ASYMPTOTIC METHODS IN THE HYDRODYNAMIC
THEORY OF STABILITY*

K. Z. SAGDEEV
INSTITUTE OF NUCLEAR PHYSICS, SIBERIAN DIVISION,
ACADEMY OF SCIENCES OF THE USSR, NOVOSIBIRSK,
UNION OF SOVIET SOCTALIST REPUBLICS

[, INTRODUCTION

The use of asymptotic methods in the linear hydrodynamic theory of sta-
bility is well known, e.g. in connection with the problem oif stability of Poi-
seuille flow (for a more detailed account seen reference [1]). The main point
is that it is necessary to reach sclutions and find the eigenvalues w = w (k)
for the given boundary conditions of the following equalion:

dtg — H2g -
@ S35 - Tate,low) bt Ui (B u)o =0, (1)

£ is a co-ordinate (in the case of Poiseuille
The presence of the small para-
formal asymptotic series which will

where o is a small parameter,
flow o is proportional to the viscosity).
meter o makes it possible to construct a

give a solution for a correctly chosen power of .. _ :
Recently, a large number of studies have appeared on the subject of the

stability of a slightly non-uniform plasma. In those cases whe_f'*_é a detailed
analysis was made, the problem reduced to the following equation:

(2}

: ; : : harac -hlg_
b order that (2) may laclude an esplicitly smell pseotes b S0 2
Ing a slight non- uniformity, we 'intruduce_a nun,-dimen:;n } wé' aﬁsﬁiné
X = £ /1, (L being the characteristic dimension of the problem). e 2540
U= k2u,

g approxima
H{En} = 0. We then have instead of EQ. (2):

: . 3)
ﬁ%"' U (x, k09 = % &

; Jaiany (4)
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HQuasi--:;laEEicHl". (For a detailed survey of work in this direction, gq,
110} and [11].} ATy . , _
[10] an [11] ses the following situation arises: in the region cgp.

in a number of ca _ :
sidered there exists 2 point at which U becomes oo. Th_ls fgct has been stugieg
:n connection with the problem of wave transformation in a plasma 3],

she cases examined in Red. [3] the pole U was imaginary and vanished whep
account was taken of the higher IiE:I:iTFEIJ:.WE with the small a-type parame .
In problems on ave transformation in a plasma, we us ed the method of
guccessive approximations 4].

An asymptotic method similar to that used in Pat11 Refs.[4] and [1] was
employed in Ref. [5] for an equation.of the type (1) in a St]:ld.y of the stability
of a non-uniform plasma, with account being taken of finite conduectivity,
1t will be clear from what follows that this method is of very limited
applicability.

The present study aims to show
proach to the analysis of the equation:

that there is a simple asymptotic ap-

op2olV - B U, (x,k,0)9" + Uy (x,k,wip = 0. (5)

Equation (5) models the above - mentioned problems ior the conditions of
a slightly non-uniform medium.

[I. STATEMENT OF THE PROBLEM
The physical considerations discussed in the introduction make neces-
sary an analysis of the following equation:

d* d?2 . (6)
Eﬂﬂa‘x_ij" ﬁ Uﬂ{x! k,lﬂ'} E}_{%-l- Ul [:{l klm}q} =t U’

¥ & Ers ﬂf
where x is a non-dimensional co-ordinate; k and w are the Pﬂrﬂmet

the problem; o and 3 are small parameters;

e, B X 1.
Ugually, in the physical statement of the problem, the parameter i 11513151"
vq'hmd in caleulation of a slight dissipative process, and B *¥ ?ﬂﬂgﬂl
classical" parametfer, equal to the ratio between the characterishe (6) V1
of change of ¢ and the characteristic length of change of U1, Uz &
and U, are non-dimensional parameters and }
(8

Uy, Up = il

except for the points where they become zero.

¥ These .+ oo pef. [3)
Iemarks are a rather rough representation of the situation studied 11 ref. [

|
!

1
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Solutions tending to zero at + w will be referred
i : to b faot
jpcal, otherwise they will be termed non-local, elow as finite or

For B = 1in (6), an analysis of the equation has been made i tudi
| py C.C. Lin [1] and Wasow [6] in connection has been made iE ztﬁdilsss
' stability of Poiseuille flow. For a = 0 the equation becomes a second-ord
equation, which has been the subject of detailed study in numerous wnrkesr

pgpecially in conne ction with the quasi-classical approximation in quantum
mechanics (e.g. see reference [7]). :

We are looking for a solution to Eq. (6) in the following form:;

o= C EKP{:IJ-'Efq[}:}dx}I

q(x) = O x)+4B ) (x) + ... .

(8)

(10)

Substituting (9) and (10) in (6), and taking into account (7} and (8), we get:

8] U
(0)4 - —2 (032 4 =1 -
q = gL b 0, (11}
0 1]
4 ¢ g9 + 6 qm;z%:[_l_ Uz Gﬂﬁ'{—{*ﬂ* 2 qtllq(ﬂl) = 0. (12)
[ 4 P 4

From equation (11) we find q{%:

i

Us [ Ug UD}

0) = = — . —= ;
q( i[ﬂﬂi(éﬂfﬂ o

or, taking into account small @, W€ get the following two pairs of values:

(i=1,2),

1
.ot
qiiuj =ian (U ;
(13)
1

(i =3, 4)

e
[N H
ik

ki

q[:i}
: ! ' (14)

(i-=
1)

q{i )

solution (9) in the following form

write the
ow us 10 (10)):

Hto within the following ter

L

formulae (13) and (1) Ellms in the expansion
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X
C f {1}1 {i = 1; E]:
= exp | Pi (15)
P4 r‘pi
C f d [@5= 2, 4), (16
L= eXx P 2 ]
B

— 0}
Wher;hpi;nﬁtiiﬁbtained in (15} is asymptotic and 1is accuracy is limiteqd
: :

] : cabili expansgion (10}, which region we refer
ta the region n: apilcagileliil;f T}i scﬁu tion (15), (18) is not applicable {g
S b.Elﬂw = Ex}frﬂuix‘l‘ts where U, and U, become zero, referred to below
reg_z,nns near t :EDES The Eglutij;u'ﬂ for the internal regions can be sought
= mterr{al r;ﬁ?:nrd‘ingly the solution of Eq. (6) for the given boundary con-
E?Qaratigéuces et fgﬁnwing three procedures: (1) finding snlutinn_s.-: in
flt:niﬁernal and external regions; (2) showing wl:ta'izﬁeachh of thi' Eﬂlut?ﬂnﬂ
for a particular region becomes in SOmME other o (this queetion ﬂrlﬁi?.
owing to the presence of Stokes lines 1f.fk}en anrasymrf‘t?tlﬂ ?RPPESElﬂ}l;li;E ‘-1:‘1‘: eJ
and (3) satisfying the boundary conditions (in addition to E;er};‘c & €158,
this also gives an equation for the eigenvalues of the probiem/. ik |
% should be noted that the point where Up = 0 has no special .lm%c; =
since in the vicinity of this point the role of ?he parie x.ﬁ'rljgh ) f tll?l[ oint is
imﬁnrtant and the behaviour of the sclution 1n the: vieinity o SPp
determined by the theory developed fox Fd. {6) with e = ©. developed
In what follows, without limiting the gener ality of the method ?v fcr!;m
below, and for the sake of convenience, we shall select the specl J.Ei-::n ik
U, (x) and Up (x) (Fig. 1). In Fig.2 regions I, Il are external, and ree
internal,
v mThe above considerations conclude the statement of the probl
solution will be worked out in sections 1l1-V.

am whose

[II, WEAK CASE

Ug be
For the selected form of Uy (x) and Ug(x) (Fig. 1) the valueswﬁf aszﬂme
come zero at the points A, B and 0,, 0,%, respectively. WehE feinity 0
that the distance between B and 0, is greater than unity. 1o L
the point 0, wWe may represent

Uy=Ux, x<1, U= 1,

isu :
and regard U, as of constant value, For purposSes ﬂfvz ghown 1!
regions in which various approximations are applicable ar

: 5), (*
The expahsion (17) holds good in section (03, 1); solutions (1
good for sections 1 and 3 regpectively.

— ({1 B
s . o (0 ) (U
The statements made will be symmetrical relative to the substitution i=i

refer only to points (0,,B).

2];/3;{: 1:
l B
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—\31 0 /(2 ‘A
I
| Fig. 1
i Specific forms for U, (x) and U, (x).
i
|
Fig. 2
Case for which regions I and II are extemal and region 111 is internal.
1
el
¥3 l 1
(i) e R — X
9 et
5 "E‘ 4 3
3 |
5
Fig. 3
Possibility of coupling due to the fact that secrions 1 and 2 have a comman park
| For x < 1 equation (6) takes the form:
| = (18)
| Eﬁﬁq}ﬁf . ﬁ U]{q}H 4= Ulq:i =)
As in [1] we make the gubstitution
(19)
x = a3y
: o1l obtained
| and consider the solution of the equatl
2 0
dto ., L2 e U9 =0, (20)
B dve Y dy? B
i St as to the case
g vy oy s = gper WE ghall limit ourselv
In this section of the pap
(21)

_[i] in the form of an
pe found gimilar o that of Ref [1]
Where a solution can be

asymptotic series:
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1/3
.
= m(0) -|---—1;p[1] s A
P=9 =g -
Substituting (22) in (20) we get:
d4 o) d2egl0)
- = ﬂ'_
dy® Uy 3y 2 5

The region in which the solutions of Eq. (23) are applicable is determingg
on the right-hand gide by the values x = al/? and is indicated in Fig.3 by
cection 2 (or 4). Equation (23) has the following four solutions [1]:

(23a)

2 = 0| 2 Y S )L
3 jd?fd}r J HUS[E ) Q{EJ J

S T
P, =fd}'fd3ﬁH5§[§ (iy)¥? B ) }

where H(1), H(% are Hankel functions of the first and second type, Tespets
tively. Consideringthat the argument of the Hankel functions in {24) is large,
we can write for the solutions of @3 and @4, which become zZeI0 at +o,

(24)

b

@ =~ x V4 exp [% (%) %3/ E] (x > 0)

. (25)
e o (20U N e E] x < 0).
q::u_{x| Eln|:3 ﬂﬁ) ]J-.:| BF T (

: jsts
If 9 may not become zero for +, then for x > 0 the solution also f;:iur-
of a prowing exponential and the solution for x < 0 is determined bFThe solu-
mal rules, which take intoaccount that x = 0 is a turning point [71. an there”

tions of (26) become the solutions determined by Eq. (16) and they ©

'Dﬂﬂl
f. : . I 2 _ that Eﬂﬂtl
lore be coupled, This possibility of coupling is due to the faict takes place

and 2.in Fig. 3 bave a common part within which coupling L ) and {12)
The picture is entirely different in the case of the solutions of {233& irect]
?"h'_’mh do not coincide with one another and cannot thEI‘EfDI:E f Ea::alﬂlti"'mE
coupled, This is due to the following circumstance. The pair ﬂm we bave
in (23a) have, in principle, no quasi-classical form and for the
1 d? g
2 -2 8%0
ky = 9 dy? 0.
The equality (26) is in fact determined to an accuracy of il
1/3
e

B
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' phe inequality (27) means that the regions, where the solutions of (15) and

(23a) are fit {corresponding to sections 3 and 4 in Fig.3), do not overlap
To overcome this difficulty let us consider the equation:

i1
BUxe" - Ujp = 0, (28)
which is true as a zero approximation in the region
Jo < x< 1, (29)
(section 5 in Fig.3). The solution of this equation is:
Ui x :
Q= Jx Z(-2 _t:rl,&_ , (30)

where Z; is one of twolinearly independent cylindrical functions (for example,
I;and N, ). For small values of the argument in (30} we have:

':Pj_ = 1; q}E = X, [31}
i.e. Eq.(30) becomes Eq.(23a). For large values of the asymptotic argu-
ment Z1 coincides with (15). This completes the first procedure mentioned

in section II of this paper. The answer to the second part of the problem,
also mentioned in that section, is given by the theorems of Wasow [6] which

retain their force in the present case.

| a second-order equation [7] in deriving the

Equations for eigenvalues in the case of local solutions can be written

down immediately, proceeding as in the quasi-classical approximation for
"rules of quantization':

ﬂ!
f(ﬁ it.’ut:l[:11+'%—.5}‘311‘4 (32)
af
0, :
(33)

A 4
!(—E’%:) dx = (nt z)7.
2

give two independent solutions for the
+he fact that for +o (or -o) we have two
ermined by (15) or (16), which are then
tion only arises for a/B2).

The expressions (32) and (33)
eigenvalues, This corresponds 1o
linearly independent solutions, dei
S8eparately "extended" at - (or +w) (a connec

IV. CLASSIFICATION

In Eq. (18), which 18 true for x < 1, W€ make the substitution
. r

x=8Y, (94)
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which gives
a dio d2g
- Uy——5+tU1p=0
B2 dy4 Y dy? ' ! 35,
The solution of this equation is obtained by the method of Laplace:
1 e t° 10U
= Ni— =  EoB Tt |
? ) ftﬂ exp (Ft BZan 't U/ (36)

° where the integration is performed in the plane of the complex variabje ¢
along a contour ot the ends of which the function:

{8

o 18 EF )
exp (ﬁ-ﬁg'ﬁh—"i‘? - )

=

U/

becomes zero. The solution (36), in accordance with (34) and (17), is true
in the region y < 1/8 > 1. We will limit our dizcussion to the following

region:

1
1<y<g>1, (37)
or
B<x< 1. (372)

Since ¥ > 1 in the range considered, the "saddle-point'' method can be made
use of in determining the integral in (36). We have the following four "saddle

points'';
L 9 3 g
tl]= qﬁy}:i(—z% U) )er:!-_ (:PTE 5 E_ﬂ %)é y (3 )
R determines four contours, integration along which gives four 1111@31'&
independent solutions. By appropriately selecting the contours W& get !
following solutions:
- = Y
T 4 39)
@ = 1 = e i)
i{f)"} }I(Ul 1 _ﬂ' .qi ﬁ?expfqi[;?}d}r {l_llﬂ,sj‘i}
alms B2 U -
Determining; :
= ﬁEU)i
;=220 Ty 1,2,
20 y=\¥ B2 2 ( (401
- QEU i +
q.f. i(Zﬂ' }r+(yﬂu§[% -!- {l= 3,4}1

SETCTSETSS
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we get from (39);
¥
¢, (y) = (g;) 1/ EHPlei (y)dy (L = 1,2},
| (41)
D (y) = {Ei}_ﬂﬁ expfﬁi (y)dy (i=3,4).

For large values of y, it is not difficult to see that the solutions of (41)
become the corresponding solutions in the internal region (15), (16).
Let us consider the value of ¥, for which the inner root of (40) becomes

ZETo;
AU
: Q
Yo =-la=4% E—Eﬁl ; (42)

(For the type of functions considered U, (x) and U, (x), at the points y;, the
value U; < 0 and y, is purely imaginary.) The points y, will be referred to
below as branching points. Taking (8) and (34) into account, we see that
the value at the branching points is x ~./o, and the distance between the
branching points is approximately Ja. From (42) it immediately follows that:

a<l (@/B% < 1), (43)
a> 1 (a/B% > 1). (44)
of (37),

In the case (43) the branching poinis do not fall within the region
where solution (41) holds good, and they may be disregarded.

In case (44) the situation is different and, as we shall see from what
follows, by taking the branching points into account, we make an egsential
change in the entire treatment and this may lead to a qualitatively diiferent
physical picture of the process. We shall call case (43) the weak case and

(44) the strong case.
Since the solution of the proble

”fﬂﬂ < B < 1, it is correct to consider it
It should be noted that if Wwe introduce the concept of wavelength,

1L pr « Lk
A 9(dp/dx)-1, then, in the strong case, many wavelengths can be fitted in

between branching points, which is not so in weak case. ThuS,‘ claggifica-
tion is made in accordance with the number of wavelengths lying hetween

the branching points (1. . in accordance with the ratio heiL:ween .the Ear:—
meters ¢ and 8) although the distance beiween the branching poinis 18 the

Bame in both cases (= fe).

m stated in gection III was true for
a5 the weak case.

V. STRONG CASE
ake account of the branching

As has already b X5 o for the transition

i g, 4) enure
points a,, ag, by and Pa (Fig. . s
from, E:l}r, the region X < 0, to the region X = Y1
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: 3 01 )
A ADNL S
e — 4

Fig.4

Pattemn for the level lines with respect to each of the branching points separately,

To obtain these rules for (41) we shall use the following form of the

roote in (40) (in the vicinity of the point 01):

+\y- 2+ aZ ) =if§{4x+ ia-y-ia); (y > 0)

=+i—2 (Wly| +ia-«|¥|-1a); (¥ < 0),

+y+ (y2 +a2)? =iJi_E{Jy+ia +.y - ia); (y > 0)

=ij—E N7 [* ia++]y[-1a); (¥ <0)
We then write down the solutions of (41) in the form:

¥
P9 = {ﬁl }'HE exp |:;jr_f[w1 () = ‘W‘E(:'r]}d}r]; (y 2 0)

¥
7 ﬁi}'-lﬂ exp |:i if{‘-‘-"g_ {I}'H- w3{|jrf}}d3r]; (y < 0k

: Y
P34 = (Qg) eXp if{wl {¥) + w, [F”df]; (y> 0)

y
= @) exp [if{“'zﬂﬂ )+ wg'fl}’h}d}’]i (s

where
EEU f
wl = 2& x '\| }F'- iE.,

217\ ¢
v = (B2 x .

(43)

(46)

(47)

{48)

(49)
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In pxpressions (47) and (48) the exponential is factorized for both branching
sints, which then makes it possible to employ rules of the type in [8]
On the left-hand side of point A * we write down an arbitrary solution

| which becomes Zero at - w0,

| the real axis at points C;, Cg.

¥
I Ell-lfﬂ exp [uifwl {jr]dyi-ifwg {y}dyj| +D lqal-ﬁfﬂ[exp fwl {}r}dy+fwg{3r}dy} :

A A
(50)

On the right-hand side of point A, the second term of (50} does not change,
but the first is transformed in accordance with the rules of (45). This gives:

e 1 T e i i
oly) = |q,/*"* Lexp (—Tﬂfqldzrf) + exp(%-lfqldfﬂ

A A

+ D !“qL‘E.rl_E‘IIrE |:exp fwl (v)dy +fw5 [}'}d}'} : (51)

By taking into account formulae (47) to (49) we can establish a pattern
for the level lines with respect to each of the branching points separately

(Fig.4). The level lines from two adjacent branching points intersect on
The solution of (51) can then be written in

the following form, for A <y < Cy:

dy dy

Ply) = —~ llﬁeif"l exp [—fwl (y)dy -i-wa [y}dy:'
1 q 1 ’ ¥y ¥
) a5
S ey 1”2 e 101 exp[fwl{y}d}r- fwg[ff}df}
14| ¥ y
dy dy
52)
+ D |q |4 exp[fwl (y)dy + fwg{}r}dﬂ. (
3 y /
Where
| = i . X
: i _ (. JUL(z) * {4U1{z}|:fjﬂﬁj dz] -ig .
‘ B® f _ (47U, (z)a/B%) d2 f 2
e z
i i along a
I‘.Elllﬂhlﬂg pnmts a3 (a g}
The integrals in (52) are taken from the b D e oz ke
e i inary, 0 the p 1
ly imag 5 (53) start at point A, go along the

line where w, (Wg) iS PUFE nd Lg in
real axis. The contours Li&a 2 - lines, where Uy
real axis to point C; and then alon

_ e branching points 21.
are purely imaginary. - ction and not discussed in the text s clear
. od in this se

bols and letters Us

* The meaning of all the: sy
from Fig. 4.

and wp , respeciively,
ag. In writing (53)
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the fact that in the vicinity of point 0,, where [, - 0
o=

sccount is also taken of |
e integral sign are transformed into

the expressions under th

2 :
P;- ["B—zf“ (2= i&l]
and )
2
7= |50 (2 + ) ||

respectively. Sectlons are gelected along the lines 1. It is not difficylt
o see that the value of ¢; determined by expression (53) is purely real,

In order to write the aplution of (52) {determined on the left-hand side
1) for the right-hand side of 0;, use is made of the rules of rota-

of point 0
It is convenient to introduce the following

tion given in the Appendix.
desipnations:

- JE 10, - U e/B,

P1
(54)
2 -
p, =2 1U; + (4T /B ).
Then, for 0; <y < 0,, and to within the constant factor, we have:
Yy ¥
P (j) = ie'™ 1P1+ pgi-ﬂﬂ EXp [ifpl (z)dz + :'prg {z}dz]
dy da
. Y
-(ie® + D) fp1+ Pgl'ﬁfﬁ exp l:_ifpl{g}dz - ifpg {E]dﬁ}
dy dp
_ s b
+ glfL ’Pl i Pgl-lfﬂ. exp I:ifpl [Z}dz 5 ifpa(z}dz}
ay ‘ iy
y Yy
+ (2 cos ¢, - iD) |p, - le'”? exp [_ifpl{z}dz-kifPi{E]dt}

i £
(55)
2 S - 11;1&5
:IIETE ln;:.gratmn is Perfnrmed from a,, a, respectively Elm_lg tha;ng it
g Ly (Fig.4), continuing down to the real axis and proceedife = e

to the point y, Transferri .
; " i wie C
b ng the solution of (55) to point Oz,
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Dy by
s o R [—ifpliziﬂz- i [pztzmz}
Pl pg ¥ '3-',.
; by ba
ieley + D -5/2 : :
“ 5 jp1+ pg[ exp|i [ pi(z)dz + pﬂ{z]dg:|
| y T
] by kg
Elﬁ; :
+ 775 €XP [- 1fpl{z}dz+ifp2{z}dz]
Ip; - B |
y ¥
h‘i bz
2 COB - iD -1/2 . :
+ ‘i’;l |p; -~ g~ exp [1fpl (z)dz - 1fp2[z}dz] (56)
: ¥ ¥
The integrals from y to b are interpreted in the same way as those from
. yto a. In addition we have assumed;
d=eal® - exp |:ifp1 (z)dz + ifpg [E}d?ﬁ] . (57)
Ly Ly
¥ = exp [— ifpl{z}dz + ij pE{z}dz:| . (58)
Ly L

| imaginary. For this, contour Lg is curve

The contours L and L4 are shown in Fig.4, It can easily be seen that the
argument of the exponential in (58) is purely real, and ¢ in (57) is purely
d in such a way that it goes from
a; to 0;, thence along the real axis 2nd subsequently from 0g to by. We

follow a similar procedure with L. Then in accordance with {54), on the

0z
real axis, where L and Ly coincide, we have : (b1 - Pp)dy. whichis G
1

L] DE’
lmaginary; | (P
fact that: Y1 °

+ pg}dy, which is purely real, Taking into account the

0y
faaafe
f (z + 1a) Mz = (ia)" s
dp

0y
f (z - ia) dz = (-ia)*’%,

at

gtatement.

13 tioned : ;
g=Ties he rules of rotation indicated in

the aboV :
using agsin t

We come direcily to tf
To the right of point Ua»

the Appendix, we g€t
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Y y
; ; - iD
oly) = |P1 +p, I-EIZG_¢31¢1_1 2 EGET‘% > exp[fpl (z)dz +IPE(EMZ}
by bz

by b

; i - y
50 (2 cosgy-iD ie® + D
+ fpl + pﬁl ( ¥ 5 expl | p;(z)dz +ng(2]dz}
2

-1/2 (_Eiml d}+ei“1 W Ei‘p]‘.{b— iD + pl Eﬂsgl - iD)

1
x'exp[-]pl (z)dz +fp2 {z}dz]
b,

by

+|P1'Pz|

Y ¥
- 2 ,=1D : '
+ ,p1 "P2| 1/2 cﬂswﬁl; 1 >e}:p L[Pi (z)dz —fpz{z}dz] 3 (59)

1 bs

The condition of the absence of increasing solutions at +ow is given by

e 0¥ = 2 cos ¢;-1D

and
(¥ - ) ei?t - et - iD . 2cos 91=iD _ e2%(2 cos g;-i:u},
@ ¥ . |
where
igg = - f p, (z)dz + f p, (2)dz,
L Li

and contours L] and L}, are similar to contours L;, Lo and

respectively, from b;, b, through point C; to B, It should be 1o

93, like ¢, , is purely real and positive, '
Solving the system (60), we find;

Eil’.¢1+az + 0g) _ £

from which

lﬁl +¢E+ ¢:]= nw,

or :
i S 1, (6@
BpEs= 2 | Pace *[Pldz +[pgdz 2 ifpldz + ifpgdﬁ ‘(“'r#
I I
The

(=

Equation (63) is a generalized "quantization rule' for the gtrong ﬂ:ssiﬂﬂng

left-hand gide of (63) represents the total incidence of a phas€ ©

of three parts;

are obtained,
ted that

== .

HTERS e A
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(1) Phase incidence in the region AQ0;, where the wavelength

-
Ay = [f':Ul /BUg)* dK] ;

(2) Phase incidence in the region 0, 0y, where the wavelength
-1
- (U, faB x|

(3) Phase incidence in the region 0,B which is of the same type as that in
region A}z,

This ‘“strong coupling’ of the oscillations is characteristic of the strong
case and io that extent condition (63) expresses-this fact,

VI. REMARKS

1. In accordance with the classification given in section 1V, for afB%< 1 we
have the weak case, The solution given insectionlllis true for afB? < B.
Thue, for the weak case there remaing a region B< d/8? < 1 not yet con-
sidered. The solution given in section IIl, as has already been stated, is a
generalization of a known solution [1] for the quasi- classical case. However,
a solution can be found for a/p2< 1, including afB2<p as a particular case.
For this, we refer to the formulas (39) - {42). The solutions of (4,1} are
unknown for eff% < 1. The coupling rules are the same for them as in sec-
tion III, since the branching points of (42) do not lie in the region in which
(41) is valid, The "quantization riles of (32) and (33) I“E‘I:ﬂf!.lﬂ 1Ehe sime.

The statements which have been made represen.t a u1:11f1cat1nn 0 _tha
method developed in sections IV and V. A purely tech_nlcal dlffer.enc:;;r;szz
in connection with the fact that the asymptotic Eu%utmns found in ( ta;h
a different structure for the Stokes lines, d‘epenc‘lmg m; 1:?;1’:1111;“ ;:;‘En:aﬁde
branching points of (42) fall in the regmz; lzat;l;geiz :aj_i_zedfur L
2, The asymptotic method presented canbe

in which the behaviour of U, (x), in the ?iﬂin%t'? of Y- EEH;;; htE;:tEE t:jiuf;?:?s.

Uy =~ Uxm, it being quite natural that the ﬂnndltmnsﬁ ;ur ::1;111 tghe S

should change, although equations (3 z‘}, (33) and d{ : }[51; S e e

case of m = 2 for weak coupling was 1nvest1.gﬂte dim 1;1;.r from condition (33},

"gravitatinnal mods,. Lo 11;11[5} ;?;::czh:ﬁefun-ﬁiﬂrnﬁw in the medium
: at the exi _ T :

i;.- E:uu.:;::al Eixﬁitntj[?fﬁ :Ji}uiillatinn in a certain ralge giving rise to another

. i
typ i1l I tion'' effect).
i11ati e 'transforma oy _ e
. ;fdaic '1:1:11:1;;};2:1 picture of this phenomenon is given i [3]
etai

: The transformas-
: his phenﬂmenun. )
an be applied fo tis in the
EEthD?f de: ?lﬂff‘tizg;?;oitained in the solution. Thus, for example,
on effect 18

' ; olution @3 4 in the
ce of an oscillating =©. 3,
Eirong case (section V), the PFEE:;ﬂf an oscillatory solution @3 o in the re-

s to the appearal . oding to transformation are
id that the point® S obtained as the ratio

the weak case the transformation
on takes place successively,

s can be Sa :
gloh A0 The coefficl

branching points. e e
p ifudes 91 % gt w soluti
Effﬂlz :;n ;;11311 “ipce the bipth 0T Bcha

&
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small parameter a/B%. The essential factor in the Strong

according to the gz
g ation, where the coefficient of transformatigy,

case is the strong transform
may be approximately unity.

1l SOME CHARACTERISTIC FEATURES OF A PLASMA INSTABILITy
IN THE FIELD OF GRAVITY

By way of illustrating the theory set out above, let us consider the
question of the characteristic features of the stabilization of a so-calleq
i nte! instability of a plasma, taking into account the finiteness of the iop
Larmor radius [12]. The differential equation for the perturbed values ip
the case with which we are concerned has, as we know from [10], the form:

& }F:ﬂ

T I(r-1) (64)

B - [1

where B = (kyL)® (L is a characteristic dimension), r = w/w;; w; = (cT/eH)
Xkyn![ng; G = (gfwf)nlfn,; [gis the gravity acceleration, ng is the den-
sity, T is the temperature, H, is the intensity of the magnetic iield,
n'y = (g/w?)np/nyl. The instability becomes stabilized if G < 1, and the
treatment may be considered correct if finite solutions can be shown toexist.
However, as seen from (64), the coefficient of @ breaks down at the point
where r = 1 and the exisfence of finite solutions has to be substantiated. We
shall therefore proceed on the basis of broader assumptions in deriving the
equation for the perturbed values and shall take into account the perturbation
of the temperature T, which in a quasi-classical approximation satisfies
the equation:

3 T e T =
E H[(H +{-‘fﬁi‘ ?JT) i nﬂTﬂ div V; = =div -'E';i
(65)

—
. o B D = _-—;L-

-
Vp; and T, are the unperturbed ion velocity and temperature, respectively:
For simplicity, we shall consider the electrons to be cold. Selecting the
Perturbations in the form ¢ (x) exp(iyky + iwt) and making standard, simple
calculations, differing from the derivation of (64) only in that account is
taken of temperature perturbation, we obtain the following equation 77
in a gystem of co-ordinates in which the ions are at rest:

(G

.B{I"H- 1}2:|}f|'-‘11

+{ﬁ‘2 + 871 (r=1) [Srﬂﬂ- Eﬁ-ﬁg] - Bﬂ’lﬂﬂG} o =0,

oV - {2,@'1 + (r~1) [ar RZ .

(66

R = L/r; (r; being the Larmop radius of the ions).

——
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For simplicity, let us consider the case of 3 weak connection, cor-
responding fo two separate equations for finding the eigenfre quenci;s (32)
and (33). Here, (33) corresponds to the case of ordinary flute perturbations
the role of the second "turning point' being Played by the point where Us= D*
and finite solutions exist if, outside the interval between the "furning p-:;-ints“:
the potential Uy {Us leads to damping solutions. If :

G

rRE S
B(r-1)

(G=<1),

. we obtain from (66) a result corresponding to (64), i,e. a stabilization of

the instability,
Let us now consider what is the result of the second equation for eigen-
frequencies, i.e,

ﬂ!
f«.l'UE dx = (n -I-,%)H‘.
0y

A qualitatively correct result can already be obtained from the condition
Uy = 0, Using the form of U, from (66) in the case where r = 1 +1; (r;< 1)

- we find that

1
rq= % {L:Fri}zi E {k},ri}‘*a- {k},rﬂEG] : (67)

From (67) we see that taking account of the temperature perturbations leads
to an instability if
|G|> kiri. (68)

ig i ility i igid con-

:on of this instability imposes more Iigi
i than would be required according to ana-
s of "intersection"

As we can see, the stabiliza )
ditions on the ion Larmor radius o
lysis of equation (64). The distance between the poin

of the solutions in this case is:

g s

3 Tk kj"rl L " {EB]

and the treatment used is correct if

70)
Lk, wE = {
I

i

APPENDIX

. o the rules for coupling the solutions of

In this Appenc around the hranching points (more specifically, let
i tion
@ in the case of rota

I 4 >
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d apin Fig.4). We start with line 1, proceeding from

ke the points aj an i
ud ta P we write the solution in the form:

point a;. On this line,

¥ ¥-
q?_{?':i:.ﬂlnl Exp{iflwllz'l -wg(z)] dz} + By 1ly exp {%[[Wlﬂz] ~Wolz)] dz}

g y
+ €113 exp {iﬁW}.[z}'l' wﬁlzﬂdﬂ}"' DyI04 EKP{EﬁWﬁEHW‘E{EHdE (A1)

where the quantity II; is determined from (39). We get:

1 L
H1= I[E= exp -Eln{wl WE;_ ;

. (A2)
5] o
Ilg= 4= exp ["Eln{wl + Ws) i,
for rotation around point a;, and
i :
II, = I, = exp -Eln{wE = wl'] ¥
; (A3)
II.=1I, = _-El (w, + W ]_
o7 S ase il Tt aeb Al U

for rotation around point as. ]
It will be seen from (A1) and (A4) that rotation can take place aroun

points ay and a, separately, the same coupling rules obtaining in the ﬂai‘:
of rotation around each branching point separately as in the case of [8]. %
Bhould be noted that the pair of solutions at A4 and Dy rotate around po

. 'Iq

3; independently. Similarly, the pair of solutions at A; and C; and fhEEI;EE
at By and D; rotate around point as independently. A;, Bi, Ci Eﬂdii_ =0
ith index L

a system of coefficients for a solution in the vicinity of the lines W
from points a; and a;. The result of simultaneous rotation around &
then leads to the following:

and 22

[Ag = A+ iDy Ag= Ag+ iCs
EE= Bl+in1 B,* B, + iC,
1@ - 1A \EB £ G ~ D, e = ¢,
\Dy= D, LD ,= iApt iBE’CE+Dﬂ (A4
A= At iD A!=-B,
| B17 Byt iD, B!=-A,
C{=1.A3+1BE+C - D AC{=_D1
MRy Ve~ Gy

ik
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These are the coupling formulas which are being sought
the last column in (A4) we take account of the .
must be analytical in the complex plane ¥,

When we write
fact that the solution of Eq. (6)
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