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Apstract: An e}iperlir[l.f:nt in electron-electron scattering in the c.m. system is considered Scattering
angle and radiative energy distributions are abtained. i

1. Formulation of the Problem

The infrared divergence in quantum electrodynamics is known to lead to the
impossibility of purely elastic processes. Consider, e.g., the scattering in the c.m.
system of two clectrons with initial energies and momenta p, ,(E, p) and p,,(E, —p)
and final energies and momenta g,,(g;0,41) and 4;,(420,4,)- Let us introduce for
the sake of convenience the vector O, with the components 0 = q;+q, and

0y = q10+d20. The probability for this process is usually represented as an elastic
scattering probability

dW = (2n)* W,dR,d0,d0LE*6(Q)6(2E—0y) (1)

plus the probability of inelastic processes with the radiation of one or more quanta.
Consideration of the radiation corrections cancels the first term of this sum (1).
This means that in quantum electrodynamics the distribution in the angle (m—0)
between final electrons cannot in principle have the shape of a ¢ function but must
be replaced by a certain sufficiently narrow distribution which transforms into a
d-function only when « — 0. The same applies to the energy distribution in the
quantity 2E— Q. It can be expected that the deviation from d-shaped distributions
for small angles @ and small energy differences 2E— 0 is caused by the radiation of
alarge number of soft quanta, whereas the large angle and energy distribution regions
can be determined by the radiation of single hard quanta. Though these effects can
be expected to take place in all electrodynamic processes We shall discuss for the
sake of definiteness the above experiment in electron scattering through scattering
fingles 8.0 > m[E (experiments with colliding beams). The aim of the investigation
s the determination of the initial sections of the distributions since these determine
the choice of the régistering equipment aperture in the planned experiments. It is
Shown below, however, that the formulae obtained describe with fairly good accuracy

the behaviour of the distribution functions in the large angle and energy regions as
Wel],

629



v. M. GALITSKY AND §. A. KHEIFELS
630 !

3. General Formulae

probability for an electron-electron collisiop Which

Our aim is to determine the .
causes the radiation of an arbitrary number of soft quanta. The,: total prﬁbabﬂity, i
the elastic scattering probability plus the probability for scattering with the rq dintins

of an arbitrary number of quanta has the form

AW = Wuﬁ(g)a(zﬁ—gu)dqidqﬁdmﬂqu W, 6(@+F,)0(2E — Q0 — w)dk,

S -'['dqidqz".ma(g"’l'kl-]-' " '+kn)ﬁ(2E-_.QU_m1ﬁ' " '_mn}dk_'[ ' e dkﬂ

T, (2)

where W, is the probability of scattering with emission of # quanta. Let us introduce
a parameter A denoting the energy limit of classically radiated quanta, Then for

quanta with energies @ < 4 we have

1 T
W, = Wy 'r'?r' {l’ﬂ.) 2 [3}
where the classical quantum radiation probability W, is
W, = _“"r_zl(f& + P dtw E:’-.!f.)z, (4)
dn” w Plk pzk qlf'i: qzk

The probability for the radiation of many quanta with energies @ > 4 is small
Using the representation of ¢ funetions through a Fourier integral in the parameters
¢, 11 'we can rewrite eq. (2) in the form

4
dW = W,dq, dngdﬁdr}eiﬂ'ﬁﬂﬂ'ﬂ“” exp [f Fﬂ:aik‘g_i””’dk]
0

E A

‘f"d!hdﬂzf dky Wi(qy g, key )o@ 0 EHIRE=Qo=00n gy, U‘ W, e* ﬁ—imudk}dgdq
A 0

. (5)

where the terms corresponding to the radiation of two and more non-classical 'ilT=13'nl‘iEI
: : sl
have not been written out, With the same accuracy, representing exp {[, Wy int

14 '
form exp {f, W, ~ [} and expanding in powers of {[;#,} we can write & ©)
as

dW = Wadh dﬂzfﬂﬁdqgr‘ﬂ*ﬁﬂ{:ﬂ—ﬂ:ﬂu exp [jgﬂlﬂik- -E-fm?idk}
5 0
+dE1d4;jﬂ dk,[W, — W, %I}Elfﬂ+k1] rE+I2E-Qo— o)

X UEW ik + &t (6)
Ay dk} dédn+ .. .,

|
1
|

ELECTRON-ELECTRON COLLISION 631

In the integral over k; the lower limit can be assumed to be zero since the expression

| in square brackets vanishes when w; < 4 (see eq. (3}). The second term (and the

~ pther terms which have not been written out) correspond to the radiation of non-
classical quanta. The distribution for small angles between scattered electrons must be

determined by the irradiation of soft quanta, i.e. the first term in eq. (6). If the radia-

. tion corrections from the virtunal quanta are taken into account the index of the ex-
. ponent can be replaced by the expression

E
Wi(e™ ==~ 1)dk,
A s )

Let us also pass from dq,dq, to dny,dQ,dQ directing the unit vector n, along the

momentum of one of the scattered electrons g, :

dgydg, = dny,dQ,dQ (Qg_gz)z(gi_]_(gﬂ_gn)z}’
E(QD_"QH)LL (E)

Qﬂ = Q"ﬂ: {Q-J_"EI] == ﬂ:- ﬂ < QID =3 ':'D: Q-1 é Q%-

The distribution in @, gives an energy spread, i.e. the difference of 910+ g2 from

2E; the distribution in d@, is an angular distribution. Since the expected distribution

- must be close to the distributions in the form of § functions, i.e. must be sufficiently

narrow, we can put in the Jacobian of the transition approximately

O, = 2E:
0 =0 so that =i

dg,dg, = 1dn,dQ,dQE?>. 9)

Comparison of egs. (6) and (9), taking into account eq. (7), with elastic scattering

Probability (1) shows that the distribution function has the form

1
(27)°

df = EI.Q,;] dQJ_ fdedﬂ ei@ - &1 TH(2E—Qo)y

X eXp [ f:dk WY (e =ion 1)} : (10)

This distributi
18 distribution when o - 0 (W), — 0) has in fact the form of a product of 6 func-

tons. The contributi
< ontribution from non-classical ‘ '
o quanta (the second term in eq. (6)) is

3. Energy Distribution

T . W .
hie “lergy distribution can be obtained from ¢q. (10) by integration o
ver

dQ 2 2
L . T,
48 an glte;ragﬁl ;-[F e T obtain a non-vanishing function only in the region & < 1/0
nd depending on &. This makes it possibl = 2 Sealg
€ to omit €% ip the
CXponent
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since essential y are of the order [2E—0017" > 051, Thus the

: i . (10
index in eq. ( )n is given by the integral

energy distributio

E
_ 400 [ gygter-emexp | [ au(emr— ).
dfs= ) " ;

When caiculating the integral in the ﬁ:{piment we can assume that g, +q, = ¢ For
the sake of simplicity we consider scattering .thrﬂugh 1w s0 thz?.t P g = 0.1f we kee
only the terms giving the products of logarithms, the terms. in eq. (4) proportiong]
to m? can be omitted and the crossing terms (pq) can be written as

| 1 ! ko
—1ir, 2732 A
[0*E*—(p- k)] [0°E —(a K] =~ [Ezmt(p'k)z § EEWE-(‘H‘)J'

(11)
Then we have
. 4oL 1ee
J' dkWe~1—1) = — —= (In 2E|y| — }i sign 1), (12)
= |
2
L=1In 4E—2 :
m

The integral sine and cosine Ci(En), Si(En) originating in the integration can be
omitted since the argument En > 1 for characteristic # ~ (2E—Q,)~". Finally, we
obtain the normalized energy distribution function in the form

ot =1 -+4elin
af, = 4L (E gﬂ) T (1_ 4.:xL) dQ,
T E T

0<Q, <E.

(13)

4, Angular Distribution

The angular distribution is obtained from eq. (10) by integration over Qo- L&t U8
first find the distribution in the scatfering plane, for which purpose the expression

obtained has to be integrated over d0,(Q, | 0,; 0, | no; O, is the projection of

0O, on the scattering ; L " o
plane). Simplifying the ex ' ined we can, just 8
the case of the ying pression obtaine

A encrgy distribution, assume that # = & = 0 and. use eq. (1) 1
k« WHSTEUpon we have the following integral in the exponent index:

RN
Lo 0~k w®—(v,k)
5% = 0.

(14)
gl-" = 5:

f

: This o :
> 8ives the following angular distribution functions in the
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1 o (14) easily reduces to the integral
: dg [ -
b= -—-f dx[[nEC:-:—CiEfx]( I -+ !
T Jo 1—p%x? \/(me}z—f-xz '
| : '
' the estimate of the latter when E¢ > 1 leads to the expression
| 24
S = — — (L 1n E¢+1n® EE), (15)

| Using eq. (15) we obtain the normalized distribution function

dO, o E
QIJ )EKP{_QH_LIH‘EI
Qp

p T

1O, 7

—E =0, < ESIO i

o
= iin
T

df, = (L—I—ln

(16)

AL

-~ The distribution (17) can be rewritten as a function of the angle 8 between scattered
electrons since at small § we have |Q,] = Ef. When 0 >> m/E we obtain

_ 2ol dd
= n Ql—2eLim’

df, (17)

The distribution (17) is normalized across the interval 0 < @ < 1. It is noteworthy

. that the terms proportional to a large logarithm L have originated in eq. (16) from
| the term [‘5”2"(".9 *k)*17! in eq. (14), i.e., they are due to the radiation of initial
ﬂlﬂﬂt‘rﬂns. This can be expected since the radiation is directed in the main along the

| m‘ﬂ't«fﬂ‘ﬂ of the electrons and hence a large momentum transfer with respect to the
| J_ll?fmn of scattered electrons can only be carried by the photons radiated by the
| Mitial electrons. For the same reason the angular distribution in the plane perpen-
licular to the scattering plane must be very narrow since the momentum carried in

- this direction by the quanta radiated by the initial and final electrons is very small and

o h}f order of magnitude k;, ~ w6, ~ wm/E. To obtain the explicit form of this
 Ustribution let us

' before, The integral originating in the exponent index has the form (14) but instead

integrate eq. (10) over dQ,dQ, and simplify the expression as

of i
SpWe have &,; & - v, = 0; & - v, = 0. Its estimate leads to the expressions

4o
e = In? EE when 1 < E¢ < E/m,
4o { E* E
S (In — In EE—1n? ——) when EE > E/m.
T m m

plane normal to the
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scattering plane:

E
d _ 804 E o —E[Zlﬂ(ﬂfm)lﬂ o ‘]“E_:I}r 19,] < m
Al e S
PR LN A PR el PR o
g [0 n 1

For small angles we have [Q] = E0. The.disf;rih‘utic{n (18) proves normalized +,
unity. It can readily be determined from this distribution that 779/ of the electrong
are scattered through an angle corresponding to O, smaller than m and 90Y% are
scattered through an angle smaller than 5 m/E or 1.5° (the values are given for ay
initial electron energy of 100 MeV). In the scattering plane the distribution is mych
more elongated. Let us introduce a quantity g denoting the fraction of electrong
scattered through an angle than @,. From eq. (17) we easily find that

0, = (9)*" (19)

Using this formula we can directly find that for 100 MeV electron energy 50% of
the distribution (g = 0.5) lies within 1* and 909, within 10°. For 500 MeV energy
the relevant figures are 10" and 13.5°. The dependence of df,/d0 on the angle between
scattered electrons compiled according to eq. (17) 1s given in table 1, The initial
electron energy 1s assumed to be 100 MeYV.

Tanir 1
Angular distribution of electrons in the scattering plane

) 20° 407 1° 50 10° 15° 20°
df/df 4.5 2.4 1.56 0.30 0.15 0.10 0.07

Eqgs. (13), (17) and (18) for the energy and angular distributions have been obtained
for the scattering of electrons through 4m. If the scattering angle O, 7 27 they
conserve their structure, but L = In(4E2/m?) is replaced by

4E* sin® @

mﬂ

scat

L =In

This statement remains valid up to scattering angles 6., > m/E.

S. Contribution from Hard Quanta

Let us n o :
S ;::ea what contribution the non-classical (hard) quanta can Yi€i< ;
ng the form dﬂﬂfﬂ:l n eq. (ﬁ) cancel out the cont ribution of hé

uant i
q a may lead to additions to the energy distribution function (,.tg:f:rr} d@o: wheré

|
I
|
|
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| 2 constant. Comparisen with the distribution function (13) due to the radiation

of soft quanta shows that the latter is always decisive at small 2E— (. The correction
0 eq. (13) from hard quanta depends on the constant A. To determine it we can use
fie precise formula derived by Garibyan ') for the electron-electron scattering cross
section with one quantum radiation. The estimates thus obtained show that the above
distribution (13) must be valid accurately to within 30% up to 2ZE— Q4 ~ LE. The
same applied to the angular distribution (17). We give below by way of illustration
e data for the energy distribution in the quantity k = 2E— 0, obtained by eq.
(13) and with the aid of the numerical integration of the Garibyan formula (scattering
through 47 and the initial electron energy 100 MeV). The quantity In[137(df/d(Qo/E))]

is calculated.

TABLE 2
Comparison of energy distributions

klE Sl NS 10-2 0.1 0.15 0.2 0.3 0.4 0.5
1 df eq. (13) 7.35 6.73 4.68 4.33 4.07 3.73 3.46 3.26
E- d (%) numerical  7.38 6.68 4.39 4.00 3.73 323 3.14 3.12
£ calculation

The functions in table 2 differ on the average by a factor of 1.35, which roughly
corresponds to the expected accuracy. It is clear from table 2 that eq. (13) determines
sufficiently well the distribution function for large values of the argument as well,

In conclusion the authors wish to thank V. N. Bayer and V. A. Sidorov for
simulating discussions and V. S. Synakh and O. Tumatchek for their assistance in
the numerical calculations.
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