evaluate the effect at reasonable 
values of the parameters: E = 6 BeV, H = 8 • 103 e, 

R = 3 • 103 cm|(k - G 
E 

)| 
1 

for k ~ 14,15, R = 3 • 103 cm|(k - G 
m 

)| 
2 

for k ~ 14,15, 

Zk = 0,1 cm. In doing this the characteristic de­
polarization time (the change of angle by one) 
is equal to τdep = 25 sec. This is by one order less 
than τpol. Thus, in this case, the beam is not 
obviously polarized. 
This means that one is to take special steps for 
the keeping beam polarization. However, we 
would like once more emphasize a striking sta­
bility of polarization. 
W e give also formulas for S and Sz due to the 

perturbation Hx and the presence of the free z 
-oscillations (these effects, generally speaking, 
yield a small contribution compared with the 
considered above): 

S,zR = σ,zR ± σσz 
hxk { 1 + G sin [ 

eH 
(k + G 

ε 

). 

S,zR = σ,zR ± σσz Η { k + G 
ε 

sin [ 
m 

(k + G 
m 

). 

S,zR = σ,zR ± σσz Η { k + G 
m 

sin [ 
m 

(k + G 
). 

τ - kτ1 ]-
1 + G 

sin [ 
eH 

(k - G 

ε 

τ - kτ1]} τ - kτ1 ]-

k - G 
ε 

sin [ 
m 

(k - G 
m 

τ - kτ1]} τ - kτ1 ]-

k - G 
m 

sin [ 
m 

(k - G 
m 

[16] 

Hx = hxk sin [k 
eH 

(τ-τ1) Hx = hxk sin [k 
m 

(τ-τ1) 

S,z2 = σ,x2 ± σσz 
Zmax 

G { 
1 + 

ε 
√n 

S,z2 = σ,x2 ± σσz 
Zmax 

G { 
1 + 

m 
√n 

S,z2 = σ,x2 ± σσz 
R 

G { 
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ε 1 
- 1 

S,z2 = σ,x2 ± σσz 
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G { 
G 

m √n - 1 

sin[ 
eH 

(G 
ε 
- √n)τ + √nτ1] + 

ε 
√n-1 

sin[ 
eH 

(G 
ε 
- √n)τ + √nτ1] + m 

√n-1 
sin[ 

m (G m 
- √n)τ + √nτ1] + 

G 
ε 1 

+ 1 
sin[ 

m (G m 
- √n)τ + √nτ1] + 

G 
m √n + 1 

sin[ 
eH 

(G 
ε 
+ √n)τ + √nτ1]} [17] sin[ 

m (G m 
+ √n)τ + √nτ1]} [17] 

As one should expect, the consideration of the 
linear z-oscillation leads to the effect depen­
dence on the difference 

G (ε/m) - Qz, Qz = √n (cf,[2] for l = 1). 
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In recent years a series af theoretical works 
(1, 2, 3, 5,) on the acceleration of the polarized 
protons in different types of accelerators have 
been carried out. 
It is found out that the vertically polarized 

particles pass through a series of depolarizing 
resonances during the acceleration process. 
The theoretical investigation of some effects 

which may be expected for the polarized electron 
beam of the Yerevan Synchrotron (EKU) has been 
carried out by the author in (4). In this paper 
(as well as in the papers of other authors) in 
order to estimate the effect of the passage through 
the resonance it has been used the Froissart and 
Stora's method (1) based on the application of 
the perturbation theory. 
In this paper it is adopted for EKU another ap­

proach to the problem consisting in the use of 
a high speed electronic computer for the simul­
taneous calculation of the amplitudes of the 
oscillation harmonics and of the spin motion in 
various energy region. 
The use of this method gives a certain confir­

mation to the analitical calculations concerning 
to the prediction of the places of the resonan­
ces (4) and the spin motion just at the reso­
nance (6). 

EQUATION OF MOTION 
For the preliminary calculations in order to 

obviate some additional difficulties in the pro­

gramming it has been considered the case when 
only z-motion is present. 

dui 

= { 

0 . 

Ρ 

i = 0,1,2 
dui 

= { 
eHr 

. 

Ρ 
i = 3 dτ = { 

eHr 

. 

Ρ 
i = 3 dτ = { 

me 

. 

mc 
i = 3 

(just it is the only important one for the verti­
cally polarized particles). Here ui is the velocity 
four-vector, p is the particle momentum, τ is the 
proper time, Hr is the radial component of the 
magnetic field. The relativistic invariant equa­
tions of the spin motion (7) take the form: 

dS1 
= G 

eHo γ2S1 - (1 + Gγ2) 
eHr 

S3 
dτ 

= G 
mc 

γ2S1 - (1 + Gγ2) 
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dτ 
= - G 

mc 
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Fig. 1 


