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Quantum effects in magnetic bremsstrahlung have been considered by means of an operator methed.

In this paper an operator method for consideration of quantum effects when ultrarelavistic (UR) par-
ticles radiate in an external field is given. It is essential, that for this method only knowledge of the

Heisenberg equations of motion of the particle is sufficient, while usually solutions of wave equations are

used. Here for definiteness we consider an inhomogeneous magnetic field.

The method is based on fact that quantum effects in the motion of UR particles in a magnetic field
can be of two types. The first type is connected with the quantum character of particle motion. The
non-commutativity (NC) of particle variables in this case is to be fwy/E (where wg = vt /R, R - is in-
stantaneous radius of the curvature, E-particle energy, we put# =c=1). Hence with increasing energy
the particle motion in a magnetic field becomes more and more "classical”. The second type is connec-
ted with particle recoil in radiation and is of the order hFw/E (w-radiated photon frequency).

The quantum effects in magnetic bremsstrahlung may be conveniently characterized by the param-

eter
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here y =E/m.

For ¥ << 1 recoil (that is quantum effects magnitude) is small, then w = MG?B. In the essentially
quantum region x< 1, w =E. Hence it follows that for UR particles at any x quantum effects of the 1st
type are negligible as compared with radiation effects. Therefore we shall neglect NC of operators of
the dynamic particle variables taking into account only their NC with the field of the radiated photon,

Moreover, we shall regularly expand all the values in powers y-1 keeping only highest order terms.
The expression for the radiation intensity dfin lowest order of perturbation theory in the radiation

field has the form:
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where
eM(t) = Y (P@) {(ef), e T y (P()). (3)

Here j,(1), r (f) are current and particle coordinate operators, respectively, ¢, - photon polarization
vector, the braces { , }indicate a symmetrized operator product Yg(?(t)) wave function of pariicle in
magnetic field in operator form (this means that in the free wave function instead of E, p one must sub-
stitute operators of energy & =¥ P2 4 m2 and momentum P(#) in a given field), the indices s, s' are
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After disentan.gling all the operators in (2) which are in the brackets of the initial state can be replaced
py their classical values.

The subsequent ‘33-1‘3“15-1:_1'3115 were performed like those for the classical description of magnetic
bremsstrahlung. By carrying out integration in (2) over relative time f3 - #] and azimuthal angle of pho-
ton emission we obtain spectral and angular distributions of radiated photon intensity per unit time
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g -angle between the photon momentum and orbital plane, 6=0 for scalar and §=1 for spinor particles.
This expression depends on kinematic particle characteristics v(#), v(f) in the given field, while in 2
homogeneous field it reduces to a known expression [1]. Integration of (5) is performed in a well-known
way, it results can be represented as a series in X for x « 1 and series in the inverse powers of x for
¥ = 1. Evidently all the expressions contain characteristics of magnetic field inhomogeneity only in X.
This question caused recently discussion (for the lst expansion term for x « 1, see [1]).

It is of interest to note, that the operation of disentangling does not touch upon spin of particles,
therefore this method is suitable for particles with arbitrary spin.

The complete results and details of calculation will be published in "JETP".
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Analyticity properties are given for a system of classical particles on a lattice interacting through many-

body potentials.

subset X C Z Y specifies a finite configuration.
Suppose the particles interact through symmetric
translationally invariant many-body potentials

In this note we give certain analyticity iprnper-
ties of the pressure and correlation functions of

related to spin characteristics of particles, |i} - initial state.

In the expression for M(?) one should take into account only photon field (e-ikT ) commutators with mo-
mentum . Then e-1K-r(f1) can be taken out to the left in M(#) and e-ik-r(£2) to the right in M*(¢3). The
main point of the method is disentangling of the combination e-ik- r (¢2) g-ik-r (£1). The problem reduces
to an integral equation on solving which with our accuracy one obtains:

oiker@2) -ik.r(f1) _ iw(tz~f1) exp iQEfm - w(tg-t1) + k- (r(ta) - rE)]} - (4)
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a system of clasgsical particles on a lattice inter-
acting through many-body potentials. Our me-
thods generalize those of Dobrushin et al. [1] for

two-body potentials. +
Assume there can be either 0 or 1 particle at

each point of a v dimensional lattice ZV: a finite

() (xy,.. ., %p) and consider these as a function
¢ on the finite subsets X € ZV defined by ¢ (X) =
~ ;p{k‘-' (%1s---,xp) i X = L | ,xk}‘ We con-
sider only interactions involving a finite number
of particles such that
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