440

lisions to be negligible, all relevant lengths must be
<hort compared to the the mean free path of the
heam electrons in the plasma. Furthermore, the
growth rate v of the unstable modes must be large
compared to the collision frequency of the plasma
electrons. However, these conditions do not yet
ensure that the resonant effect of thermally excited
<table modes on the beam is small compared to the
one of the unstable modes considered so far. The
importance of this supplementary effect can be
estimated starting from Egs. (1), (8), and (4) with

g = mpl/r; for all z and L.

Thus one obtains, using the approximation (6),

1.'3

v i
SN = —xY)

for the entire interval 0 < & < vl where beam elec-~
trons of velocity » are present. Along the lines of
the preceding section, it can be shown that the
variation of the moments M (e) and of the mean
values (%), due to the resonant thermal noise, are
again given by Egs. (13) and (15), however, replacing
o by

B{dﬂ M¥in
M Ao

.ﬂ::r: v, t} T

& = S\/38°Nhp. (21)

The validity of this result is limited to such values
of A such that & << 1 holds, i.e.,

AL A = L08°NAD. (22)

A represents the penetration depth of the front of
a beam which is affected only by the thermal noise.

If t < ¢, the effect of the resonant fhermal noise
15 neglibible for ¢ <€ ». When @ >> ¢ this effect domi-
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nates that of the unstable modes. The resylisg o
tained in Sec. 3 are, hence, limited to distanceg ﬁucﬂ-
that L
28 70 |
38 N

in the stationary range 0 < A < 37/8 and, within
the limits of condition (19), to values of o such that

Ns%(8* — 3) 28 (no/N)A
2" [38° + 28°(no/N)N] 5"

in the nonstationary range. This last relation es.
sentially corrects and makes more stringent the
lower limit for o as given by (19). For A < A <
there is, however, still a finife interval of ¢ where
the results of See. 3 apply. Equation (23a), on the
other hand, limits the distances X < A from below
where the model holds for all = larger than a mini-
mum value defined by ¢ = «. T

23
exp (—'S-?ﬂ}a) =k

338 2 N {23 EL:I-

o = In

(23h)

This Hmit X, tends to
zero if the transverse gize of the unstable domain ig
so large that Ak — A5', or equivalently & — g
Then, all resonant modes, appreciably excited in
thermal equilibrium are also unstable and hence
these deseribe the relevant excitation throughout
quite well.

In Fig. 5 a schematic plot of the different ranges
appearing in the preceding discussion is shown. A
numerical example has been given elsewhere.”

In a finite system the previous results may be
modified by the effect of the second plasma bound-
ary. Whereas in general the beam will be destroyed
there so that the boundary condition (4) also remains
valid in this case, there may be complete or partial
reflection of the modes strongly excited by the
instability. These then travel back to the first
boundary and might alter the boundary condifion
(5) for times larger than about (1/u - 2/ 3l
where D is the thickness of the system. This does
not happen, however, if the Landau damping of
these waves is strong enough to reduce their exeltas
tion to the thermal level when they again rem:‘h
the first boundary. This is generally the case 1
situations slightly above the onset of the instabillty;
it may be also true, however, in other situations, &8«
if there is a strong absorption of the unstable modes
at the second plasma boundary, or if D 18 largo
compared to the penetration depth L = Ahp Of 1_5}1&
beam so that the ratio of the space intervals effﬁﬂtﬂe
for amplification and damping, respectivelys whie
is of order L/D, is small. In these cases the above
resulls can also be applied directly to 2 finite syster
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A self-consistent equilibrium is derived
orbits. This equilibrium is investigated fo
mirror machines. An ion instability gener
found when the rotational transform is ¢
form. Instability is also found at the plasma edge
velocity space. A qualitative discussion of
sented,

for a slp.'lplﬂ toroldal model from knowledge of the particle
r veloeity space instabilities analogous to the loss cone of
ated by particles in “trapped” or nearly “trapped” orbits is
elatively weak, but is stabilized with larger rotational trans-
qllF to a loss of particles in a preferred region of
the quasi-linear development of these instabilities is pre-

I. INTRODUCTION

T) ECENTLY it has been realized that a plasma
equilibrium can be inherently unstable to ve-
leity space instabilities because of the nature of
the confinement. For example, Post and Rosen-
pluth**® have shown that, because open-ended sys-
ems have velocity loss cones, serious electrostatic
nstability arises at sufficiently high density. Galeev®
las shown that this instability causes particles to
fiffuse into the loss cone of the machine. Thus,
nstability is present because confined particles are
#laxing to fill unoccupied regions of phase space.
Similarly, one can ask if velocity space instabilities
ate likely to arise in a toroidal equilibrium. Certainly
i toroidal equilibrium seems more stable in this
fespect than a mirror geometry, since toroidal fields
with rotational transform and nested magnetic sur-
fices form an ideal container in that all particle
:?miﬁﬂtﬂriﬂﬂ are bounded.*® However, even for a
loroidal system there can be regions of phase space
here the equilibrium distribution has steep ve-
Eit}f space gradients which may give rise to In-
itability.

The most obvious region is near the walls of the
Ontainer. Since particles with different velocities
Usplace differently from a given magnetic surface,
lelocity space holes will develop near the edge
particles whose trajectories have maximum
L * Permanent, address: University of California, San Diego,

4 Jolla, California.
- 1 Permanent address:
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1965,
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displacement. Thus, as noted by Bishop and Smith,’
an escape region analogous to the loss cone of a
mirror machine is present.

Another important region in phase space 1s the
boundary between orbits of different topologies, i.e.,
hetween particles whose sense of velocity along the
torus is fixed and those that have mirror orbits
(trapped particles). Because of the topological dif-
ference of the trajectories, anomalously large ve-
locity space gradients may be present in the dis-
tribution funetion which can supply a mechamsm
for instability.

In this paper we investigate some of these velocity
space micro-instabilities inherent in a toroidal con-
figuration. To this end a model toroidal equilibrium
is developed from the study of particle trajectories
and investigated in detail. The recent pumerical
work of Bishop and Smith® studied an equilibrium
of a model similar to ours. In their work the particle
displacement is a sizable fraction of the minor
radius so that a large escape region exists and a
large velocity space hole is formed, Theretore, many
particles are lost directly to the wall, s0 tl’:mt a lar.ge
clectric field throughout the plasma exigts which
results in a complicated equilibrium. In our case
we assume that the particle displacement 18 relatively
small, as would be the case of a future device needed
for fusion. Therefore the effect of the bml_ﬂdary
‘s not as pronounced and the equilibrium is not

unduly complicated.

We find that, to lowest order, the macroscopic

nature of our equlibrium agrees with fluid results.
However, we find that slthough high‘er-ﬂrdelz‘f‘ ﬁ[’ffeuts
do not significantly modify the fl_md egt:n_hbrmn?,
they supply mechanisms for micro-instabilities. 1t 1s
chown that because & velocity space hﬂh_a develops
due to particle loss to the wall, the plaisma is unstable
near the wall, Similarly, :f the rotational transform

s A.S. Bishop and C. G, Smith, Phys. Fluids 9, 1230 (1966)
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; all, the trapped particle region of velocity ) ﬂlrfl! 1WEB-I 16?11:?3151??"?1{1'} ‘i}] mmlml]fmts Of thy JA positively charged particle circulates around the
. tmﬁ:i‘EJ rlse to instability. We conclude the grad B Gl m:;i& }LHE i Gl N clectrio field deify  foross section of the torus in a clockwise direction Setaoa e Ay>0
bl A% & | Sroeds . - : oyfa : 1 g ) ,.-*'r ‘__.-""'_‘_""-n, W=
i Eﬁ.h o qualitative discussion of the quasi- and :DL&UT} ui 5 ; Ief mf;t’l‘mm% ansforyy, 1, fpp Av > 0 and counterclockwise for Ay < 0 [see fﬁ g ﬁ\
;?&per_ ations of these instabilities. these equafions term 10 order (r/R) have Be ig. 2(a) where the reference points (ry, ¢) = =1 (e I ! tv<0
Jinear implicati neglected. Combining Fqs. (1) and () th?n E{r 0] 0; Pp) = \K LT 0 %
. : al]]_ i i : t = = H'-‘ x‘h
& Tﬂnﬂm%wjggltié‘;%g bt (G o) 4 (rcosg) = —20 4 ¢ 3 il Lc generalisolution to g, |(7), =2 el
ST T RO e . * s TR
TFor our toroidal geometry we consider the system w M, dr 3) = o) Fra. 2. Particle trajectories.

ﬁSEuII'lEd S}Tm- Nﬂ“" Sinﬂﬂ E = %[EJJE + ﬂﬁ} —|" [E@{Tj}fm]

. . Tig. 1. The system is NE e (i b} 3 . 3
ﬂiu:i?ﬁ:; fﬁi t:t;midal 3};;15 (4, B), the (r, ¢) »r = v/2B(r) are constants of motion, we haye and Ayt [{m) 'I‘E"'(Wr_ o2 Ui ‘E-H—g)ﬂg[ﬂms ¢—cgs¢ﬂj] and £ = & when ¢ = 0. The pressure P; is given
me - ——

. . = I 7 b PJ- _ T : . ' 4
plane contains the toroidal axis and the 2z direction B , _ (. 0—v,8'/0 415/ 0) Y Wity;, and the magnetie field is given

: ¢ 0P dvy d « - | by B = Bz + B,d “ ;
: : . lane. R is the —= = —{ E= (7 cos ¢ ﬂ(q_z) - ) - Dby «®, where B, = (u)/RB,. The
15 taken EerpEﬂjl'ifﬂr:?sﬂii e(nn?;)nfrmradiu% e ar dr R dr )=l 7 4) Jhows that the particle ean be trapped if equilibrium equations for a given specie arﬂe (the

a/R <« 1. The main magnetic field is taken as where ”uﬁ‘-*‘) % _:i: (2[1 oy pB(r) — Iiﬂ;’m}@{r}]!l_ ) < dvr(w. — tﬂuﬂ’l;" & 4+ vi/6) subseripts are now suppressed)
that due to a current along the toroidal axis, and Frgm this relation, we find that Eq_ (3) can be S el b o
hence is given by B = B[l — (r/E) cos olZ. An written as |
additional field, AB = —u(r/R)B,$, causes a rota-

{For simplicity we assume o0 > (v;/6)’. This + (nw./By(v=xB) = 0, (8)

. Ry ld B e 2 W BN
tional transform ., abouf the center of the minor R (rcos¢) = —5 W (5) ;ulEtlU_ﬂJ”-;‘i o Eﬂ:&lﬂl.? fil%lﬁ for a sufficiently large : V() = 0. ©
cirele. The rotational transform is taken as a func- . . mtational transiorm or small electric fields.] The : e~
tion of r only, as if a hard core or internal currents Now if dyy/dr << vy/r (which is the case if Mmpped motion 1s about ¢ = 0 as shown in Tig. Sinee we look for an equilibrium independent of z,
i Prﬂsent_lﬁrﬂ neglect the effect of AB on the (e/mw.) (d®/dr) < v or vy}, the r dependence of v, ;‘!{b}. The v:aximum displacement oceurs for a barely the z component of Eq. (8) yields », = 0. Hence
Sanitude of B since it is & quantity of O[(r/EY]. can be neglected on the left-hand side of the equs- Wmpped particle which at ¢ = 0 is e R e
N g 3 e MRt T e i R i e L. i

"WE gep that ﬂlﬁ ]Ilﬂ-gﬂﬁtlﬂ EUI'fﬂ-E'EE are given }j}r tion. 1‘?‘5' t-hﬂﬂ lLEL(_l'll} | lT}.TLEEl.LTE ]Lq. {Elj HI’.Id ﬂbtﬂlﬂ ! P 4(ﬂBnT/Rj&fmﬂﬁ‘ "i' GﬂmpDHEHt Df Eq (S} FiEldE
r = const. For pure e}r]]ndnf;al geometry, the guld_ an additional constant of motion, |F . - . Totn . : -ﬂ.{:’j"‘: "il":l = 14(r) exp {E(T‘fR} cos d — [ed(r) fmﬁh]}u
ing center is fixed at a given r, but in toroidal o - ;l';f a tll}.}.}m rapped par -l'i‘ilﬁ‘:l the maximum dis- (10)
geometry we show that the particle trajectories can J = odr 4=\l + S eosg ). (6 & cement oceurs at ¢ = m, where N . .
deviate from a fixed magnetic surface ik | : i where ¢ **!'"/™* ig an integration constant ex-

: . ' (r = 1) = 2(uByt/E)"/w.8. plicitly displayed for convenience. From the r com-

Because of the symmetry in the z direetion, it is 1his quantity 1s analogous fo the usual longitudinal

sufficient to consider the projection of the particle invariant, but now we see that for our model it is § The physical picture for the motion is that the ponent of Eq. (8) we have
motion upon an (r, ¢) plane. We assume that the 80 exact constant of motion (at least to the extent dnft:s cause the particle to move d{}WI.le,l‘d. As t-l%e Ao (& e E‘)UE ang Bt By
electric potential, ®(r), is a function of r only, and that g is constant). _ _jZucle moves around the ANdEpdils puiice IU0 = CEBl G CRsie o R
the electric field drift is much less than the par- If we assume that the particle dlsp{acement 13 Hoves away from the surface when. it 18 below the | (1)
ticle’s speed. Hence the equations of motion of the Small, which we shall see 1s satisfied if 7./ - < ml.dplﬂ'ne = tnwa,rd*s i rr_m.gnetm Stace o : ide is independ f
guiding centers of a specie of charge ¢ and mass m  (@/R)?, where r,, is the Larmor radius, the particle, Jsia,bnve. The maximum displacement oceurs for Smce. the left-hand side is independent of ¢,
. 5 - - . v ' he Warticles that take the loneest to cross the midplanes. nw, = j. must eancel the ¢-dependence of the first
take the form, trajectories are easily traced. Starting with t, g C 5 5 P ] : : S
: : point (ry, ¢,) as reference, and expanding Eq. 1[133' _!Jmla,r results have been obtained by Mﬂmguv term. Hence, expanding »//, we fin
dr _ (@ +v)sing el o nci order in (r — 7,), we obtain the equation  Mid Solovjev*” for more general foroidal geometries.
dt w2 : (1) E i Owever, our results are qualitatively correct for () = S ?—“ exp (—e®/muy)
? dp _ G + oY iy A w60 — 0,8 - vh)@r — ro)° — Avf(r — 7o) o irficle orbits in a general toroidal geometry. w, or S o
dt S e i R € — pr(cos ¢ — cos o) = U III. EQUILIBRIUM o
Gos a Oy 2
;:;;i Sfa,r a,nagduu am}]the- velocity components per- where | We now investigate the equilibrium both far J: = . vh 5, OXD (—e®/muviy)
'_wﬁ ~ jslﬁlm el to the magnetic i'ieid, and Ay = v — vg/0, : M and near .t.he walls of the torus. _Wu? shnjw that (rotational transform current).  (13)
e P{J} e ihgymfrequenﬂ:,r. The right-hand o — B — (/m) o)t _E macroscopic nature cr+f the equilibrium is lwr;t.ll
. q. ls. e r f:ﬂmpﬂnept of the grad B I = ﬂEErlhEd by a simple fluid model. I*]EDWE?EI‘; EH}LE B. Kinetic Equilibrium
urvature drifts while the right-hand side of e e 99 1 "¢ are interested in possible velocity space In- ey ol :
s R = L labilities, we also look in detail into the equilibrium  For a kinetic equilibrium any function of the
r=rq Sulting from a kinetic description. constants of motion 'ﬁilﬂ produce a valid Ethbr?uim'
uBy - vy The constants of motion arve E, i, and J. In addition
¥ cas T i A. Fluid Model o = =1, the sien of vy a is constant of motion for
S ggzﬁﬁ?‘l e If Av is not too small, we see that the displace™® D the fluid model the fields due to toroidal cur- ull’ﬂl'ﬂFP‘Ed particles. We would like to uhfmse o
15 given by | ]‘-ure are mocked by a gravity field g; = 220%,; _fR eqt_ﬂ'iihrmm that TeCOVETS as much as possible the
gollv W the jth specie, where v,,; is the thermal velocity fluid results and 1S in some sense close te o cy-

(r ~ 1) = —[(uB, + v)/ b B)(COS® R
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lindrically symmetric equilibrium. First, we discuss
the problem with ®(r) = 0.
A convenient distribution function for untrapped

particles 1s

ﬂi‘d 5 a
fﬂ F(E, F}L _2'(%‘/; drun(?'u:] ﬁ{r_f e Jﬂ.}

(14)

ol ..
arg

Here

J, = Eﬁ‘/;” o dr
+ o{2[E — B, %}]}%(1 + 7 cos ¢“)’

?‘

Blr, ¢) = Bn(l 7

which in general can be taken as an arbitrary fune-
tion of E and p, is chosen here as Maxwellian

iyt P

The weighting factor, n(r), is the guiding center
density for a purely cylindrical system and 1s de-
creasing with increasing r,. The distribution tunc-
tion has been chosen so that at a given point r, ¢,
for constant E, p, J, the distribution is influenced
by all other points (7, ¢,) accessible to the particle
trajectory. The factor @ is the outer radius of the
torus. In this section only those trajectories that
do not intersect the wall are considered. In iSec.
IV we also consider the equilibrium attained when
particles intersect the wall and are then lost to the
system.

For trapped particles, Eq. (14) is not valid since
o i3 no longer a constant of motion, and a distribu-
tion function independent of ¢ must be chosen.” A
distribution function that appears to be the natural
choice is [—pBo(r/R) < B — B, < pBor/R]

2 E 1dm % a 8.z,
f=5 f-m - f drontr) 2 877 [

msgﬁ), and F(E, p),

F =

, (19)

where
b, = 2 cos! [(uBy, — E)R/pBur]
is the angle enclosed by a trapped particle,

.e.f f
ik
A Rﬁ;\ /s>lﬁ\
e 0 Ve LTS =¥ 0 L ¥
Cos ¢ >0 Cos § <0

Tic. 3. Distribution function without electric field.

1 J. Hastie, J. B. Taylor, and F. Haas, Ann. Physik (to be
published ).
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The (ry, ¢) integrals can he comp
panding n(r.) about n(r}, if

| d
(P 7 In [r{rg)] « 1.

=

Then n(ro) = nlr) — 2'(N{r — r)) and ¢
tion J = J, determines r — »,

A
W { U

uted by &

he Gond;.
2

COS :ﬁ)

(16)
Tar from the trapped region we have
oy S
e = j s f drofr — 7o) 8T — J) [J7]
(17a)

(Gl 4 ) cos é

1

e 2y

while for nearly trapped particles we have

— R 2B\
e = | + o)
2T Ay ((I— uBoR )1 |
_[], 2-}7 PLBU"P _]_ CO3 ¢{| ' {‘l?h}

where the integral can be expressed in terms of the
Legendre function P. For trapped particles the
term in o is summed and we obtain

i ]
Ty = = Uy (17¢)
T

There is a discontinuity in (@ — 7o) _ﬂt't-hﬂ Lranst
tion point £ — pBs = wByr/R. The lmit of r — 1y
for untrapped particles is

(uB

2

a 9
____R) (|c:‘)5 39| — ;). (182)

PR = 7

L,

while for trapped particles

T = — (g0 (@/w ) (uBR/) [00s 34l;

The shape of the distribution fur}ﬂtiﬁﬁwfl -

[n(r) — @ — v ()]F for ﬁuﬂﬁtﬂgtl_iu 15;; 2.

id 1 - r ted lineisJ = "N 7

thtzi solid lines of Fig. 3. The dt}tti_ i analyes is
and v, =

9(uBor/R)!. Although S 5% o
for a special example, the discuntlnmt}f;ts=Ehmlge
quite natural since the topology of the 01 |

t this point.” LA o pos-
X Sinﬂep:r' previously ceferred to guiding [EBT;tEr b
tion, we let r — 1 — b xv/w.(b = B/ 2
now r is the actual particle coordinate - the ¥
n(r) — n(r) + n'@ Lfw,) S

(18)

L]

s th
d ben®

(W — ¢ (¥

!

! Jocity 'pglar coordinate). The correction fto ' (7)
| s a higher-order effect and is neglected. Our dis-

;ipution function is then

exp (—E/vi)
= @)t

-1:?1{:-"‘] — n’((r — ro) — ”w—-jsin (¥ — qﬁ})} (19)

If we now construct the macroscopic moments,
' we find from symmetry that the particle density

| - : ; :
remains n(r) while the diamagnetic current, f,, is

' given by Eq. (12). If forr — r,, Eq. (17a) is used,
| we obtain Eq. (13) for j.. It can be shown that the
' correction to j. due to particles mear the trapped
region is small, O[(r/ R)Y.
| The equilibrinm with an electric field is con-
‘structed in much the same way. For untrapped
!pﬂf{;iﬂ}@ﬁ we choose the same distribution function
Las Eq. (14). If we expand n(ry) =n(i) — (r—ro)n'(rg),
' we see that the distribution function is given by

cxp {:Ez)/l"lhj [ﬂ{:‘?‘;‘] i t:.i% (ﬂm e j; x i_‘:‘-

(ar)® + 20.000(cos ¢ — cos ¢uj]§)]1 (20)

(2 E-'sih:i'g

Far from resonance this form goes to

f = Exp(éw;%ém'} (ﬂ(‘f‘} -+ T—:—;ii*up cos cﬁ). (21)

We see from Eq. (20) that particles are trapped
if the argument of the square root can be less than
sero for some ¢. In this case Eg. (14) cannot be
thosen as the distribution function. Instead we
thoose a distribution function of the form

= exp (—F /vy (fiirm de
'(Zm‘rih]g —hkdfim 2¢'m

| ar o7 = 70 |J§1ﬂ(ﬁ“n}), (22)

Where ¢, is the angle enclosed by the trapped par-
ticles. Performing the integration, we obtain

exp (-—E,/:,r_fg.l (n[r} - nr; ﬂu)‘
Wy

23
(Eﬂ'ﬂzm} : ( )

-

Il Fig. 4. Note that the resonance velocity vy =
Y& /0 is the same for electrons and lons.

IV. STABILITY ANALYSIS

- Let us now

VELOCITY SPACE INSTABILITIES

i The shape of the distribution funetion 18 shown

analyze the equilibrium distribution
Ungtions we have derived for micro-instabilities.
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| /F/u‘(f\
4 s N
! Yera Wi 0 SR
Cosg =0 Cosd <0

Fic. 4. Distribution function with electric feld.

First we look at the distribution function in the body
of the plasma and then near the wall.

A. Far from Wall

The simplest type of mode to investigate is electro-
static waves propagating along the magnetic field.
For such a mode only the distribution funetion
averaged over v, i1s needed. When the distribution
shown in Fig. 3(a) is averaged, a distribution shaped
as in Fig. 5 1s obtained. The typical velocity width,
du;, of the structure is 6v; = v;(2r/L) * while the
typical depth, o;, 18

where L = [(d/dr) In n(r)] .

We see that the structure is more pronounced for
jons than electrons, and hence we consider the
averaged electron distribution function as a smooth
Maxwellian, while for the ions we choose an aver-
aged distribution function of the form

E 1
fi =) (ﬂﬂjﬂ.ﬂé

(exp (—vj/20¢0:)
— 25 exp —/o]). @
Ui
The dispersion relation is then

2
L1755 Ei'-t? ﬂf,fﬂ'b‘ %
LS ,E B J v — ok

where o2, is the plasma frequency for the jth specie.
If we look for phase velocities much less than the
ton thermal velocity but much greater than éu;,

we find
B
0 fm dvv exp [—v /2(30)°]

0, (25)

= ]
Pihi ﬁui{ﬂﬂ‘j}li o == w/k) (26)
2 B
— ‘—"E Eﬂ;ﬂ_i IIL3 {:El I) )
Uihi
Y
9
Fia. 5. Averaged distribution
]‘—hrﬁ _1:,
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Tre. 6. Trajectory near wall.

wrhera & = tyfUes 300 £ = ays/ Ve AT the Debye

jons and electrons.

-ave numbers for
s as the unstable mode

Solving for w, we obtain

(a+ wﬁﬁ( 20ty 80)° )*.
0=""5  \F + &+

I we take b ~ x; ™~ Kk, W8 find the growth rate

(27)

v~ ayle; ov;/ ﬂ:r:hi}&'

For consistency we need w/k > 0v; 0T

W tini : 1y (?‘:;:_R)ﬁ

o loa) = () >0
Thus the plasma is unstable if rR/wl > L.
One can also derive this condition from the Penrose
criterion.’

Present, devices like the C stellerator are sus-
ceptible to this instability, but future devices with
larger rotational transform can easily avoid this
instability.

If the density gradient is very steep, this in-
stabilify can even be triggered by the electron dis-
tribution. The stability criterion, Eq. (28), remains
valid but now with the electron Larmor radius
present,

Another instability can develop if T, > T. so

that ion-acoustic waves can propagate. If we define
Y, as

(28)

im| _ v
diy

— 1y

2
th:

= 0},

T =(]

then we see from Egs, (21)—(23) that

Ixr — 1@ E'Ff]:l-t
£ e ﬂ.ﬁf’f‘ Q{GHE‘

It 3s known that the fon acoustic mode is unstable®~*°

v
/ Fie. 7. Distribution negy
i i wall,

a

e/l ¥
-.__-.__—__-——-p
! D' PE’III'HEE} ].Jh_ 5 "
s, Flud 5
MR Bemsten, 1A Ha oy
0B, A o Phys. Bluids 3, 136 (1060),
I, Phys. Fluids 3, 786 (1960).

Kularud , and

if
I'r: = (Tjufﬂi':'}i
(wherﬁfﬂ_”]- is the temperature), or

o/ LO)(my/m)* > 1. (20)
This condition 18 almost the same as the Previoyg]
sly

derived condition.

B, Stability near Walls

The nature of the plasma near the wall requires
special analysis. The calculations of {he Particl
trajectories show that the toroidal geometry is gy
absolute trap in that all particles remain i, a
restricted region of velocity and coordinate Space.
However, particles near the wall can intersest the
wall and be lost to the system. Because of the
particle loss a charge imbalance develops, and thye
there will be electric ficlds near the wall, The
magnitude of this electric field is estimated later.
We have seen that those particles whose longitudinal
velocity are vy = o' (a)/08 = vg/8, where &(q)
is the potential at the wall, have a very small
azimuthal drift velocity #,. Thus these particles have
the largest deviation from a magnetic surface. We
know that the typical displacement of the resonant
particle is

5?',- = [:TJ: ; I.-"lf ﬂ] (‘E?fﬁjﬁ

and that the resonance is confined to a width év; =
Vs (2r/R)Y. Thus, as shown in Figs. 6 and 7, m
the region in coordinate space within ér; from the
wall the resonant particles are lost to the system
and a hole in velocity space develops. Particles
outside the resonant region but within ér; are 2=
sumed to remain in the torus since their displace
ment from a magnetic surface is small.

Although a hole in veloeity space 18 an aCCeL:
equilibrium, we expect that it is filled rapidly Elﬂ_ﬁ
by Coulomb collisions or inatabilities. In fﬂﬂtalt lel
role of collisions cannot be entirely i_gnﬂred 5;111;
we are now dealing with a distribution .fm]u:::L i
with large gradients in velocity space. Ths ?Lﬂn-
seen directly from the linearized structure 0
dau’s collision operator,"’

ceptﬂhlﬂ

V'ths 37; ﬁm

e T

o
Tef aﬂﬁ

Stif;

: pmber

where we haye linearized about the bmﬂﬂgd tha
of particles in the escape region and t?tlssn o /00
terms containing af;/du, are larger ths

" L. D, Landan, J, Phys. USSR 10, 25 (1946)

VELOCITY SPACE

Here Toi = MUu/dwe'nh, where X is the Coulomb
Iﬂgﬁl'ithm and #,,; 18 the thermal velocity of the
Mﬂxwelli.mi_ distribution outside the escape region.
We see immediately that the effective collision time
for particles near the hole is ,

Treail

Treai — Tl‘ar'(ﬁ?}}'ffyt-]lsz s Tc:'{:’Z{E/R]- {31)

The influence of collisions is very important if this
time is smaller than the time, 7;, required for resonant
particles near the wall to leave the system,

5 :

2[1'7-{: ]'

SR E
Trs R Yo; | Ul \R
- or
20\ To:ltis
i, 7 7 =0 (32b)

We see that Coulomb collisions are more im-
portant than one would ordinarly think, and can
cause particles to diffuse into the escape region.
However, if collisions are still foo infrequent, par-

ticles can still diffuse into the escape region since
they scailer from turbulent electric fields which
arise because the distribution function shown in

Fig. 7 1s unstable.
Let us then congider the stability of the electron
distribution shown in Iig. 7. This distribution can

' be deseribed approximately by the function

P

fc{:ullrﬂ.!.) = [1 i ﬂ"ﬁ’ﬂ@ll i Fl{lm ]F,(Uﬁ + t’i}: (33:}

where (v, — V") is a positive function and differs

from zero only in the neighborhood of V;* = vg/6,
50 that
‘b(ﬂ:} = 1,, f Ifl'r?Ji'_ l,f:'{ﬂ-r" =, ]Ffiﬂ?} = ﬁl’,_,. [:34)

The parameter A changes from unity to zero as the
escape region is filled. The distribution of the main
body of particles is chosen as Maxwellian

2 ﬂn'[:'.*':]
Fﬁ(ﬂ: ks Hi:l * EWL’::EH'}i
|E |E — ‘}-'-"r' 3 Dl
- eXP (_ b AL +}:Jéh{hrr e ])’ (32)

where in the normalization constant we neglect
the contribution from the escape region. Iirst we

¥ theck the stability of the electron distribu:timl with
Tespect to the longitudinal electron oseillations prop-
Agating along the magnetic field when the phase

Veloeity is in the region
(0]

Pone > /b)) = Vi (36)

v > Lk odv,.
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The dispersion relation for this oseillation is
b o
- dv, (df,/dv;)
1 — {IJ_?_ — 7
ke e =tk L )

Expanding the integral in the range given by Eq.
(36), we rewrite Eq. (37) as

2 7 {0]
Gpe  , why AF(V™)
1 i pe |
+ I‘:éﬂi]m ‘[‘ {4::: = kvﬁm 2

This equation has an unstable solution with the
growth rate

mﬂ_'?

B {1 + mit?k%‘!fhr]%

v

-(aFr: i) f dvy Y. — T--'ﬁ:“’))j > k bv.. (39)
For small £, ¥ = k(Adv,v.)" and for large &,

-'},- = mﬂi{ﬁ Evgffli’rﬂlfjli'

which is the maximum growth rate of this instability.
The 1on distribution iz unstable with respect to
the ion cyclotron osecillations. The dispersion equa-
tion for electrostatic oscillations in an anisotropie
plasma was derived by Harris” and has a form

3
1+Z'}%

f_ dﬂiL EIHL UJ_JEE(A‘:TJ-)

5 {wry (8/ av )Ry [U]‘lfaf/ dug) —v (8/u )]} fib,, '”!1.)}

W= E{:JE; =T I{"ul-'" —‘— 1€

{f:; (v, =0) dy+ i

[=—s

= 0. (40)
Again for a phase velocity within the interval
(@ — L)/l V3 v > ky oy,

we find by expanding the integrals in Eq. (40),

o ( E) ¥ f“’ wF(v) dv,
hE kU [ h T co 0 — lo — kyty B

22 a8 PASH 4
A e [ v~ v

0,

===
=

(41)
Iy = Ii(kirs) exp (—kiry.).

2 . G, Harrig, J. Nuel. Energy €2, 138 (1961).
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This equation first discussed b}r‘Ga}e&v‘” +ha,s the
same kind of solution as Iq. (38) in the limit

i

karp: < 1.

The espression for the growth rate is very similar
to the one derived for the electron oscillation,

bl APV Dakirsd Joo ¥l — Vi) duy]?
L+ T./T. + K259}
:} "irﬂI a:E"l:'r

o =
(42)

where Ap: = Ven;/ey; 18 the lon Debye length.

Let ug note that the distribution function con-
sidered in Sec. IVA is stable with respect to a Harris
fype instability because for this case

f iy — VOVF, o)) dvg = 0,

and a velocity space gradient is now not a strong
enough instability meehanism.

V. QUASI-LINEAR BEHAVIOR OF PLASMA SURFACE

Let us now qualitatively consider how the plasma
surface adjusts to the wall. Initially we assume that
the plasma touches the wall and therefore the plasma
density near the wall is comparable with the plasma
density at the center of the trap. Then, under the
condition that the diffusion in velocity space is
rapid enough to fill the velocity space hole during
the escape time r; = &r,;/v,;, the particle flux can
be estimated as

J,— = [Eﬂ‘}ﬂjf{lﬂﬂﬂu(ﬂ-, f} j:: [fﬂﬂ yl';'(ﬂ”_' Ifﬁ‘}}}F(ﬂ”} . {:43)

Because of the rapid filling of the escape region
d_ue to instability, the density of the resonant par-
ticles n;*(a, ¢) is assumed the same as the non-
tesonant particles n,(a, ). Furthermore, the loss
of particles of the jth specie takes place only in a
gmaﬂ layer of width ér;, near the wall, From Eq. (43)
it follows that the rate of particle loss from the
plasma column has a strong dependence on the
numl:{er of resonant particles and hence on the
electric 'ﬁeld. On the other hand, due to the dif-
fE.IF'EﬂEE in the loss rate of electrons and ions, there
aT1ses a charge density which determines the electric
field through the Poisson equation

14

[

d
“grra,;m{r, f) = dmeln,lr, 1) — n.(r, £)]. (44)

thin ?;der t.n find the electric field one must solve
Sell-conmistent, system of Iiq. (44) and the equa-

—

13 A_ A' G’H.]. » .
Prerioh 4 (19?;}’_ Institute of Nuclear Physies, Novosibirglk
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tion for particle loss. This problem has hegy, sol
numerically by Bishop and Smith® fop the ;ﬁd
where particles move only along their ﬂfdiabfzifﬂ
trajectories and some of these trajectories interself
the wall. For the turbulent case even to write ﬂLL
exact form of Eq. (43) for the particle flux is t:liﬂil:ulj::3
and we restrict ourselves to order of magnitu{ij
estimates. If the Debye length A, is smaller th-a,z
ion trajectory dimensions Ap < &r,, the plasma in
the layer of width dr, is quasi-neutral. Hepee the
flux due to ions and electrons must be equal 4t the
wall. Since very near the wall the flux due to ngy.
resonant ions would dominate without anp electric
field, an electric field must arise to ensure the equality
of the electron and ion fluxes. This electrio field
moves the resonant ion region toward the ion dis-
tribution tail while hardly affecting the electron
resonance reglon, since ¥,,; = v/ < v,y..

Now the electron flux arises only from particles
a distance &r, from the wall. Henee eventually g
large electron density gradient arises near the wall,
As we have shown in Sec. I1l, this density profile
becomes unstable under the condition given in Eq,
(28), which for the present casc has the form

_ Tz ke — 8y, 1) — nla, §) (;i)% (_T)i =
et = S, 7) 5l = \gt &2

As soon as the electric field fluetuation appears
in & plasma due to the instability, the longitudinal
invariant for electrons is no longer conserved. There-
fore, the electron orbits diffuse in coordinate space.
Again, as an estimate, we set the effective collision
frequency for the resonant electrons equal to the
growth rate of the instability given by Eq. (23);

Vorf = (45}

Then in order to balance the particle diﬁ‘u?‘lﬂﬂ
with direct loss of particles from the escape regioh
the density gradient must almost equal the margii-
ally stable one. Using this condition we obtain the
density gradient ncar the wall at the moment wheil
the density of the electrons is zero at the wall (see
Fig. §)

rio/8 A7, 22 1, (47)
ur
where we put n(a — Ar,) =~ n(a), because for ©

case g > Ar,.

The time of the rclaxation, f,, to this stﬂte.lﬂf‘ﬂs
be estimated if we divide the number of paruic
leaving the trap by the particle flux t0 the wall

_ (@n’Ra Arnla) _ R

e
1,

(48)

T 1

¢ A
5 4’-1'1.11--:'53:I|

T
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puring this time the electron loss and the electric
qeld are deseribed, respectively, by Egs. (43)
1)

.{ After this time, the electron cdistribution becomes
table, but the resonant ions within s distance
i, from the edge continue to leave the trap because
their trajectories interseet the wall and thus the
lectric field continues to increase. The value of
:thﬁ' electric field at the final state ¢ — o can be
found from the stability conditions for an jon dis-
tribution with an empty escape region

and

ﬂ:‘:.p ("i’i;l.-'figﬂzﬂi],;:’ = {Tf!ﬂ:}%
In our picture it is implicitly assumed that

r/l < (T.m,/T:m;)}.

(49)

Tor this case there are more electrons in the layer
Jr, than resonant 1ons 1n ér;, and the electrie field is
determined by Eq. (49). Charge neutrality is estab-
ished since the turbulence causes ions to he re-
plenished from the surrounding reservoir. However,
for the reversed inequality more ions are lost, and
wnsequently, to mammtain charge neufrality the
electric ficld must be larger than that given by Eq.
49). The final electric field is then determined by
the charge neutrality condition, Arn(a) =
in(a) | dopl, which yields '

CX [———Ui‘ :l . (m)%E
: p .‘}.-Ez ?f]”' T,-‘i"ﬁ'..; r

1 Thus we coneclude that for the case under con-
sideration here, r;; < 6r; < @, the fractional loss
of particles due to the wall is small as Ar,/a and
the electric field, defined by the larger value implied
fh:f Eq. (49) or (50), appears only i the narrow
lyer of width &, near the wall (see Fig. 8). The
ioltage, V, across this layer can be estimated using
Ve ~ vy, and we find V ~ e "(a/R)*T..

Finally, we note that in the case of a relatively
ealc rotational transform the instability given by
{lg. (28), which is driven by ions, is present through-
it the plasma. This instability should cause an
Mhanced diffusion, and hence loss of ions, so that
in electric field forms throughout the plasma. The
tectric ficld shifts the resonant region to the tail
i the distribution function and stability should
lecur when

(?‘Lffﬂfﬂ'lr.a) gxp (_ﬂi,*/?l?zm{ﬁg_} i 1

Let us now note that the electric field given by
8, (49)—(51) stabilizes only the fast veloclty space

(50)

(o1)

W0stabilities considered in See. IV. Still other m-

tabilities due to the anomalous nature of the dis-

sily and electric field
profile,

INSTABILITIES

I'ta. 8. Particle den-

tribution funetion are possible, and they may not
be stabilized by the electric field. For example, the
growth rate of the universal instability can be
altered since the mstability can be driven by the
trapped electrons whose resonant veloeity is small
even with an electrie field present.

The dispersion relation for the low frequency

driff: modes (v <K w.;) with wavelengths larger than
the ion Larmor radius has the form™

T: o — kv, — ki —inT
14+ — ﬂ_{_:ﬁrjl'__jr,zlrﬂ_ iird ¢
T, w— kv ( "uT'5) m, |y 7
af. (oot ko of
= Iil;ﬁ'll Hlahy V __|_ ] " _ ﬂ 59
( . ai-'n I:IJ:,. l:.h" ﬂ"l:l-l"k"“'ul"'tll : {'D :}
where
=l Utni dn b -I:ih!-i
e wn e = R, ;!

k4 18 the azimuthal component of the wave wvector
and {ky| vewe > @ > || vy Tt follows from Eq.

(62) that for a Maxwellian, plasma instability only

arises because of the fimte Larmor radius correction,
and therefore the growth rate deecreases rapidly for
the long waves kir;; <<€ 1. In a curved magnetic
field even without finife Larmor radius effects, there

appear two additional destabilizing effects. One is
due to the frequency shift because of the curvature
drift,”® and the other comes from the change of the
slope of the welocity distribution. The expression
for the growth rate then is given by

i Lk = S 0+ )

k, V3
EilasTr. d Inn

R ) )

In our calculations we have used straight particle
trajectories, which means that instability's develop-

3 4 i (%T}&

(53)

14 A, A. Galeev, 5. 8. Moiseev, and R. Z. Sagdeev, At.
Energ. 15, 451 (1963) (English transl.: J. Nucl. Energy C6,
645 (1964 )).

15 A A, Galeev, Zh. Eksperim. i Teor, Fiz, 44, 1920 (1963)
[English transl.: Soviet Phys—JETP 17, 1292 (1963)1,
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ment 18 sufficiently rapid if wor; > 1. This condition

preaks down in the case of large shear
(rri/r 8)° > (ma/m. R):.

If the curvature influence on the: growth 1'&111;8
is larger than the finite Larmor riadms eﬁe{?t,. t tz
drift waves are purely growing :11 a unu@;ua_
system moving with veloeity (z:; e %-,,). 1f we estimate
the coefficient of ambi-polar diffusion E_Li in the case
of strong turbulence,”” then Dy ~ vikr®. The main
contribution to the diffusion comes from long waves,
Bt~ kit~ L If the last term in Hq. ‘{33) is
largest, then the trapped particles determine the
instability, and we find

TLe (-_:'*)E d(In n) Fiht.
D, ~ 8 \R dr ..

Thus even in the presence of an electric field the
plasma slowly diffuses to the wall due to the drift
instability.

Sl other instabilities ean probably be found,
besides the ones we have discussed. In general, an
electric field will develop if the instability interacts
primarily with only one specie so that ambi-polar
diffusion does not oceur. If in our model the fast
instabilities can be stabilized in a time scale short
compared with instabilities driven by two species
(like the drift mode), an electric field always arises.
Ambi-polar diffusion then takes place on the time
scale of the slower instabilities.

¥ B. B. Kadomtzev, Zh. Eksperim. i Teor. Fiz. 43, 1688
(1962 ) [English transl.; Soviet Phys. —JETP 16, 1191 (1963)].

(54)
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VI. SUMMARY

We have discussed some velocity space instap,
present in a toroidal machine and haye given
nonlinear picture of how the instabilities SafUraty
Our results are very optimistic for torpidg] Eﬂn:
finement, since the instabilities saturate rapidly
and the remaining relaxation is on a long time seale
the curvature drift time. Further, there existg -';
final state in which the majority of the particles 4y,
still trapped and the system 1s stable.

In our analysis we have neglected many othep
instabilities like interchange, drift and resistive
modes that contribute to the instability of present
devices but can hopefully be eliminated in the futype.
Present machines give rise to Bohm diffusion which
produces a particle flux rate that is much faster
than that produced by the curvature drift, and hence
our quasi-linear pieture probably fails for these
devieces.

litipg

ACKNOWLEDGMENTS

Tt is a pleagure to thank M. N. Rosenbluth and
R. 7. Sagdeev, for originally suggesting the in-
vestigation of this problem and for many subsequent
discussions; J. B. Taylor, for a discussion about
particle orbits; and Abdus Salam and the Inter-
national Atomic Energy Ageney, for their hospitality
during our pleasurable sojourn at the International
Centre for Theoretical Physics, Trieste.

This work supported in part by the United States
Afomic Energy Commission.

'.I—a

rHE FPHYSICS OF FLUIDS

VOLUME 10, NUMBER 2

FEBRUARY 19567

Effect of Pressure on Negative I/ Stellarators

Joox L. Jouxson®

J o (]
Plasma Physics Laboratory, Princeton University, Princeton, New J Ersey
: (Received 2 June 1966)

Stability with respect to hydromagnetio ;
¥ Wi gnefic mmterchan
Vi) < 0 with V¥(¢) the volume inside a magneti
used to examine the effects of plasma currents in a n

shaping field and an I = 1, ] = 3 COTTUE
MNumerical caleulations indieate that the o
features of all the proposed negative V!
vacuum field considerations provide an g

ges can be achieved in closed configurations if

¢ surface of flux . A low-pressure expansion is
egative V" configuration which utilizes an [ = 2

ating field afur}d in which toroidal curvature is neglected.
ffect on stability of these currents is small. Since the basic

configurations are gimilar, this strengthens the belief that
dequate approximation,

IN closed hydromagnetic systems, interchange in-
stability modes are stabilized if V"'(y) < 0 when

' the pressure is sufficiently small.' As the pressure is

mmereased V() 1s changed in two ways: The material
pressure displaces some magnetic field outward and

* thus, by providing a diamagnetic current, decreases
(). Currents must flow along the magnetic field

lines to prevent charges from bullding up due to

- drifts associated with the curvature of the magnetic

field lincs. The fields associated with these currents
can change V() by distorting the shapes of the
magnefic surfaces.

Stability analyses® indicate that the part of V" ()
associated with the diamagnetic current does not
enter the stability criterion. Material pressure affects
the stability problem then through the currents
along the magnetic field lines and can be studied
by analyzing the variation with pressure of V" (Y) —
V4 (¢), where V4 (¢) is due to the diamagnetic
current. This is done here for a particular negative
V" stellarator configuration.®* The work closely
follows that of Greene and Johnson.’

The magnetic field is given by

B = E“"'v{g -+ ;—( L(2yr) sin 2u

[

S }
b Iy I [(h + by)] sin (lu 12)

+ e BP (@) 4 BOV xe A (r,w) + -+,
U= g — vz, &~ eegr~ e~ y/h~ B /B
(Tt jill-..'ﬂ..i":r.:I <{ ]'.‘r

* On loan from Westinghouse Research Laboratories.

1 A, Lenard, Phys. Fluids 7, 1875 (196%). A

tJ. L. Johnson and J. M. Greene, J. Nuel, Energy I: Dﬂ
E‘lhliﬁhﬂdj; see also 1. B. Bernstein, E. A. Frieman, M. D.

uskal, and R. M. Kulsrud, Proe. Roy. Soc. (London} %243’
17 élnfﬁ:ﬁ;)} and J. L. Johnson, C. R. Oberman, R. M. Kulsrud,
ind B, A, Frieman, ]’h}“ﬁal_}‘l‘;ll]iillﬁ?laz%%l ':11%%%}5

3 hys. Fluids 7, 2015

- t{ IfJ {Fu}ﬁzlmﬁ;nﬁi E%T%R Christensen, % A. Frieman, and

(1)

hr ~ e ~ L,

B D. Mosher, J. Nucl, Energy €8, 361 (1960).

8 J. M. Greene and J. L. Johnson, Phys. Fluds 4, 875

(1961).

The first three terms are the uniform field, the
shaping field, and the corrugator field of Johnson
et al.’* B® = p"@“ /B is associated with
diamagnetic currents, and A'’ is due to current
along the magnetic field lines, In lowest order

¢ = J-B/B* = (—1/4zB") V4", 2)

Equafion (2), together with the boundary condition
that there be no current outside the plasma as-
sociated with A'”, can be written in the form of
an integral equation,’

T

A"y w) = BY f f glr, u;r’, u’)
1} i}

ol uy dr’ du!,  (3)
g, w; ', w)
e = 2N sos il
— —921n (r’) 2F ;n (r) cos nu — u')
(1" < r) (4)
9 fr\" -
= ) = (1—,) cosnfu —u') (' =r).
n=0 nA\r

Straightforward order-by-order solution of the
equation for a magnetic surface, B-V¥ = 0, leads
to an expression for the zeroth-order surface’

LE n( €n . ) MELE.,
f A | e e G el
Lt l:w 1 5 COS 2u Zs p2y

Ti(he) L. (hr) cos (I — m)u + Ay, u}]- (5)

Similarly, the requirement that V' +J = 0 determines
the current along the field lines;’

LIJ'{E“{“IFW}} (q i ,5'5‘ Q d'ﬂ!fll?{ﬁ.mﬂ) (ﬁ‘}
o = Bm] - f dﬁf][vqrm]l[ 3
Q=1 etf{fﬁhﬂr;@nﬁ
I,
st ;Z?h " L) L.(hr]l cos (1 — myu, (@)
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