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Abstract: An expression for the collective Hamiltonian Hc is obtained proceeding from general 
“microscopic” concepts; no induced excitation devices characteristic of the cranking model 
are used. The main approximation is the condition of adiabaticity of collective excitations. 
The method leads to corrections to the cranking model results. The calculation of the para- 
meters of H, is illustrated for the pairing+quadrupole interaction model. A method of con- 
sidering a more realistic interaction is formulated. 

1. Introduction 

Two different approaches to the investigation of collective excitations in nuclei 

have recently been attempted. One of them is based on a phenomenological collective 

Hamiltonian H, (usually close to the original Hamiltonian of Bohr’s unified model ‘)). 

Thereafter the problem reduces to the solution of the corresponding Schrbdinger 

equation with subsequent selection of free parameters entering H, to obtain the best 

agreement with experiment 2-5 ). Relative simplicity and the possibility of dealing 

simultaneously with all the collective levels of the nucleus under study are among 

the advantages of this method, while the main objection to it is its rather arbitrary 

postulation of the collective Hamiltonian. 

Another, microscopic approach to collective excitations proceeds from a many- 

particle Hamiltonian on the basis of which collective excitations are considered in the 

system of nucleons 6-8). Th e c h aracteristic parameters of collective excitations are 

thus calculated without introducing additional phenomenological constants. The 

microscopic approach is in principle far more consistent and effective, but its pos- 

sibilities are essentially restricted by difficulties of calculation. Satisfactory results 

are obtained in the case of rotations and harmonic oscillations. If the anharmonic 

effects are large, one must consider higher correlation functions (e.g. four-particle 

Green functions) which makes the calculation much more complicated ‘). The con- 

nection of oscillations and rotations also involves considerable difficulties since the 

rotations and oscillations are considered in this approach with the aid of essentially 

different methods (see below). The case of pure rotation has been distinctly isolated 

experimentally. In this case the microscopic method yields with good accuracy the 

moments of inertia “9 ‘l). U n or unately, f t the experimental data on the nature of 
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other collective excitations in nuclei are not so unambiguous. Therefore, a consistent 

theoretical treatment must determine not only the parameters of excitation but also 

their general structure and classification, which is a complicated and labourious task 

in the framework of the conventional microscopic method. 

We can, however, modify the aim of the microscopic treatment and obtain directly 

the collective Hamiltonian H, instead of calculating the excitation parameters (such 

as the moments of inertia, oscillation frequencies, etc.) This would open a possibility 

for using the advantages of the phenomenological method without any indefiniteness 

in the choice of H,. 

The problem of finding H, by proceeding from the structure of the nucleon- 

nucleon interaction was dealt with by Kerman r2) (without taking into account the 

pair correlation of nucleons) and by Marumori et al. 13) who also took into account 

the Cooper pairing. Concepts of the cranking model were essentially involved in both 

papers. The cranking model is not a quite definite conception. In the first paper of 

Inglis concerned with the moments of inertia 21), two different ideas are implied: 

(i) rotation is considered to be induced by an external force rather than being an 

internal excitation, and (ii) the adiabatic perturbation theory is used for calculating 

the response of the system to an external effect. It is only in the microscopic treatment 

of excitations of spherical nuclei that the concepts of the cranking model can be 

completely eliminated. For deformed nuclei, the microscopic methods dispense with 

the second assumption of the cranking model but must use the first one in some form 

or other (transitioninto the rotating system lo), or inclusion of Lagrangian factors l’)). 

Therefore, the cranking model usually implies only its calculation aspect: the ap- 

plication of adiabatic perturbation theory. This method is used in refs. 12, 13), it 

is not rigorous and leads to appreciable errors especially if there is nucleon-nucleon 

pairing. This has been demonstrated in the calculation of the moments of inertia. 

Their values obtained in the framework of adiabatic perturbation theory 18) differ 

from those obtained by more rigorous methods lo, “). A similar discrepancy has 

been found in the mass coefficients for /I and y vibrations of deformed nuclei 16). 

Regardless of the dependence on the magnitude of numerical corrections, the in- 

vestigation of the additional terms is of essential interest for exploring the region of 

application of the cranking model. 

The method of obtaining the collective Hamiltonian H, considered in this paper 

does not utilize either the calculation or the conceptual aspect of the cranking model. 

The collective excitations of the systems are consistently considered as internal without 

resorting to any external exciter. The main assumption is the adiabaticity of collective 

excitations, without which the problem of separating the collective degrees of free- 

dom from those of the single particles and of finding H, becomes meaningless. We 

use the time-dependent self-consistent field technique which implies the following 

approximations: (a) consideration of pair correlations only and neglect of the nucleon- 

nucleon correlation of higher order; this is a good approximation at least for medium 

and heavy nuclei, and (b) the collective excitations are described quasi-classically; 
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strictly speaking, this gives only a classical analogue of the collective Hamiltonian 
H, . It is assumed that the quantum Hamiltonian can be then restored from its classical 
counterpart. 

The general idea of the method is discussed in detail in sect. 3 after a preliminary 
analysis of the main self-consistent field equations (sect. 2). The auxiliary problem 
of a static field is solved in sect. 4. General formulae for the collective Hamiltonian 
are obtained in sect. 5. Sect. 6 is concerned with the rotational symmetry of the 
approximate solution and its consequences. The rotational part of the collective kinetic 
energy is investigated in sect. 7. The value of the moment of inertia coincides with that 
obtained earlier by the Green function method lo) or by a generalized canonical trans- 
formation 17). The general expression for the kinetic energy taking into account 
vibrations and rotations is analysed in sect. 8. Sect. 9 deals with a particular case of 
quadrupole deformations of a self-consistent field, and an analogue of the Bohr 
Hamiltonian for an arbitrary nucleon-nucleon interaction is obtained. Collective 
Hamiltonian parameters in the well-known model with pairing+ quadrupole inter- 
action are calculated in sect. 10. In this case the results actually coincide with those 
predicted by the cranking model. A more realistic interaction is considered in sect. 11. 

2. Self-Consistent Field Method 

The self-consistent field method has been generalized for systems with Cooper 
pairing by Bogolyubov 14) (see also ref. l’)). We recapitulate the main equations in 
a somewhat different form more convenient for the following. 

Consider a system of nucleons, the Hamiltonian of which has the form, in terms 
of annihilation and creation operators, 

H = C E,,&,.++ c (121G12’l’)a:a:az,a1,. 

YY’ 12.2’1’ 
(2.1) 

Here E,,, = .& - 16,,. is the single-particle Hamiltonian including the chemical 
potential of the system L and G is a two-body interaction (assumed to be antisym- 
metrized). Among the single-particle states Iv) it is convenient to isolate pairs of 
states (v, ?), (1, i) transform into each other by time-reversal (these are termed 
conjugate). Taking into account the property of the time reversal operator T we have + 

IS) = (vlT-‘, 1;) = -Iv). CW 

For the matrix elements of the single-particle operators we have 

<“v’lAIiQ = (vlT-‘ATlv’) = +(vlAIv’), (2.3) 

t If IY> = Injm>, where jm are the angular momentum of the particle and its projection and n 
the other quantum numbers, we have Ii;> = c,,lnj-m> and we can choose c,, = C- l)5-m. In this 

case If> = c,,c,_,lnj~) = -Iv). 
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where the sign depends on the behaviour of A under time reversal. For the two- 
particle operator we determine 

(l??lGl?l’) = (121T;‘G,,T,i2’1’), 

(li’/Gl2’& = (12~T;iG,,7’,]2’1’), etc. (24 

In particular, on account of the T invariance of E and the interaction G, we have 

E,,, = Ep;, (121612’1’) = (WplZ), (2.5) 

whence it follows that the energies of conjugate states are the same. In connection 
with the equivalence of conjugate states it is convenient to introduce the combined 
operators 

Icl(v) = @) , Y’(v) = (a:, -ia;), (2.6) 

whose arguments relates to a pair of conjugate states (i.e., v = 1, 2, 3 . . ., but 
v # i, 2. . .). Th e anticommutator of the operators (2.6) is 

Y(v)Y+(v’)+ Y’(v’)Y(v) = s,,, . 

Now the Hamiltonian of the system can be written as + 

H = *Tr, Tr,G,, -Tr{BYY+} 

-Tr, Tr, {G,, Y, Y,‘}++ Tr, Tr, (G12Y,Yy, YTY:>, (2.7) 

where the matrices denoted by the sign A are represented as combinations of Pauli 
matrices: 

GE = 3(G,z -T,-‘G,,T,)+~(G,,+T;‘G,,T,)o;o’, 

-3T,-‘G,,T,(a;o~+a:aY2), (2.8) 
i = EC?. 

The symbol Tr denotes the trace over combined indices (the argument v and the 
“spinor” index a : Y,(v) = Y(m)); e.g. 

TrI Tr, (G,, Y2 y:> = I& ~~~(la2~l~l2’rla>Y(2’~)Y’(2P). 

The matrix G,, has ordinary antisymmetry properties, e.g. 

(la2PlG12’B’ l’r’} = -( lcz2plGll’y’2’p’). 

The self-consistent field method is equivalent to obtaining the operators of the 
quasi-particles df as a linear combination of the initial operators a,. In the Cooper 

t The Hamiltonian (2.7) differs from (2.1) by an inessential constant and an additional term in E. 
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pairing case tif and a, are connected by a more general transformation 

a, = u,,d,+v d-+ vf f’ 
+ 

% = u*-&? 
vf f - “$3, ) 

(2.9) 

(summation over recurring indices). In the “spinor” representation (2.6) this trans- 

formation has the form 

w> = wf,icr, = W!) ($) , 
T 

where 8 is a unitary matrix 

0 = (_yfi* -;:). 

(2.10) 

(2.11) 

By the very meaning of quasi-particles, their occupation numbers (tiTGf) = nf 
have definite values (ns = 0, 1) not only in the stationary states of the system but 

also in the time-dependent self-consistent field. Let us introduce an average over 

states with definite occupation numbers of quasi-particles: 

(UV’) = *(i+p). 

For the quasi-particle operators @ and @+ we have obviously 

POW’) = d,,, ( l-2n, 0 
0 

1 2n7-1 ’ 

whence it is directly clear that the eigenvalues of p, are 5 1 and therefore 

3; = 1. 

For the initial operators Y, !P’ the analogous average is 

D(vv’) = 
( 

2(a,a:) - 6,,, 
2i(atas) 

From eq. (2.10) follows the connection between 3 and PO 

p = O~oI-‘, 

whence, taking into account eq. (2.14) we have 

8(13)j?(32) = a,,. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Under the adiabatic variation of the self-consistent field, the occupation numbers 

of quasi-particles are conserved. Therefore eq. (2.17) holds though the connection 

of quasi-particles with the initial particles (the matrix U in eq. (2.10)) and hence 

the quantity ~(vv’) varies with time. 
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The equation for j? in the self-consistent field method can be obtained from the 

equation for the operators Y, !P’ in the Heisenberg representation (h = 1) 

ii Y(v)Y+(v’) = [Y(v)Y+(v’), H-J. (2.18) 

Let us average (2.18) over a time-independent state with definite occupation numbers 

of quasi-particles. Splitting then the averages of 4-factor products according to 

(Y(l)Y(2)Y+(3)Yy+(4)) = <Y(l)Y+(4))(Y(2)Y+(3)) 

-<Y(l)Y+(3)XY(2)Y+(4)), (2.19) 

which means the neglect of four-particle and higher correlations we obtain the main 

equation of the generalized self-consistent field method i4) 

i & $(12) = s(13)/?(32)+(13)$(32), (2.20) 

where 

s(ll’) = E(11’)-_(11Trz{Gi2~2}11’). (2.21) 

Eqs. (2.21) and (2.7) give the quantity 8 defined by (2.15) which, besides the density 

matrix (a,~:), includes averages like (~,a:.) characterizing the Cooper pairing. 

The quantity $(vv’) can be naturally called the generalized density matrix of the 

system. It is convenient to regard ~(vv’) and ~(vv’) as the matrix elements of certain 

operators 

/3(vv’) = (vlplv’>, S(vv) = (VlSlV’), 

the equations for which have the form, according to eqs. (2.17) and (2.20), 

aP 

‘at = sp-psy 
(2.22) 

p2 = 1. (2.23) 

(From now on we omit the symbol above the matrices 3 and p). Because of eqs. 

(2.21) and (2.8) we can write 

s = - (2.24) 

where the matrix elements of the operators E and A are ’ 

(l/All’) = A(l1’) = - c (li’lG@2)(a>az), 

(ljcll’) = E(11’) = &ir.+ ;, <11lG/2’1’)(2<u;u,.) -6,,.). 
(2.25) 

t The summation in eq. (2.25) is performed over the states Y as well as y. The term in ~(11’) with 
6,,, compensates the above-mentioned re-determination of E 11, in the transition from eq. (2.1) to eq. 
(2.7). 
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Note that the operators S and p are Hermitian as is directly clear from eqs. (2.24) 

and (2.15). 

Time reversal invariance leads to additional symmetry properties for S. Note that 

time inversion means the substitution of states (v, 3) --f (G, -v) with the simultaneous 

replacement of initial by final states, i.e. of the production operators a+ by the 

operators a. Invariance of the transformation (2.9) under this substitution means 

that 

u * 
“f = u;f”, V 

* 
“f = V;?. (2.26) 

From eq. (2.9) we can thus readily obtain the equality (a,+) = (uf a:). Taking 

it into account we obtain from eqs. (2.25) and (2.5) 

4(12) = 4*(21), i.e., A = A+. (2.27) 

According to eqs. (2.27) and (2.24), T invariance for the operator S can be written as 

d-Sd = -s. 

Let us isolate in the density matrix p terms with definite T parity 

P=P 
(+)+p(-), 

where 

P (*) = +(pTa”pa”). 

Then eq. (2.22) can be divided into two: 

[SC+‘, p’+‘]+[s’-‘, p’-‘] = i aY? ) 

J?P 
w, p’-‘) E [SC+‘, p’-‘]+[p, p’+‘] = i c!gY. 

Here SC*) are the even and odd part of the self-consistent Hamiltonian: 

Sc,‘)(p(+)} = k1 -Tr, {&‘,‘p$+‘}, 

Si-){p(-‘} = -Tr, {c(1;)p\-)). 

When obtaining (2.31) we used the T invariance of the interaction, i.e. 

a’lo;G,,a;a; = G,,. 

Note that SC*) are given by the different parts of the interaction (2.8): 

(2.28) 

(2.29) 

(2.30) 

(2.31a) 

(2.31b) 

(2.32) 

(2.32a) 
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Introducing p (*) into eq. (2.23), we obtain 

[p”‘]’ + [p’-q2 = 1, 

P’+‘P’-‘+P’-‘P’+’ = 0. (2.34) 

The left-hand side of eq. (2.31b), regardless of the specific form of #*I, satisfies 

the condition 

Tr {~?L?‘{P’+‘; p’-‘1) = 0, (2.35) 

which can easily be seen using only the property of T parity and the structure of 

e\:’ (2.33). Naturally, for the right-hand side of eq. (2.31), we must also have 

(2.36) 

The condition (2.36) has a simple physical meaning. Its fulfilment ensures the 

conservation of the average number of particles in the system for which we have in 

our notations t 

N = -3 Tr {&p’+‘}. (2.37) 

The average of the Hamiltonian of the system (2.7) in the state described by the 

generalized density matrix p is according to eqs. (2.12) and (2.19) 

00 = -~Tr{Ep}+~Tr,Tr,{e,,p,p,>. (2.38) 

Introducing explicitly p(*) we have also 

(H) = -+ Tr {ip’+‘}++ Tr, Tr, {c\l)p$+)p\+)} +$ Tr, Tr, {~~Z’p$-‘p\-‘}. (2.39) 

By differentiating eq. (2.38) with respect to time it can readily be checked that eq. 

(2.22) ensures the time-independence of (H). 

3. Scheme of Solution of the Main Equations 

The generalized density matrix p is defined as the diagonal average (2.12) over 

states with definite occupation numbers or‘ quasi-particles In,-). If the system had 

only single-particle excitations, such functions would describe accurate stationary 

states and the quantity p would not be time-dependent. If, on the other hand, the true 

stationary states of the system la) differ from In/) the quantity (n,l!P!P+lnf) in- 

cludes the superposition of the non-diagonal matrix elements with respect to the 

precise states (al Y Y+lb> containing a time-dependence of the form exp{i(b, - &,)}. 

t Actually, the quantity (2.37) differs from the number of particles NO by a constant term 
NO--N=tTr{ i} which has previously been discarded also in H in the transition from (2.1) to (2.7). 
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Thus the time dependence of p reflects the existence of collective excitations. If we 
seek a solution of eq. (2.22) for p in the form of a constant term and small correction 
p(r) CC exp(- iwt), we shall obtain the equation 14* 16) for the frequencies of small 
vibrations CO. To determine the energy of rotational excitations (the moment of 
inertia) this method is insuitable. In this case the technique of “induced rotation” 
(cranking model) must be used in some form or other. For example one goes over to 
a rotational system after which the resulting term containing the angular velocity 
is treated by perturbation theory 16,i7). The results obtained in the case of vibrations 
as well as in the case of rotation coincide with those obtained by the Green function 
method lo) or other “microscopic” methods. 

These methods of studying collective excitations are logically unsatisfactory on 
two points. (1) vibrations and rotations are described by different methods, which 
greatly complicates the study of their interaction, and (2) the induced rotation mod- 
el is used. We consider a different method of solving the equations, which is 
free from these defects. The main assumption is the adiabaticity of collective ex- 
citations. This permits application of the adiabatic instead of the conventional 
perturbation theory (“small vibrations”) to eq. (2.22). 

The formal scheme of the solution is as follows. Regarding p to be a slowly varying 
function of time, we expand eqs. (2.31) in the adiabaticity parameter. From the 
structure (2.31) it is clear that p(+) contains only even and p(-) odd terms of the 
expansion 

P (+I = pO+p’2’+ . . .) 

P (-) = p’“+p’3’+ . . .. (3.1) 

In the zero-order approximation one must consider the equation 

two), P”] = 0. 

The correction of the next order is then determined from the equation 

[S{pO), p(l)] + [S(l), p”] = i g , 

where according to eq. (2.32) we have 

$i) = $){p(‘)) = -Tr, {&;‘p$“}. 

(3.2) 

(3.3) 

(3.4) 

As we solve eqs. (3.2) and (3.3) we divide the physical problem into two stages: 
(1) determination of the density matrix p” for a frozen state of the self-consistent 
field (eq. (3.2)) and (2) determination of the correction p(i) connected with self- 
consistent fluctuations, i.e. the time dependence of the self-consistent field (eq. 

(3.3)). 



26 S. T. BELYAEV 

Let us begin with the first stage of the problem which involves the main difficulty 

since eq. (3.2) is non-linear. Our aim is the replacement of eq. (2.2) by a certain 

equivalent linear equation. 

The operator S in eqs. (2.22) and (3.2) has the meaning of a self-consistent, single- 

particle Hamiltonian. It is clear from eqs. (2.24) and (2.25) that the elements of the 

generalized density matrix p enter into S through the Cooper pairing A and the self- 

consistent potential V = E--E. In the nucleus the quantity A can be considered 

constant with good accuracy lo). As to the potential V, the problem usually involves 

not its elaborate form but only some rougher characteristics. Thus when studying 

the collective excitations of the nucleus connected with quadrupole anisotropy, it 

is sufficient to consider the quadrupole deformation tensor aZP of the potential V. 

This consideration shows that though the form of the self-consistent Hamiltonian 

S is, strictly speaking, given by the entire matrix p, it can in fact be characterized 

by a certain restricted number of parameters (the quantities A and CQ,, in the above 

example of quadrupole excitations). Our next step is to neglect for a while the fact 

that these parameters are functionals of p and regard them as arbitrary. As a result 

the problem reduces to the solution of the following linear equation instead of eq. 

(3.2): 

[SO, P”1 = 0, (3.5) 

where S ’ is a Hermitian operator independent of p” but containing a certain number 

of free parameters CI. 

The solution of eq. (3.5) gives the density matrix p’(a). Then we recall that the 

parameters CI are not arbitrary but depend in turn on the form of p”. Therefore to 

complete the solution we must require that the consistency condition + 

AS0 = S{p’(a)}-So(a) = 0 (3.6) 

be fulfilled. Eqs. (3.5) and (3.6) solve the first stage problem of finding the density 

matrix in a frozen, non-fluctuating, self-consistent field, which is described in our 

treatment by a set of parameters tl. 

At the next stage we revive the self-consistent field. Now the quantities CI are no 

longer fixed parameters but dynamic variables (d # 0). For the fluctuating quantities 

tl, the static consistency condition (3.6) does not hold (AS’ # 0). The quantity 

AS0 now describes deviations of the system from equilibrium and measures the 

potential energy of fluctuations. Therefore in the case of adiabatic fluctuations 

AS0 is small of the second order in & (AS has positive T parity). Confining ourselves 

to the first-order terms we seek the solution in the form 

p = p”(cr)+p(‘y~~ 4, (3.7) 

t Strictly speaking, the consistency equation is obtained from the condition a/aa<H> = 0, which 
coincides with eq. (3.6) in the case of the same operator dependence for So and S{p”}. See below eq. 
(5.23). 
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where p’(a) is the solution of the static equation (3.5) and p(l) is the correction 

connected with fluctuations and being of first order in CL In eq. (3.3) we can replace 

S{p”} by So and consider for p(i) the equation 

[SO, p(l)] + [S”‘, p”] = i fg . (3.8) 

To complete the solution we must formulate the equations for CI and d. To this 

end let us consider the average value of the Hamiltonian of the system (2.38) in the 

state described by the density matrix (3.7). As a result we obtain the energy of the 

system as a function of a and d, which can be regarded as a Hamiltonian determining 

the equations of motion over the variables CL In fact, we thus determine the classical 

collective Hamiltonian. The corresponding quantum operator H, can be then written 

by the conventional rules. 

Before proceeding to the practical realization of the above programme we must 

elucidate one definite point. In the generalized self-consistent field method (as well 

as in other methods taking Cooper pairing into account) the physical system is 

known to be considered, strictly speaking, for a fixed value of the chemical potential 

(“J-system”) rather than a certain number of particles (“N-system”). The sub- 

stitution is justified when the fluctuations in the number of particles in the A-system 

are inessential. However, in some cases the difference between the 1 and N systems 

is essential since in the I-system there may be excitations which can be traced to the 

variation of the average number of particles. Naturally, in the N-system excitations 

of this kind (“ghost states”) are physically impossible. For the correct isolation of 

ghost states one must pass to the N-system when considering collective excitations. 

Instead of eq. (2.38) the collective Hamiltonian must be 

<H)N = <H)+LN, (3.9) 

and the chemical potential 2, determined from the equation (cf. (2.37)) 

N = -3 Tr (o’p”}, (3.10) 

must be now regarded as a function of the parameters LX. 

The above conclusion can also be drawn in a purely formal way since eq. (3.8), 

which is the first-order approximation for eq. (2.31 b), is solvable only under the 

condition (see eq. (2.36)) 

(3.11) 

i.e., with a constant number of particles (3.10). For eq. (3.11) to be valid ;i must be a 

definite function + of the parameters LX. 

t It can be shown by using eq. (3.8) and equations of next approximations that (3.11) ensures 
stationary N in higher orders as well. Therefore one can determine 1 from eq. (3.10) containing only 
pa without correcting this value in the next approximation. 
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4. Static Self-Consistent Field 

To solve the static equation (3.5) one must establish some general properties of 

the operator So modelling the self-consistent Hamiltonian S(+)(p’). First of all 

it is natural to regard S as an even T quantity satisfying the equation (cf. (2.28)) 

#SO# = -SO. (4.1) 

From eq. (4.1) it immediately follows that if cp is an eigenvector of So with an eigen- 

value E the quantity 

x = crXCp (4.2) 

is also an eigenvector of So with an eigenvalue -E. Thus the eigenvectors of So 

group themselves into conjugate pairs (q, x) with eigenvalues differing only in sign. 

Let us write the expansions of cp and x in the basis functions Iv) as 

q1 = PM21), Xl = 12)x(21), (4.3) 

and for the conjugate states 

cp: = ~+(w21~ x: = x+uw21. (4.4 

Here the expansion coefficients 40(21) and x(21) are two-component columns and 

q’+(12) and x+(12) are rows. The summation is performed over recurrent indices. 

The operator So has in this representation the form 

so = ll)S0(12)(2/. (4.5) 

Below we omit the arguments in cp, x, S and write all equations symbolically. The 

explicit structure of the expressions can easily be restored from eqs. (4.3)-(4.5). 

For the eigenvectors we have the equations 

S”q = cpE, (p+S’ = Eq+, 

Sax = -_xE, x+S” = -Ex+. (4.6) 

(Here E should be regarded as a diagonal matrix in Hilbert space E(1); in matrix 

form cpE -+ ME etc). The vectors q and x satisfy the usual orthonormality 

conditions 

(P+q9 = x+x = 1, XfCQ = ‘p+x = 0. (4.7) 

Note that the matrices qqf, xx+, (px+, pp+ form a complete set of two-row 

matrices. Therefore an arbitrary “spinor” operator i? can be represented as the ex- 

pansion 

2 = ‘pacp++xbxf+cpcx++xdq+, (4.8) 
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where a = ~(12) b, c, d are scalar operators. It can readily be seen in particular that 
the unit operator and So have the expansions 

‘P’P++xx+ = i, (4.9) 

So = cpEcp+ -xEx+. (4.10) 

The quantity p” satisfying eqs. (2.23) and (3.5) can in the general case be represented 
as 

po = cp(l-2n)(p+ -x(1 -2n)X+, (4.11) 

where n are the number operators of quasi-particles. In the following we confine 
ourselves to the consideration of only the ground state of the even nucleus for which 
all IZ/ = 0. Therefore we assume that 

p” = q?qlDf-xx+. (4.12) 

The vectors cp and x can be expressed by the Bogolyubov transformation coeffi- 
cients (2.9). To this end let us note that cp and x are the eigenvectors of p with the 
eigenvalues 1 and - 1, respectively (this follows directly from eqs. (4.12) and (4.7)). 
On the other hand, from eqs. (2.16) and (2.13) it follows that 

Al 0 
po = op, = u o _1 ) 

( 1 

whence it is clear that the columns of the matrix ft possess the same property. There- 
fore, taking into account eqs. (2.11) and (2.26) we can write 

(p(12) = “.‘” ) 
( 1 -1u12 

x(12) = ( -U;;Z) . (4.13) 

An explicit expression for cp and x can be obtained if it is assumed that SO(12) 
permits a consecutive diagonalization first with respect to the arguments 1,2 and 
then in two-dimensional spinor space. Taking eq. (4.1) into account we can represent 
So in the general case as (cf. (2.24)) 

where E and A are Hermitian operators. The above assumption means that E and A 

can be diagonalized simultaneously +. After this the two-row matrix (4.14) S’(12) 
= 6,, S’(1) can be diagonalized with the aid of the usual Bogolyubov zi, u transfor- 
mation. In the approximation under consideration we have 

(PY = Iv> uv ( ) -iv, ’ 
xv = Iv) - ivv ) ( ) UV 

(4.15) 

t As indicated above, the quantity A can be considered as constant with good accuracy, which 
justifies the approximation under consideration. 
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where Iv) are the single-particle states diagonalizing E and A and the parameters 

uy, v, are determined from the equations 

uf+uf = 1, u,“-vy” = 5, 
E, 

2u,v, = 2 ) 
Y 

E, = E(v) = (cY” + A;)*. (4.16) 

Let us write in conclusion the expressions for the matrix elements between x+ 

and cp given by (4.15): 

where 

Let us also note the following relations for the bilinear combinations (4.18) which 

may be useful in the calculations: 

Eqs. (4.15)-(4.19) are used below in order to present the final results in a more 

graphic and familiar form. When deriving the general results the approximation 

(4.15) is unnecessary. 

5. Fluctuating Self-Consistent Field 

Let us proceed to eq. (3.8) for p (l) the correction to p due to self-consistent field , 

fluctuations. From eq. (2.23) or eq. (2.24) we have 

pop”‘+p’l’po = 0. (5.1) 

Multiplying eq. (5.1) by 4~’ on the left and by cp on the right and then by x+ and x, 

respectively, we obtain, taking into account eqs. (4.7) and (4.12), 

(p+p”‘q = *+p’l’x = 0. (5.2) 
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Taking also into account the negative parity of p(l) with respect to time reversal, 

aXp(’ = /l), 
(5.3) 

we can seek p(l) in the form (cf. (4.8)) 

p(l) = 2(xzCJI+ + ‘pzx+). (5.4) 

To determine the scalar matrix 2 = Z(11’) we substitute eq. (5.4) into eq. (3.8). 
Taking into account (4.6) we obtain 

2q(EZ+ZE)x+ -2x(EZ-tZE)cp+ +[S”‘, p”] = i a; . (5.5) 

Multiplying eq. (5.5) by x+ and cp we obtain the scalar equation 

0 

EZ+ZE-X+S”‘(~ = -*ix+ ‘5 q. (5.6) 

The derivative from p” can conveniently be expressed by So. Differentiating for this 
purpose eq. (3.5) we obtain after some obvious transformations 

Ey_+ g ‘p+x+ ‘g 
0 

cpE = 2x+ as cp. 

For the matrix elements this relation assumes the form 

(5.7) 

where the notation 

E 11’ = E(l)+E(l’) (5.9) 

is introduced to reduce the subsequent expressions. Taking eq. (5.8) into account, 
eq. (5.6) transforms to 

E,,.Z(ll’)-(x;S(‘)cp,,) = - & (xl f qI,) 3 R(11’). (5.10) 

The explicit expression for S (I) through 2 can easily be obtained from eq. (3.4): 

(&Prp,,) = -4 c (x:x:~‘1;‘(p2,(p,,)z(2’2). (5.11) 
22’ 

Thus eq. (5.10) is a linear integral equation for 2. Solving eq. (5.10) we then obtain 
p(l) with the aid of eq. (5.4). 



32 S. T. BELYAEV 

Let us now determine certain properties of the second-order correction p@). The 

second-order terms in eq. (2.23) have the form 

p~p’~‘+p’~‘p~+p’~‘p’l~ = 0. (5.12) 

Substituting eqs. (4.12) and (5.4) for p” and p(l), we obtain, after obvious trans- 

formations using the orthogonality of q and x, 

(p+p’2+ = -x+p’2’x = -2ZZ. 

From eq. (5.13) we easily obtain, taking into account eq. (4.10), 

(5.13) 

Tr {S”p’2’} = -2 c E,,,Z(ll’)Z(l’l). 
11' 

(5.14) 

Let us now pass to the definition of the energy of the system in the state charac- 

terized by the generalized density matrix p” +pC1)+pC2). From eq. (2.39) we obtain, 

keeping only the zero-order terms, 

(H)’ = -4 Tr (&“>+$ Tr, Tr, {c\:‘p~p~} 3 U-AN. (5.15) 

The first-order terms in eq. (2.39) do not, as might be expected, conserve here. In 

the second order we have 

(H)(‘) = -t Tr {S”pC2’} + $ Tr, Tr, {&,‘p~‘p$“) = T. (5.16) 

Taking into account eq. (5.14), we find that both terms in (5.16) are quadratic 

functions of the velocities c? (p(l) cc 2 cc ci). Thus, eqs. (5.15) can be regarded as the po- 

tential (U) and kinetic (T) energies of collective motion, respectively. The last term 

in eq. (5.16) can, according to eqs. (5.4) and (5.1 l), also be written in the form 

$ Tr, Tr, {@;)py)p\‘)} = 4 c (~~~~~~~)(p2~(p1~)Z(l’l)Z(2’2) 
122’1’ 

= - ~,(~:s’l~~,.)z(l’l). (5.17) 

Using eqs. (5.14) and (5.17) we obtain for the kinetic energy 

T = c {E,,,Z(ll’)-(&S”‘cpl,)}Z(l’l), (5.18) 
11’ 

which can, taking into account eq. (5.10), be presented in two equivalent forms ‘: 

(5.19a) 

t It should be noted that the cranking model only gives the first term in eq. (5.19b). 
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The potential energy (5.15) can also be written in a different form, if definitions (2.32) 

for S{p”} and (3.6) for AS0 are used: 

U = AN-3 Tr {Sop’}-+ Tr {AS”po)-$ Tr, Tr, {@:‘pipy} (5.20a) 

= IN-*Tr {Ep’}-;tTr {Sop’}-$Tr {AS”po}. (5.20b) 

The first two terms in eq. (5.20a) coincide with the energy of nucleons in the external 

field S ’ while the last two terms are due to the self-consistent nature of the potential. 

Let us write a simple equation for the derivative of U with respect to the parameter 

CI entering into So. From eq. (5.15) we obtain, taking eq. (3.10) into account, 

au -= 
aa 

-$Tr (S(pol g) . (5.21) 

Note now that eqs. (5.1) and (5.2) remain valid after the substitution of p(r) by 

ap”/i3a. Hence it follows, according to eq. (4.10) that 

Tr So g = 0. 
i I 

Therefore instead of eq. (5.21) we have 

(5.22) 

(5.23) 

Taking now eq. (5.8) valid for a derivative with respect to any parameter, we obtain 

from eq. (5.23) 

(5.24) 

Using eq. (5.16) we obtain the derivative of kinetic energy with respect to ~1. The 

calculations are trivial though cumbersome and are performed by differentiating 

eqs. (3.5), (3.8) and (2.23). As a result we obtain 

g= -2(p:~~i)2(23)2(11)-~(x:~~~~Z(21) 

+ E1; (x: ‘g 9,) ~z(~~)((P:S~‘~~O~)-(CP:S~‘~CP~)~(~~)~ 

+~z(21)[~(c1:~‘p1)(I:~12) +jy+%)(d 

+$-(Ip:~%)(x:~‘p~) +&(x:g(P3)(dg%)] 

(the summation is performed on the right-hand side over all arguments). 

as0 
xi- 402 

(5.25) 



34 S. T. BELYAEV 

6. Symmetry With Respect to Rotations 

The replacement of the self-consistent Hamiltonian S{p”} by So(~) formally 
denotes the transition from an isolated system to a system in external fields charac- 
terized by the parameters CI. In this case the symmetry with respect to rotations which 
existed in the initial system vanishes. It can, however, be claimed that the state of 
the system does not change on rotation with a simultaneous revolution of the external 
fields. Let us see what the implication of the invariance requirement is. 

The operator of the angular momentum in the “spinor” representation (2.6) is 
written as 

where 

Z = &(111/2)aTu, = f Tr I-Tr {~YY’}, (6.1) 

i(l2) = ((l’i’2) <ll;12)) = (11112)i. (6.2) 

The variation of So(a) under rotation of the system (the external fields are fixed) 
is given by the operator of infinitesimal rotation iA!4 * 1. As a result we have 

6’S’ = iA!9 * (is” - Sol). (6.3) 

Let us now consider the variation of So with the rotation of the fields. For def- 
initeness we assume that a set of multipole moments al,, is used as the parameters 
CI. This means that the self-consistent field of the nucleus is characterized by its 
multipole moments. At an infinitely small turn 6.9 the multipole moments aAl, vary 
according to 

~?a,, = i&9 * cc,,,(l$jZ&f), (64 

where (&‘jZjn~) are the known matrix elements of the angular momentum between 
the states with definite values Z = 1 and Zz = ,u, $ (summation over recurrent 
indices). The corresponding variation of So is 

6”s’ = id9 * a,,,(/Z~‘IZJl~) 2 . (6.5) 
J.s 

Equating to zero the total increment 6s O = 6’S O + 6”s O for a simultaneous rotation 
of the system and external fields, we obtain from eqs. (6.3) and (6.5) 

cr,,.(&J,Z,1~) g = soi-iso. (6.6) 
AP 

Multiplying (6.6) by xf and 40, eigenvectors of the operator So, we have 

(6.7) 
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Eq. (6.7) establishes the relation between the matrix elements which is a consequence 
of rotational symmetry. 

Note that the quantity 6”S0/6t determines the variation of So on rotation of the 
entire configuration of fields c( with an angular velocity a = 69/6t. Using the 
equality X’S0 = -6’S’, we obtain from eq. (6.3) 

as0 (--I at r 

= - iQ * (is” - S’j) 

or for the matrix elements 

(x: (g)y2) = - ifi * E,,(~:ifp~). 

(6.8) 

(6.9) 

Obviously, in the derivation of eqs. (6.8) and (6.9) the assumption about a definite 
form of the parameters CI is not used and therefore these relations give the variation 
of the single-particle Hamiltonian So for the rotation (r) of the self-consistent field 
in the general case. 

If the multipole moments aA,, are chosen as collective variables, the kinetic energy 
of collective motion is quadratic in the velocities dA,,: 

T = ~B;;:dAsc&, , (6.10) 

where the mass tensor B(a) is given according to eq. (5.19a) 

(6.11) 

Note that despite the unsymmetrical form of the expression, the right-hand side of 
eq. (6.11) is symmetric in Ap and 1’~‘. Indeed, all the terms of eq. (5.10) are linear 
. . m aAl, and therefore this equation can be written as 

E =714 
12~ -(x:$372) = -&(x:572). (6.12) 

Eliminating in eq. (6.11) the matrix element of &So/&x,, with the aid of eq. (6.12) 
and then using eq. (5.11) we verify the symmetry of eq. (6.11) for B. From eq. (5.19) 
we have the equivalent formula for B 
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In the phenomenological Hamiltonian of the unified Bohr model, the kinetic 
energy coincides in form with eq. (6.10) but the mass tensor is 

B f;,“: --) (-1)%&,_,.6,,.B,, (6.14) 

which is not in general valid for eq. (6.11). It will be clear from the following that 
this difference proves essential. 

7. Rotational Energy; Moment of Inertia 

To isolate from T the rotational energy we must pass from alp to new variables 
which include three angles Si defining the orientation of the self-consistent field in 
space. As the other variables we can choose the quantities c& in the “proper” system 
of the self-consistent field (cf. ref. ‘)). When the system rotates as a whole (all the 
velocities ciyP = 0 and 9 = S-2) the changes of the variables cllP are, according to eq. 

(6.4) 

(&Jr = ifi * Q& I&W. (7.1) 

Substituting eq. (7.1) into eq. (6.13) we obtain an expression for the rotational energy 
T, as a quadratic function of the angular velocity components Qi: 

(7.2) 

where the tensor of inertia 9, is connected with the mass tensor by the equation 

The calculation of 9 can be made if the value of the mass tensor from eqs. (6.11) 
or (6.13) is substituted into eq. (7.3) and then the summation is performed over 
1, p, v with the aid of eq. (6.7). It is simpler, however, to make use of the general 
expression (5.19a) for T, substituting into it the matrix element (6.9). As a result 
we have 

(7.4) 

and from eq. (5.19b) follows the equivalent expression 

Let us emphasize once again that eqs. (7.4) and (7.5) just as (6.11) and (6.13) give a 
symmetrical tensor. 
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To obtain more concrete expressions for the moment of inertia we use eq. (4.15) 
for cp, x. Let us consider in eq. (7.5) the principal value of the moment of inertia 
$Ja,, = 9. The quantity S(l) is of odd T parity and hence possesses a symmetry of 
type (5.3). Therefore, it can be represented as (cf. (2.24)) 

$1) = E(l)+i&l)ax (7.6) 

Using also eq. (6.2) for i and eqs. (4.17) we obtain after several simple transformations 

4 = 9(1)+9(2)+9(3) 
, 

2 @‘) 2 244;’ = 
c I<ll~,l2>1 , 12 7 

12 

4(2) = 1 W,l~)(11 %Y 12) %95:2 
12 as2 E, 

x 12 

Y3) = - c (2(1,~1)(1~ 12) . 
12 

8g 2g 
x 12 

(7.7) 

These expressions coincide with the results obtained by the Green function method lo) 

and a generalized canonical transformation “) ‘. The cranking model gives only 

the first term in eq. (7.7). 

8. Nuclear Angular Momentum; Rotation and Vibrations 

Let us average the operator of the angular momentum (6.1) over the intrinsic 
state of the nucleus described by the density matrix p = p” +p”’ + . . .: 

(Z) = -4 Tr {ip}. (8.1) 
Let us assume for simplicityCthat there is no angular momentum in the ground state 
(even nuclei). Then eq. (8.1) gives the angular momentum of collective motion (as 
a function of c( and c?). We denote the latter also by I, omitting the sign of the average. 
Bearing in mind that according to eq. (6.2) we have the equation i = #icrX, we 
obtain in the first-order approximation from eqs. (8.1) and (5.4) 

1 = -4 Tr (ip”‘} = -2 C (x:icp2)z(21). 
12 

(8-2) 

The first-order correction 2 is a linear function of the velocities oi,,, which can be 
represented as a sum of rotational (r) and vibrational (v) components. Therefore the 
angular momentum of the nucleus is also represented as 

z = zr+zv = -2 c (~:icp,){z,(21)+2,(21)}. 
12 

(8.3) 

t It will be recalled that the summation in eq. (8.11) like elsewhere is only performed for one group 
of conjugate states (v but not G), which is compensated in eq. (7.7) by the factor 2. 
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Let us find the explicit expression for the components of the angular momentum 

through the corresponding velocities. Comparing eqs. (8.3) and (7.4) we obtain the 

usual relation 

I; = c Yik&, (8.4) 
k 

where gik is the tensor of inertia determined earlier. For the vibrational component 

we obtain from eqs. (8.3) and (6.7) 

I” = 2a,,.(lP’IzllP) 5 1 (x: r’“” V,) Z”(21). 
12 *x&l 

Bearing in mind that the vibrational part of 2” is represented by 

(8.5) 

W-9 

where ci” is the velocity connected with the vibrations we obtain from (8.5) and (6.11) 

The kinetic energy of collective motion can in the general case be represented as a 

sum of the rotational, vibrational and mixed terms which arise after the substitution 

of d as the sum &,+I?” into eq. (6.10). The rotational energy was considered above, 

and the expression for the purely vibrational energy has the form of eq. (6.10) with 

c? replaced by 6”: 

TV = ~B;,":(~&?A~,~)v. (8.8) 

Let us now consider the mixed rotational-vibrational term T,,. To this end it is 

convenient to return to the expression for Tin the form (5.19a) whence, taking into 

account the non-explicit symmetry in both factors (cf. eq. (6.11)), we obtain 

T,, = -i z & (x: ($34~2) zd21). (8.9) 

In view of eq. (6.9) we can connect this with the matrix element of the angular 

momentum and angular velocity: 

T,, = -fi * c (x:bz)Z$9 
12 

(8.10) 

The vibrational components Z” are given by eq. (8.6). Let us note that T,, can be 

expressed by the vibrational angular momentum. From eqs. (8.3), (8.10) and (8.7), 

we obtain 

T,, = $2 - I” = ifi * ~I”(~vIZI~~)B:~:(~I’,,)“. (8.11) 
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With arbitrary self-consistent field fluctuations, the mixed term T,, cannot in 
general be made to vanish by a certain choice of the variables ~1~~. However, in the 
most interesting case of quadrupole deformations, this can be done, so that the total 
kinetic energy becomes additive with respect to vibrations and rotations. 

9. Quadrupole Deformations of the Self-Consistent Field 

Let us consider the practically interesting case when self-consistent field fluctu- 
ations have quadrupole anisotropy and can be described by the five variables 
Kzp E c$ = (-l)‘crT,. The shape of the self-consistent field is characterized in this 
case by two invariants with respect to rotations 

* Z P2? 

_;:(2r.2~1~~~~~,~~,,~~ = p3 cos 37, (9.1) 

where (2,~‘2$‘12~) is a Clebsch-Gordan coefficient, and the summation is 
performed over recurrent indices. By vector addition of several eP one can obtain 
new tensors of second rank, e.g. 

(9.2) 

It can readily be seen that among independent tensors there are only two for which 
~1, and oP can be taken, while all the others are expressed by aP and (T, with coeffi- 
cients dependent on the invariants (9.1). If the axes of coordinates are directed along 
the principal axes of the tensor cl,,, in this system i the components c(~ and (rll have 
the form 

0 
ao. & 1, f 2 = {P cos ~~0, JfP sin 71, 

f$, fl, *2 = {p’cos 2y, 0, -&3’ sin 27). (9.3) 

The above remarks lead us to the problem of the structure of the mass tensor 
B$ E B,,. given by eqs. (6.11) or (6.13). The right-hand sides of these expressions 
are functions of cl,, and therefore B,,. can in the general case contain all possible 
tensorcombinationsmade of afl. Toestablishthe number of independent combinations, 
let us consider the system in which eq. (9.3) holds. Noticing that the Clebsch-Gordan 
coefficients do not change as the sign of all the projections changes and cannot 
contain an odd number of values n = _t 1, it can readily be seen that in this system 
we have for any tensor made of eq. (9.3) and coefficients (2$2$‘12~) 

BY0 = I?,, = BY2 = B0_12 = &Y2 = IS!!,_, = 0, 

By, = B!!,_,, B;O = B’?,, , B,O, = B!2_2. (9.4) 

+ It should be emphasized that the direction of the principal axes of a,(t) varies with time. Choosing 
the system (9.3) we mean the coincidence of the fixed axes of the coordinates with the principal axes 
of a11 at a given time. 
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These nine conditions reduce the number of independent tensor combinations 

entering into BP,. to six. One can therefore write 

B PB , = (- l>“S,, pP, B, -,/f(2~2~‘12v)(~,*/j?)B1 -&2p2y’J2v)(o;/P2)B2 

+ (+;@“)B; + [(c+;~/j?“) + (~$x;J/?~)]B, + (c~;o,*,//?“)B~ i (9.5) 

where all the scalar functions B, depend only on the invariants (9.1). 

Let us now consider eq. (7.3) for the tensor of inertia. It can readily be seen that 

eqs. (9.3) and (9.4) ensure the vanishing of the non-diagonal terms of the tensor 

Xik. The remaining principal moments of inertia have the form (cf. refs. r2* 15)) 

Y1 = 9XX = -4/?2(B~_,+B~,) sin2 (y-$), 

Y2 = 9Yv = -4P2(By _ 1 -By,) sin2 (y -$n), 

3s = $,, = 4P2(B: -2-Bi2) sin2 y. (9.6) 

The combinations of mass tensor components entering into these expressions can be 

expressed by functions of the invariants. Considering eq. (9.5) in the system (9.3) 

we readily obtain 

B~_,+B:, = -B,+B, cos(y+)+B2 cos(2y-3x), 

By_,-By, = -B,+B,cos(y+)+B2c0s(2y+), 

B;_,-By, = B,-B, cosy-B, cos2y. (9.7) 

Substituting. ea. (9.7) into ea. (9.6) we obtain for the mnments nf inerti with rennect _. _L~_ lieu ..~. \. .., .__._ -I- \---I .._ --_- ____ -_ ____ ____^_______ __ ______ __ .‘~-“___r___ 

to the principal axes (k = 1,2, 3) of the self-consistent field 

$k = 4p2(Bo - B, cos yk - B, cos 2y,) sin’ yk, 

yk = y-+nk (9.8) 

(let us recall that in the hydrodynamical model B, = B, = 0, B, = const). 

The vibrational degrees of freedom are connected with the parameters of the form 

of the self-consistent field p and y. Differentiating eq. (9.1) we obtain for the 

vibrational components 

&A = (a,/P>B-- (0,/P sin 3~)j +a, ctg 3~ 9. (9.9) 

In the system of the principal axes (9.3) this equation takes the form 

(cQV = fi cos y-/3$ sin y, (&+ 1)y = 0, 

(c?_+~), = J$(P sin y +P$ cos y). (9.10) 
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Using eqs. (9.10) and (9.4) it can readily be seen that the vibrational angular mo- 
mentum (8.7) and simultaneously the mixed term T,, in the kinetic energy (8.11) 
vanish. The vibrational energy (8.8) is quadratic in the variables fi and j3j~: 

where the mass coefficients B can readily be calculated with the aid of eq. (9.10), 
considering eq. (8.8) in the system of the principal axes. As a result we have 

B, = B&, co? y + ,/jB& sin 2y + (BF _2 + Bg,) sin2 y, 

B, = B&, sin’ y -,,bB!&, sin 2y + (Bi _ 2 + B:2) cos2 y, 

B,, = f(B; p2 + B;2 - Bz,,) sin 2y + J2B&, cos 2~. (9.12) 

If the general relations (9.5) and (9.9) are used, eq. (8.8) yields the mass coefficients 
B,, y expressed by functions of the invariants B, 

B, = B, + B, + B; + (B, + 2B,) cos 3y + B, cos2 3y, 

B, = B, -B, -B, cos 3y + B, sin2 3y, 

BP7 = -(B, +B,+B, cos 3~) sin 3~. (9.13) 

Let us now establish the form of the quantum operator corresponding to eq. 
(9.11). Let us denote by fi2GKP a tensor inverse to G,, in eq. (9.11) 

(9.14) 

g2 = B,B,-B;,. (9.15) 

The operator TV is written in the form 19) (h = 1) 

(9.16) 

where 

r = p2g2JJ&. 
k 

(9.17) 

For the product of the three principal moments of inertia entering into eq. (9.17) 
we readily obtain from eq. (9.8) 

n 9, = 4p6 sin2 3y(Bi -$B,(Bf + Bz + 2B, B, cos 3~) 
k 

-$(B: cos 3y+B3 cos 6y)-$B,B,(B, +B, cos 3~)) = 4f16 sin2 3yR’. (9.18) 
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As a result for eq. (9.16) we find 

TV = _ 1 1 a B,R 

2gR 

1 ” B,R p” ? + ~._. _ ~ 
P” ag 9 ap p’sin 3y ay g 

sin 3y ” 
ay 

(9.19) 

where g and R are determined in eq. (9.15) and (9.18) respectively. The volume ele- 

ment in by space is given by d@y) = lgRB4 sin 3yldfidy. 

The total kinetic energy operator T is made up of the vibrational and rotational 

parts 

T = T,+T,, (9.20) 

the rotational term having the conventional form 

T, = + c I;/&. (9.21) 
k 

Here Ik are the operators of the projections of the angular momentum on the principal 

axes of symmetry and the moments of inertia Yk are determined in eq. (9.8). 

The correspondence of the expressions thus obtained to the Bohr Hamiltonian 

is obvious. For this we only have to assume in eq. (9.5) that 

and hence 

B, = cons& B,,, = 0, 

B,=B,=B,, BBy=O, 

g =& R = B;. (9.22) 

In the general case the moments of inertia (9.8) and mass coefficients (9.13) are 

complicated functions of /3 and y, and therefore the operator (9.19) has also a 

complicated structure. If, however, we have small vibrations about certain equilib- 

rium values /I0 and y0 the expression for T becomes much simpler. 

Let us consider in particular the case of an axially symmetric equilibrium defor- 

mation ye = 0. The form of these coefficients For small y is directly seen from eqs. 

(9.8) and (9.13): 

$I = $z = 3p*(B, ++B, ++B2), 

4, = 4/3*y*B,, B,, = C’(y) (Y --f O), 

R2 = L B,&, 
9P” 

g* = B,B,. (9.23) 

Let us also note the following relation for derivatives of the moments of inertia 

(useful when considering the connection between y-vibrations and rotations): 

a6 a32 I 
ay = - ay /y=o = +J3/?*(4Bo -B, + 8B2). 

y=o 
(9.24) 
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Keeping only the main terms we obtain for the kinetic energy, for small y, 

43 

p” 6 -4; r$),=, $ ;] . (9.25) 

For the final determination of the kinetic energy operator we have now only to 

calculate the inertia parameters 4, and B,, ,, or the mass tensor components BP,,. 

To this end it is necessary to make certain assumptions about the form of the nucleon- 

nucleon interaction. Concrete calculations of the parameters go beyond the scope of 

this paper. However, to elucidate some cardinal problems and the general scheme 

of calculations we consider below a simple model involving pairing and quadrupole 

interaction 16, 18* ‘“). 

10. Pairing and Quadrupole Interaction Model 

To obtain the explicit form of the collective Hamiltonian, more specific assumptions 

must be made about the effective single-particle Hamiltonian S’(U). In this case it is 

necessary that S”(a) should reproduce the character of the true self-consistent field 

(2.21). In the general case the even T operator So is represented in the form (4.14) 

and contains a single-particle Hamiltonian E and Cooper pairing A. The operator 

A can be approximated with a good accuracy by a constant. In E it is natural to 

isolate, besides the spherically symmetrical part E, the quadrupole potential term 

playing the main role in collective excitations of quadrupole symmetry. Thus we 

regard So in the form 

So = (E - Kq;a,)d - Aoy = i: - Ki$X, - d, (10.1) 

where qp is the operator of the single-particle quadrupole moment, and K is a constant. 

The eigenfunctions of So (10.1) are given by eqs. (4.15) and (4.16). The density 

matrix of the zero-order approximation is, according to eqs. (4.12) and (4.15), 

pO(12) = s,,{(u:-~u:)~=-2u~u~~~} = s,, 
i 
,; 

1 

cJ=- 4 G-‘) ) 

1 

where 

El = &(11)-7c(llq;~l)cr,. 

Substituting eq. (10.2) into (2.32) we obtain for the self-consistent operator 

the expression 

S&‘) = ii--Tr, P%P!$ 

= &-a”, Tr, {~(G,,+T,-‘G,,T,)~‘,p~}+a: Tr, {~(T2~1G12Tl)~.Y2p~}. 

(10.2) 

(10.3) 

S(PO1 

(10.4) 
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Let us consider the simplest form of interaction giving for S{p”} a structure similar 

to eq. (10.1). For this purpose let us assume 

(10.5a) 

T,-‘G,, Tl + G = const. (10.5b) 

Here eq. (10.5a) is the “quadrupole interaction” and eq. (10.5b) the model inter- 

action leading to Cooper pairing (see e.g., ref. 16)). Substituting eq. (10.5) into eq. 

(10.4) we obtain 

S{p”} = &ic$,*Q,-d’, (10.6) 

where 

Q, = -4 Tr {&so} = - 1 (tlqpll) .2, 
1 1 

(10.7) 

A’ = -+G Tr {aYpo} = GA 7; . 
1 

(10.8) 

A structural similarity between eq. (10.1) and eq. (10.6) is obvious +. The transition 

from S{p”} to So consists in a mere replacement of the self-consistent quantities 

Q, and A’ by the free parameters c(,, and A. The statical consistency condition (3.6) 

leads in this case to the equations 

A = A’, (10.9) 

a,, = Q,(x). (10.10) 

Naturally, such a simple correspondence between S{p”} and So is a consequence 

of a special choice of the inter-nucleon interaction (10.5). The real interaction does 

not, of course, reduce to eq. (10.5) and hence the structure of S{p”} differs from eq. 

(10.1). In the method under consideration this difference is quite permissible, however. 

The only assumption is the possibility of treating the difference AS0 = s’(p’} -So 

by perturbation theory. We at first confine ourselves to the model interaction (10.5) 

which, describing satisfactorily the main effects of the inter-nucleon interaction, leads 

to simple and visualizable results. 

In eq. (lO.l), apart from the set CX,, the formally independent parameter is also 

A. However, from physical considerations it is obvious that excitations connected 

with A are essentially single-particle excitations having high energies. Therefore, 

when considering low-energy collective excitations, A can be determined from the 

static consistency condition (10.9). Thus, the independent parameters, collective 

t The quantity e in eq. (10.4) describes, strictly speaking, the kinetic energy only. To identify it 
with E in eq. (10.1) we must assume that we take into account implicitly the parts of the interaction 
additional to eq. (10.5), giving the spherical potential. The self-consistent character of this potential 
is not actually taken into account in this model (see sect. 11). 
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variables, in eq. (10.1) are cl,,, and the quantity A just as the chemical potential L 

should be considered as functions of cl,, . 

Let us proceed to the solution of the main equation (5.10). According to eqs. 

(2.33), (4.17) and (10.5), we have 

(x:x;G’1;)(p2,~r) = -~G(x:~“~~,)(x:~~~~,) = -+G6,,,6,,,. (10.11) 

Eq. (5.10) takes the form 

E,,~Z(11’)+2G611~ c Z(22) = R(ll’), (10.12) 
2 

where the right-hand side is, according to eqs. (10.1) and (4.17), 

R(ll’)= -J&$r*) 

= -2(6,,,/Ef,)(~~;l +A;2)-(rl:!/E,,,)lc(llq,*ll’)~,. (10.13) 

From eq. (10.12) we obtain after self-evident transformations 

1-2G&-) cZ(ll) = q; R(ll). 
22 1 11 

(10.14) 

The right-hand side of eq. (10.14) vanishes since the condition (3.10) ensuring the 

conservation of the number of particles (3.10) can be written, according to eqs. 

(5.8) and (4.17), in the form 

whence we obtain, taking into account eq. (10.13), 

dN 
- = -44 F; R(ll) = 0. 
dt 

(10.15) 
11 

Owing to the vanishing of the right-hand side, eq. (10.14) is compatible though the 

coefficient before c,Z(l l), equal to I- A’/A according to eq. (10.8), is formally 

a quantity of the second order. The solution of eq. (10.12) has the form 

Z(li’) = R(ll’)/E,,, = +(I;$,), 

and in the case under consideration we have 

(10.16) 

s(l) = -$Go” c Z(22) = 0. (10.17) 
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For the mass tensor (6.1) we obtain 

where according to eq. (10.1) we have 

as0 an aA -_= -I@- gz_ _&-. 

8% aa, aa, 

(10.18) 

(10.19) 

Transformations of the right-hand side of eq. (10.18) are elementary. Let us give 

the final result, introducing for the sake of brevity notations for the sums over single- 

particle states (2E, = E,,) 

4 (A/E:) = t, c (Q/J%) = 7, 

T (AZ/E:) = f, 7 (A@:)‘= 4, c (E:/E:) = 9, 

c (AlE:)<llq,ll) = $3 &,E:)<l;s,ll) = z,,, (10.20) 

+:F:iW#~ = f,, ; @~JE:)<llq,ll~ = &. 

For the mass tensor (10.18) we have 

(10.21) 

(10.21a) 

4B5 = 

(10.21b) 

where the derivatives of A and A calculated by differentiating eqs. (3.10) and (10.9) 

are 

an tt* + m* aA zt* - tz* 

G@=- 
ult-2, _=__KIc_ 

t2+T2 aa, t2+z2 
(10.22) 

Let us pass to the potential energy u(a). It is more convenient to consider the 

expression for the derivative au/&,. Using the equation 

AS0 = Jc(a,-Q&j,*, (10.23) 
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we find from eqs. (5.23) and (10.7) 

K(c$-Q;,) = rc(+Q;,) ‘3 . (10.24) 
P 

From (10.24) it is clear that the extrema of U(U) are determined from the consistency 
equation (10.10). For the second derivative in the equilibrium state, we have 

(10.25) 

This quantity gives the elasticity tensor for small vibrations. Let us note that the 
right-hand side of eq. (10.25) possesses the desired symmetry since the tensor 
cYQ,,/&Y,,* is symmetrical over p and p’. Indeed, it can readily be seen by direct cal- 
culation (using eq. (10.19)) that 

Q,,= -;s> 
P 

(10.26a) 

W = AN-$Tr {Sop’}+ ;. 

Let us give the explicit expression for 

(10.26b) 

aQ Kp,,,=L= -tTr 
aa,. 

(10.27) 

giving the elasticity tensor (10.25) 

K’ w ’ = 2K c (1~:“/~12)~2l~,l~)~~l~~~l~~~ (10.28) 
12 

Eqs. (10.21) and (10.28) coincide with the results obtained by the Green function 
method (or equivalent “microscopic” methods) when adiabatic approximations are 
used. 

The potential energy U is a function of only two invariants (9.1). Let us introduce 
two invariant combinations of the components QP 

Qs = a; Q, = @,*/P)Q,, 
P 

sin 3yQy = -/? sin 3y $ Q, = [(a,*/P2)-($/8) cos %lQp* (10.29) 

P 
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Then the derivative of U(p, r) can be represented in the form 

au 
- = K(P-Q,)~+ +rcQ, ay 

(10.30) 

The derivatives of Q, and Qy are connected in virtue of eq. (10.26) by the condition 

aQs 
a7 

+ ; (PQ,) = O. (10.31) 

For the practical determination of the function U@, r) one must calculate the func- 

tions Q, and Q,. Eq. (10.31) can be used to check the results. 

11. Criticism and Improvement of the Pairing and Quadrupole Interaction Model 

Simplicity, permitting a calculation of the explicit form of the collective Hamiltonian 

through a limited number of sums over single-particle states (10.20), is certainly 

an asset of the model considered in the previous section. Only two interaction 

parameters (G, rc) are used. However, this simplicity has been attained at a certain 

price. 

First of all the results are rather sensitive to the numerical value of the parameter 

K. This applies especially to the elasticity coefficients (e.g., for /I and y vibrations l’)). 

Yet there is no criterion for the unambiguous choice of K in the framework of the 

model under discussion. Furthermore, the sums (10.20) must be calculated in order 

to obtain the final results. This makes it necessary to use a certain scheme of single- 

particle levels and the corresponding set of wave functions. Rigourously, these must 

be determined from the solution of the Schrodinger equation with the Hamiltonian 

s -rcqzct,, (see eq. (10.1)). H owever, the nuclear potential models (oscillator model, 

Nilsson model, etc.) are usually employed to determine the single-particle levels and 

wave functions. This procedure involving two different models, one to obtain the 

general formulae (10.21) and (10.24) and the other for their explicit calculations, 

can lead to sensible quantitative results. However, it should be borne in mind that 

some exact relations between the parameters may be violated in this case. Thus, 

the relation (9.6) connecting the moment of inertia 3 and mass tensor BP,. does 

not in general hold if 9 is calculated independently from eq. (7.7). Indeed, the va- 

lidity of eq. (9.6) is ensured by the relation (6.7) between single-particle matrix 

elements, but the latter relation only exists in a self-consistent scheme when the 

single-particle matrix elements are calculated by the eigenfunctions of S ‘. Below we 

attempt to eliminate these defects without introducing considerable complications. 
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As indicated above, our method allows a certain latitude in the choice of the 

auxiliary Hamiltonian So. The only requirement is that the difference between 

So and the self-consistent Hamiltonian S(p”} b e sufficiently small. Making use of 

this latitude, we can assume from the outset that So has the form (see (10.1)) 

So = EC=- day, (11.1) 

where E is the single-particle Hamiltonian describing the nucleon in a deformed well 

(e.g., in the Nilsson potential). What can now be said about the difference AS0 

= S{p”} - S ‘? Obviously, if we still confine ourselves to the quadrupole interaction 

the difference AS0 is by no means small and therefore the other parts of the interac- 

tion Glz must be included in the consideration. Immediately, there arise undesirable 

problems of the form of the interaction, new parameters, etc. A different method can 

be employed. If the chosen potential well reproduces satisfactorily the properties 

of single-particle states, it can be assumed that So is close to the true self-consistent 

Hamiltonian S{p’). Therefore, without specifying the explicit form of G,, we can 

simply assume that the real interaction is such that AS0 = 0 in the equilibrium 

state. To put it roughly, now the interaction is selected to match So in contrast to 

eq. (10.1) where So was selected to match the interaction. Let us consider in more 

detail how consistent the precedure is. 

The model potential V = E-E (entering into S ‘) can in general be represented as 

an expansion in powers of the deformation tensor 

v = v”+ V(‘)q,*a,+~V’2’a,*g+3~(2)q,*a,+ . . .) (11.2) 

where Vck) are the functions of Irl alone and do not depend on the deformation 

tensor a,. To represent similarly the self-consistent potential we expand the angular 

part of the interaction G,, (the pairing is not considered) in spherical tensor operators 

Gi2 = G’P:+G’:!q;(l)q,(2)+ . . ., (11.3) 

where G yi depend only on lrll and Jr21, and the omitted terms contain only higher 

multipoles. From eq. (11.3) it follows for the self-consistent potential 

Qb”> = @!292 + q;(W(::q,(2))2 + . - .> (11.4) 

where ( )2 denotes the summation over the occupied states of the second particle, 

i.e., actually the operation -&Tr,{ . . . px}. At first glance it seems that for comparison 

with eq. (11.2) we should simply expand eq. (10.4) in IX,, (entering into p”) and then 

indentify the terms of the same structure. However, this would be wrong. The averaged 

quantities in eq. (11.4) have the structure 

(J-) K c (vFlvMv). 
Y 

(11.5) 
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Here, first, the single-particle wave functions (and hence the matrix element 

(vlFlv>) and, secondly, the distribution of nucleons over the states (p(v) = ~(v)/E(v)) 

depend on a,,. The sensitivity of these factors to deformation differs widely. The 

quantity (vjF~v> changes essentially under such deformations when the splitting of 

the shell levels (V(l)qza, in eq. (11.2)) compares with the Fermi energy Ed, i.e., for 

deformation of the nuclear radius 6R w R. Now, p(v) changes essentially already 

for V(‘)q*a z A since p(v) varies sharply near the Fermi surface in the region of 

the pairiiginergy widths A. Thus, the expansion of (vlFlv) in powers of ap actually 

means the expansion in the small parameter 6R/R, whereas only the expansion in the 

powers of (+/A)bR/R = O(A*SR/R) is possible for p(v). However, the deformation 

changes p(v) essentially only in a narrow region, A wide, near the Fermi surface. 

Therefore, if the summation in eq. (11.5) occurs effectively over the wide region 

O(+) the entire sum will depend smoothly on deformation (cc 6R/R). This is valid 

for functions of radial variables alone, but not for the quadrupole moment QP = (4,) 
to which the near-Fermi surface region yields a considerable contribution. We can 

now make the choice of the interaction, identifying the terms in eqs. (11.2) and 

(11.4) insensitive to the nucleon distribution. For the terms containing qg this is 

impossible in principle because of their qualitatively different dependence on CX~. 

The last term in eq. (11.4) is proportional, accurately to 6R /R, to 

The quadrupole moment Q, can be represented schematically as the sum Q~{P”} + QL, 

where the first term is given by the near-Fermi surface nucleons alone and hence is 

sensitive to their distribution. The contribution to the second term comes uniformly 

from all nucleons of the nucleus and accurately to 6R/R, 

Qz = const. up. (11.7) 

Naturally, the model potential (11.2) can reproduce in eq. (11.6) only the part 

q,*Qr independent of nucleon occupation. By proper choice of the scale of meas- 

urement of deformation a,, the coefficient of proportionality in eq. (11.7) can be 

converted to unity. Taking into account all that has been said above, we obtain 

from eqs. (11.2) and (11.4) 

AS0 = o”(v{p”}-v) x ~(1)4~(Qp-ap) = (11.8) 

To make eq. (11.8) completely definite, the method of normalization of ap must be 

formulated more accurately. Let us note that the term Q~{P”> vanishes in the hydro- 

dynamic limit (when the single-particle matrix elements (vlq,,lv) are completely 

averaged across the width + A -+ m). Therefore a,, can be normalized proceeding 

7 The limit A + 00 practically means that A is large as compared to the inter-shell distance, but 
is still small compared to ep. 
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from the limiting condition 

Qp --) glr when A --t 00. (11.9) 

Eq. (11.8) coincides in form with eq. (10.23) but instead of the constant coefficient 
K there is -Y(l), i.e. in general a function of 1~1. This difference is not, however, 
essential since P’(i) can be replaced with a satisfactory accuracy by a certain average 
value (V”‘). Eq. (10.24) giving the potential energy U then remains valid if K is 
understood as 

K = -(V”‘). (11.10) 

Taking eq. (11.10) into account, all the main results of the preceding section remain 
formally unchanged except the final expression (10.21) for BP,. and (10.28) for Kp,,, 

in which the explicit form (10.1) of So is used. Now So contains an additional term 
from eq. (11.2), *Pa*a p p, and therefore, instead of eq. (10.19), 

as0 ‘*_& a* oY 2 +T/wcc* 

acI, = - Kqa aa, aa, P 
(11.11) 

should be used in the calculation of BP,. and Kpat, which leads to additional terms in 

eqs. (10.21) and (10.28). Note also that for the validity of eq. (10.26) the scalar 
function W must be redifined. Instead of eq. (10.26) we must put, accurately to 
dR/R (see eq. (11.2)), 

W = LN - _5 Tr (Sop’} + 2 + a Tr { V(2)azpo}o$~, 

Another defect of the model under consideration is more intrinsic and is connected 
with the gauge non-invariance of the pairing interaction (10Sb). This fact is manifest 
in particular in the absence of the limiting transition to the hydrodynamical value 
for the mass tensor B given by (10.21). The use of a gauge invariant interaction 
instead of eq. (10Sb) leads to additional terms in B (refs. “*i6)). For the moment 
of inertia this is clear from eq. (7.7) in which the term #2) ensuring the correct 
hydrodynamical limit vanishes for the interaction (10Sb) (see eq. (10.17)). 

The main difficulty of considering instead of eq. (10.5b) a more realistic interaction 
is connected with the solution of the integral equation (5.10). To simplify the problem 
it is useful to formulate the equivalent variational method. Two expressions, (5.18) 
and (5.19a), which are equivalent due to eq. (5.10) have been obtained for the kinetic 
energy T. Let us write T as their combination in the form 

T = 21T, R(ll’)Z(l’l)- c E,,,Z(ll’)Z(l’l) 
11’ 

-412~~!~:~:e’,;)~,.~l.)Z(2’2)Z(lfl). (11.13) 
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The quantity T written in the form of eq. (11.13) is stationary with respect to small 

variations of 2 since the variational derivative of eq. (11.13) with respect to Z vanishes 

due to eq. (5.10). Thus eq. (11.13) can be used for calculating T by the variational 

method. 

For the sake of simplicity let us consider in G’,;’ only the term connected with the 
Cooper pairing (the last term in eq. (2.33)) for which we have 

(x:x;Gi;)(p2,(p1) = :(ll’lG1~2’)5iT!51;!. (11.14) 

On the basis of eqs. (10.16) and (11.14) it is natural to look for Z in the form 

Z(ll’) = R(11’)/E,,,+(5i;!/E,,,)(llq,*ll’>n,, (11.15) 

where A,, is the variational parameter. Substituting (11.15) into (11.13) and varying 

with respect to A,, we obtain the equation 

( &,I2 
(ljq;r11’)+2 C (li’lGI2’2) r <2lq;l2’)] A,, 

22’ 22’ 

r’-? 
= -211;2,(l’lq;ll) f$p (li’lGj2’2) p R(22’). 

11’ 22’ 

(11.16) 

The expression for the kinetic energy taking into account eq. (11.16) is 

51;? r’,;! 
T = IT $ R(ll’)R(l’l)-2 c R(1’1) E- (ti’lGl2’2) r R(22’) 

11’ 11’22’ 11’ 22’ 

-2/I, c R(l’l) g (li’lGj2’2) $c (2lq,*12’). 
11’22’ 11’ 22’ 

(11.17) 

The last two terms in eq. (11.17) give an additional contribution to the mass tensor. 

For the interaction (10.5b) they vanish because of eq. (10.15). The expressions 

obtained above can be used for estimating the role of the correction terms. 

12. Conclusion 

Let us discuss in brief the qualitative characteristics of the collective Hamiltonian 

obtained, possible approximations and correspondence with the Bohr Hamiltonian. 

The concrete form of kinetic energy (9.19) depends on the structure of the mass 

tensor B,,,(a). Eq. (9.19) passes into the Bohr Hamiltonian under very rigid assump- 

tions (instead of eq. (9.5) Bpp. = (- 1)P6,, _p,Bo, while B, = const.). These as- 

sumptions are natural in the hydrodynamical model where only the value B,,.(a) 

when CI = 0 should be taken in the expansion T over the deformation accurately to 

terms quadratic in 6R/R. If, however, one takes into account the internal structure 

i.e., the distribution of nucleons over the states py, the expansion of B(a) in CI is 
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not equivalent to the expansion in 6RIR. The total dependence of B on the defor- 
mation 6R/R can schematically be represented as (see the discussion of eq. (11.5)) 

B = B(dR/R; p,(A%R/R)), 

whence it is clear that even at small JR/R the expansion of B in this quantity is in 
general not permissible. The dependence of B on py vanishes only in the hydro- 
dynamical limit. For real nuclei the inertia parameters depend essentially on py and 
therefore all the terms in eq. (9.5) are of the same order in general. 

Let us now enquire into the possibility of the expansion of B near the equilibrium 
values of CC This depends on how strongly B varies versus the oscillation amplitude 
a-cl,,. The resulting dependence of B on deformation has, as is clear from eq. 
(10.21), the form (see also ref. l’)) 

B = B(A%R/R). 

Therefore the criterion for the expansion in u - czeq for deformed nuclei is 

!?k!A+~f<<~ 
G! eq 

This condition obviously holds for most deformed nuclei. For spherical nuclei the 
corresponding condition A*GRIR < 1 is poorly fulfilled. This is the reason why 
the simple model of harmonic vibrations gives a very rough approximation. All that 
has been said above in fact applies to the parameters of potential energy U as well. 

Thus it can be hoped that for deformed nuclei the Hamiltonian (9.19) can be 
essentially simplified, which will make the solution of the corresponding Schriidinger 
equation realistic. As to spherical nuclei, the direct expansion of B,,. in the defor- 
mation cannot evidently lead to good results and other approximations must be used. 
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