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NUCLEAR FUSION 9 (1969)

CONTRIBUTION TO THE THEORY
OF BEAM HEATING
OF A PLASMA IN AN OPEN TRAP

D.D.RYUTOV
Institute of Nuclear Physics, Siberian Section of the
USSR Academy of Sciences
Novosibirsk, Union of Soviet Socialist Republics

ABSTRACT. The author investigates the mechanism whereby an electron beam interacts with a cold plasma in an open trap
to produce fast electrons, considering in particular the case where the electron plasma frequency, calculated from the cold
plasma density, is considerably greater than the electron cyclotron frequency. It is assumed that the electron beam is the
source of the electrons which are involved in the acceleration process. It is also assumed that the beam is the source of Langmuir
oscillations with an anisotropic spectrum and that the electrons "ejected" from the beam, after interacting with the Langmuir
oscillations, diffuse radially and at the same time accelerate. With these assumptions, it is possible to solve the kinetic
equation with quasi-linear collision integral and to find the distribution function of the fast electrons at each point in the trap.
It is also possible to calculate the "temperature" of the fast electrons and their total energy, and to determine how these quan-
tities depend on the magnetic field strength and on the radius of the diaphragm limiting the diameter of the plasma. The
results are in good agreement with experimental data.

1. INTRODUCTION

In 1961, Kharchenko, Fainberg and co-workers
[1] found that, when an electron beam passes
through a cold plasma, accelerated electrons with
an energy greater than the energy of the beam
appear in the plasma. Subsequently, various
authors [2-9] conducted a series of experiments
on the beam heating of a plasma in open (mirror)
traps. In these experiments it was shown that the
interaction of a beam with a cold plasma led to the
formation of a certain quantity of hot plasma
whose temperature exceeded the energy of the
beam electrons by a factor of 5-15, and the hot
plasma thus produced filled the entire trap (al-
though the diameter of the beam was considerably
less than that of the trap). The purpose of the
present study is to investigate the mechanism
whereby the hot plasma is formed.

The characteristic feature of this problem is
that its solution depends on a large number of
parameters whose relative importance is difficult
to estimate a priori. We shall therefore have to
refer frequently to experimental data - in par-
ticular the results of [5], in which certain r e -
lationships that are extremely important for
understanding the heating mechanism were first
established.

In [5], the plasma was produced in a mirror trap
with distance between mirrors L = 80 cm. The
diameter of the plasma could be limited by means
of a set of diaphragms (maximum internal dia-
phragm radius Rmax

 = 12 cm). The magnetic field
H at the centre of the trap could be varied between
500 Oe and 1800 Oe; the mirror ratio was 5. 5; the
density of the cold plasma nc was about 1012cm"3

and did not vary significantly during the heating
process. The temperature of the cold plasma
probably did not exceed a few tens of electron-volts.
The beam parameters were as follows: radius

It was established experimentally that the tem-
perature, density and diameter of the hot plasma
increased over a period of several tens of micro-
seconds after the beam had been switched on.
A steady state was then established in which the
density of the hot plasma nn was approximately
1010 cm"3 and its temperature Th lay in the range
40 - 200 keV (depending on the strength of the mag-
netic field and on the diaphragm radius). In the
steady state, the radius of the space occupied by
the hot plasma was considerably greater than the
radius of the beam. The steady state persisted
until the beam was switched off, after which the hot
plasma decayed over a period of the order of
several hundreds of milliseconds. In this paper
we shall concentrate on investigating the steady
state; the process of plasma decay after the beam
has been switched off will not be considered.

A complete theory of beam heating should un-
doubtedly include a description of the processes
occurring both in the beam and in the space sur-
rounding it. At present, however, such a theory
cannot be constructed, mainly due to lack of ex-
perimental data on the processes occurring inside
the beam. We shall therefore attempt to solve the
narrower problem and confine ourselves to in-
vestigating the acceleration of electrons outside
the beam. The beam itself will be considered
simply as a source of oscillations with a known
spectrum. In addition, we shall assume that the
beam is also a source of fast electrons1 (with an
energy of the order of the energy of the beam elec-
trons) which, having left the beam, are drawn into
the acceleration process and ultimately acquire
energy significantly greater than that of the beam
electrons. The properties of the beam as a
source of waves and particles are obviously deter-
mined by the processes occurring within it. Un-
fortunately, only crude qualitative assumptions

rb ~ 1 cm, energy ~ 25 keV, density
maximum duration tb ~ 250 /is.

1010 *3

The need for this assumption will be explained in section 2.
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can be made regarding these processes. How-
ever, the final results are not very sensitive to
these assumptions, so that we feel that our ap-
proach to the problem is more or less justified.

2. HEATING MODEL

There can be no doubt that the hot plasma com-
ponent in beam heating experiments is produced
by the interaction of electrons with oscillations
whose source is the electron beam. We shall try
to ascertain which type of oscillation is respon-
sible for the heating effect.

It has been established experimentally [5] that
the hot electrons acquire most of their final
energy not in the vicinity of the beam, but at con-
siderable (compared with the beam radius)
distances from it. We can therefore disregard
from the outset those specifically "beam" types
of oscillation for whose existence charged particle
fluxes are necessary (see, for example, Ref. [11]),
since such oscillations would produce heating only
in the vicinity of the beam.

The density of the cold plasma nc treated in
Ref. [5] was significantly higher than that of the
hot plasma nh. Consequently, the dispersion'
properties of the oscillations were determined by
the cold plasma. Moreover, in these experiments
the electron plasma frequency uq was substantial-
ly (3-10 times) greater than the electron cyclotron
frequency u>H inside the trap. It follows from the
linear theory of beam instability that, under such
conditions, of all the oscillation types capable of
propagating outside the beam, electron Langmuir
oscillations are excited most rapidly (see Ref. [12])
It may therefore be assumed that heating of the
electrons is caused by their interaction with
Langmuir oscillations. The above reasoning is in
agreement with the results of experiments [6, 10]
in which the h.f. oscillations of a plasma during
beam heating were recorded and it was found that
when tJp» WH these oscillations are concentrated
close to the electron plasma frequency.

As the characteristic growth rate of the Langmuir
oscillations 7b w e ta^e up (nb/nc), since the con-
dition YbWvb -^ * (where Vb is the velocity of the
beam as it enters the plasma) was satisfied in
Ref. [5]; i .e. there is significant beam velocity
"smearing" during the passage of the beam through
the trap. It follows from the quasi-linear theory
of beam instability that, as a result of this
smearing (i.e. the formation of a plateau on the
beam electron distribution function), the charac-
teristic phase velocity vph of the Langmuir oscil-
lations will be two to three times less than Vb, and
their characteristic wave vector k* will be of the
order2(2 - 3) up /vb .

The Langmuir oscillations arising in the vicinity
of the beam propagate from the axis towards the

periphery of the trap and fill the entire space oc-
cupied by the cold plasma. When w » wH , the
interaction of the electrons with these oscillations
is determined essentially by the Cherenkov effect,
the interaction between an electron with velocity v
and a Langmuir oscillation with wave vector k occurring
only if the relation

u - k • v = 0

is satisfied, or alternatively

Ph (1)

where ii is the angle between the vectors k and v,
and vph =wp/k is the phase velocity. It is clear
that the electrons of the cold plasma cannot inter-
act with the oscillations excited by the beam be-
cause the velocity of these electrons is substantial-
ly less than vph and condition (1) cannot be satis-
fied in their case. Consequently, the beam cannot
cause heating of the cold plasma electrons. We
therefore have to assume that there is some
mechanism which supplies to the region outside the
beam electrons whose velocity exceeds vph, since
only such electrons can interact with the oscil-
lations and become accelerated.

It is reasonable to assume that, as the beam be-
comes unstable, some of the electrons are "ejected"
from the beam.3 The velocities of the ejected
electrons exceed vph, so that they are able to inter-
act with the oscillations. We shall therefore as-
sume that the electron beam is the source of the
fast electrons which are drawn into the accelera-
tion process. At present this assumption can
scarcely be substantiated rigorously but, as will
be seen subsequently, it enables one to understand
many experimental results.

Since the electrons acquire during acceleration
velocities substantially greater than the velocity of
the beam (and consequently vph), we shall consider
in greater detail the Cherenkov interaction when
v>>vph- It follows from relation (1) that ip-n/2
in such a case; i.e. each electron interacts only
with those oscillations whose propagation is al-
most perpendicular to its velocity vector. We
know [ 13] that this interaction reduces to two effects:
elastic scattering of the electrons and electron
acceleration, the characteristic acceleration time
being greater than the elastic scattering time by a
factor v2/v2

h.
Elastic scattering causes diffusion of the elec-

trons and their escape through the mirrors. Due
to scattering into the loss cone, fast electrons can
be thought to be generally unable to move away
from the beam to distances exceeding their Larmor
radius rH: an electron is scattered into the loss
cone within a time roughly equal to that of one
elastic collision event, but within this time it
cannot move along the radius of the trap through a

2 It should be noted that the inequality krb » 1 was satisfied in
[5]; i. e. in estimating the growth rate it is indeed possible to use the
infinite-beam approximation, as we have done.

3 Only 1-3% of the particles need be ejected from the beam in
order to achieve the experimentally observed rate at which the trap is
filled with hot plasma.
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distance much greater than rH. However, the situa-
tion changes considerably if the oscillations ex-
cited in the system are primarily those for which
the angle 0' between the vector 1c and the trap axis
is not too large. For the sake of simplicity, let
us consider the case where there are no oscilla-
tions with 01 exceeding some critical value 0O ; in
other words, let us assume that the spectral den-
sity of the oscillation energy W-$ is zero when
0' > 0O (naturally, 0O < TT/2). AS stated above, the
condition for the interaction between fast electrons
and oscillation has the form ip - TT/2. This means
that, with our assumption regarding the spectral
function W-fc, only those electrons interact with
oscillations (i .e. are scattered and accelerated)
for which the angle 0 between the velocity vector
and the trap axis is sufficiently large (see F ig . l ) .

ystem axis

FIG. 1. Interaction of fast electrons with Langmuir oscillations having an
anisotropic spectrum;
1 — region of angles in wave vector space in which Langmuir oscillations

are excited;
2 — region of angles in velocity space in which there are electrons which
interact with Langmuir oscillations (a-angle at the apex of the loss cone).

In the scattering process 0 can vary only within
the limits of region 2 in Fig. 1, from which it can
be seen that scattering does not lead to an escape
of electrons from the trap when the mirror ratio
is sufficiently large. The corresponding limitation
on the angle a at the apex of the loss cone has the
form

(2)

essential for explaining the heating of electrons
through Cherenkov interaction with Langmuir
oscillations. A reason for this anisotropy may be
the dependence of the growth rate of the Langmuir
oscillation on the angle 01 between the wave vector
and the direction of the beam4. On the other hand,
the anisotropy of the oscillation spectrum may in
a certain sense be considered an experimental fact,
since the occurrence of heating itself indicates
the existence of such anisotropy. We shall there-
fore assume that the function W£ is anisotropic.

It should be noted that the degree of anisotropy
which is really necessary to explain the experi-
mental results is not very great; substituting into
relation (3) the value of the critical mirror ratio
no ~ 4 measured in Ref.[4], we find that 0O - 60°;
i . e . oscillations should fail to occur only in the
region of angles of ~ 30° . In reality, there is
probably also some finite (although low) level of
oscillations in the region 01 > 0O . On interacting
with these oscillations the electrons are scattered
into the loss cone, but the process takes a long
time.

Let us now formulate the main assumptions
underlying the heating model considered here. It
is assumed that the beam is the source of the
electrons involved in the acceleration process, the
initial energy of these electrons being of the same
order of magnitude as the energy of the beam
electrons. It is also assumed that the beam is a
source of Langmuir oscillations with an anisotropic
spectrum and that, when the electrons ejected
from the beam interact with these oscillations,
they diffuse radially and at the same time ac-
celerate. Since, with the proposed model, filling
of the trap by a hot plasma is the result of the dif-
fusion of fast electrons away from the axis towards
the periphery of the trap, we shall speak of a
"diffusion" model of plasma heating.

The cold plasma plays an essentially passive
role in the diffusion model; it is simply the medium
in which the Langmuir oscillations propagate. For
the sake of simplicity, we shall assume that within
the magnetic surface which passes through the edge
of the diaphragm the cold plasma is homogeneous,
while beyond this surface its density falls rapidly
to zero (over a distance of the order of the Larmor
radius of the cold electrons).

If the inequality (2) is not satisfied, the electrons
are scattered rapidly into the loss cone and there
is no heating. This reasoning is in agreement with
the results of experiments described in Refs [4-6],
which revealed a threshold dependence of the heat-
ing effect on the mirror ratio rj: when n was less
than some critical value n0 no heating took place.
Expression (2) enables us to relate the value of
n0 to 0O :

1
(3)

It follows that the assumption regarding the an-
isotropy of the spectral function W^ is absolutely

3. SPECTRAL DENSITY OF THE
OSCILLATION ENERGY

As stated above, we assume that the beam
excites primarily oscillations in which the angle 01

between the direction of the wave vector and the
axis of the system does not exceed some critical
value 0O . These oscillations propagate from the
vicinity of the beam with a group velocity vg which
is determined by the dependence of their frequency
on the wave vector. It can easily be seen that,

4 The growth rate is known to decrease as 9" increases [14].
wave vectors of the oscillations emitted by the beam are therefore
oriented primarily along the beam axis.

The
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under the conditions of the experiment described
in Ref.[5], the dispersion relation for the Langmuir
oscillations should be written in the form

(4)

where kN and kx are wave vector components
parallel and perpendicular to the magnetic field.
The frequency correction for thermal motion of
the electrons is only slight. We find from formula
(4) that v g l - (k?kA/k*) (UJ/Up) ~ (ug/uj) vph . On
the basis of this result it can be shown that the
oscillations reach the outer boundary of the
plasma with virtually no damping (i .e. only an
insignificant part of the oscillation energy is ex-
pended on heating the fast electrons). The time T
taken by the oscillation to propagate from the trap
axis to the outer boundary of the plasma is
R/v ~ (R/vph) (Wp/un) (where R is the radius of
the diaphragm), while the rate of damping of the
oscillations, due to their Cherenkov interaction
with the fast electrons, may be estimated as
Th ~ (nh/nc)wp (vph/vh)3 (where vh is the charac-
teristic thermal velocity of the fast electrons).
The product ryh, which characterizes the damping
of the oscillations, is equal to
(nh/nc) (cjpR/vph) (up* /u$) (vp h/vh)3 . It can be seen
from the experimental results that n h / n c ~ 10"2,
"p R/v

Ph 1 30, wpV(j2< 3Oj a n d (Vph/vh)3 < 10-2.
At all events, therefore, ryh does not exceed 10'1;
i . e . the damping of the oscillations as they propa-
gate from the beam to the plasma boundary is not
substantial.

On the other hand, at the boundary of the cold
plasma the oscillations should be almost complete-
ly absorbed due to Cherenkov interaction with the
cold electrons, since in this region the wave
vector of the oscillations propagating from the
plasma increases and becomes comparable with
the Debye wave vector (owing to a decrease in the
density of the cold plasma in the transition layer).

On the basis of this reasoning we shall assume
that the oscillations propagate freely from the
beam to the radial boundary of the cold plasma,
where they are completely absorbed by the cold
electrons. Consequently there are no oscillations
reflected from the radial boundary of the plasma.

With regard to the boundary conditions at the
ends of the trap, they are not important when
L » R. Nevertheless, a decrease in the density
of the cold plasma near the mirrors leads to ab-
sorption of the oscillations propagating from within
the trap.

To find the dependence of the spectral function
W-£ on the co-ordinates, we use the equation

(5)

which describes the free propagation (without
damping) of oscillations in a homogeneous medium
(see Ref.[15]). Investigation of this equation is
facilitated by introducing the spherical system of

co-ordinates (k, 01, cp') in wave vector space. The
polar axis of this system is directed along the
vector H, which in its turn is parallel to the axis
of the trap, while the angle cp* is read off from
the direction of the radius drawn from the axis of
the system to the point of observation (Fig. 2).

FIG.2. Determination of the azimuthal angle q>' in wave vector space;
O - axis of system-, A - point of observation, r - radius drawn from axis
of system to point of observation.

The region of variation of the angle <px is selected
in the following manner:

- n <_ <p* <. IT

In the new variables, Eq. (5) is written in the
form

(6)

where W£ = W(z, r, k, 01, <p'). This equation has to
be solved with the boundary condition
w~k L-rb = W ( 0 ) (z> k< 0 l j V*}' w h e r e t n e spectral den-
sity of the oscillation energy at the boundary of
the beam is denoted by W<°)(z, k, 6\ cp'). The
function W(°) has the following properties:

W(o) (z,k, 0 \ (z,k. 0', -<

W<°> ( z , k , 0«, <p*) = 0 f o r cp* < - £ a n d

W<°) ( z , k , 9', cp1) = 0 f o r 0 1 >

> ^

(7)

(8)

(9)

The first of these properties results from the
symmetry of the problem. The second relates to
the fact that the oscillations at the beam boundary
are all leaving the beam (there is no reflection
from the outer boundary of the plasma). The
meaning of Eq. (9) was discussed in section 2.

The characteristic scales of the variation in the
function W-g along the co-ordinates z and r are
equal to L and R, respectively, in order of
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magni tude . Since L » R, we can neglect the las t
t e r m in Eq. (6):

cos <py sin<p'
(10)

Here f is the fast electron distribution function,
H the external magnetic field and Stf the quasi-
linear collision integral, which has the form

Stf = D
9f

(14)

As stated in section 2, the fast electrons acquire
most of their final energy in the region r » rb .
For investigating the heating problem, it is there-
fore sufficient to know the properties of the
function W£ when r » r b . At such distances from
the beam, the solution of Eq. (10) can be written in
the form

W* =W(0) ( z ,k ,0 ' , arcsin— J) (11)
k \ rb /

Taking into account expression (8), we find that in
the region r » rb the function Wg is non-zero
only when <p* |<C r b / r « 1; i .e. the wave vectors
of the oscillations form a small angle with the
plane passing through the axis of the system and
the point of observation.

We shall now show that the function Wr0' is inde-
pendent of the magnetic field. In fact, in the
vicinity of the beam (i.e. when r ^ rb) the form of
the function W"£ is determined by the balance of
three processes: excitation of oscillations due to
instability of the beam; non-linear interaction
of the oscillations; escape of oscillations from the
vicinity of the beam due to the non-zero group
velocity. Accordingly, the equation for deter-
mining W£ in the vicinity of the beam can be
written in the following schematic form:

= 0 (12)

The first term describes the build-up of oscilla-
tions by the beam, the second describes the non-
linear interaction of the oscillations, and the
third the escape of oscillations from the vicinity of
the beam. It can easily be seen that Ybrb » vg±

under the conditions of the experiment described
in Ref. [5]; i .e. the last term in Eq. (12) can be
neglected. Consequently, the function W£ is
determined by the balance of two terms: Yb^it
andA"(W£). However, if u » wH, the instability
growth rate and the speed of development of the
non-linear interactions are independent of the
magnetic field. The function W£ , and conse-
quently Wjj = W£ | r = r b , is therefore also indepen-
dent of the magnetic field.

4. KINETIC EQUATION FOR FAST ELECTRONS

To give a quantitative description of the
Cherenkov interaction of fast electrons with Lang-
muir oscillations, we shall use a kinetic equation
with a quasi-linear collision integral:

9f ^- 9f jz
me

(13)

the tensor D^ being expressed in terms of the
spectral density of the oscillation energy W-̂
(see Ref.[14]):

D « H = 5— / d3k T'n p W-g6(cjD-k-v) (15)

As indicated in section 3, the spectral density of
the oscillation energy may depend on the z co-
ordinate. Strictly speaking, therefore, the dis t r i -
bution function f may also depend on z. However,
if the characteristic frequency of the electron-
oscillation collisions v is small compared with the
reciprocal transit time of an electron between the
mirrors (as will be seen below, it is this case
which applies in experiments of the type described
in Ref. [5]), f is virtually independent of z: changes
in f along a field line in the space between the
mirrors are equal to (z/L/v) f « f in order of
magnitude. Bearing this in mind, we average
Eq.(13) over z, obtaining an equation which has
the same form as Eq. (13) but in which W.-> is replaced

L K

rby
r

=(1/L) / W^dz and the term vz (9f/9z)

vanishes.
As in section 3, we introduce the spherical

system of co-ordinates (v, 0, <p) in velocity space.
In this system, the kinetic equation for f is
written as follows:

f+ vsin0 9f
cos<p—-

the collision integral having the form

c+f- ± A. v2fn
 9f

v2 3v

_^ • n i r) 9f , Duo 9f | DaM 9f
v s i n 0 90 S i n V vQ 9v v 90 v sin 0 9 ^

vsin6d(p 9v
D ((xp 9f

v 90 vsin0 dw
(17)

As before, the tensor Da 6 is determined by
relation (15), with W^ instead of W^ and with pro-
jections of k onto the orthogonal unit vectors of
the spherical system (v, 6, cp) instead of the
Cartesian system:

kv = k [sin0 sin0' cos(</>-^') + cos 0 cos 0']

k0 =k [cos 0 sin0' cos(<p -(/?') - sin0 cos 01]

k = - k s i n 0 '
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Those terms in collision integral (17) which con-
tain the components De e , DQ(p and D w of the
tensor Dag correspond to elastic scattering of the
electrons on the oscillations, while the remaining
terms take into account the exchange of energy
between oscillations and electrons leading to heat-
ing of the electrons.

The argument of the 6-function in formula (15)
may be written in the form up - kvv, from which
it follows that kv = up/v. On the other hand, ke
and k^ are equal to up/vph in order of magnitude.
Accordingly,

've
(18)

i .e . for hot electrons Dvv « Dve, Dv<? « Dee,
De^,, fiytp, and elastic collisions predominate over
inelastic ones.

Interacting with the oscillations, the electrons
are scattered with a given angular distribution and
diffuse across the magnetic field. In accordance
with expression (18), in investigating this process
one can confine oneself to elastic collisions:

3f • n ( 9f sin<z> 3f \ , 3f
— + v sin e cos q> r — 1 + wH —

1
sine 36

sine d(p l '

dcpj

•TTT s i n e D™ — - +
3f

36 s ine dtp

3f_ { D0a>

30 sin©
(19)

The right-hand side of Eq.(19) is of the same
order of magnitude as vf, where v is the effective
electron-oscillation collision frequency. It will
be shown in section 5 that v « uH . In investigat-
ing Eq. (19) one can therefore make use of the
smallness of v/u^ .

Let us first of all write f in the form

where <̂ . . . ^Q^ denotes averaging over the angular
variables:

i r r
<. . . > = -7- / sine de / . . .d<p

Neglecting the first two terms on the left-hand
side of Eq. (20) as being small compared with the
third (this is possible since 6f ~ rH 3<f >6v, /3r

w e obtain

d(p
- ^ - St = sin 6 cos w —

uH ^ 3r
(21)

From this the function 6f can be found by the
method of successive approximations with respect
to the parameter i//uH : 6f = 6f <°> + (i//uH) 6f <W + . . .
However, it is better first to average Eq. (21)
over the angular variables with the weight
sin <psin6; this gives the following result:

<(sine cos <p 6f X
1

47TU.
dip

36f
X (cos 6 sin <p Dee + cos <p De<p) —

L

+ (cos e sin<p

Substituting the function

6f(0) =__v_ s i n 0 s i
3r

on the right-hand side of this expression, we find
the diffusion flow

-v<sin0

where the diffusion coefficient is determined by
the expression

d<p

+ 2 cos e sin<p cos <pDQ +cos2<p sinede

Thus, we have obtained a diffusion equation for the
fast electrons:

3F_ _ j_ _3_ 3F
3t " r 3r 3r

(22)

It follows from Eq. (19) that

= - - | - r<sine
r 9r N

The quantity v^sine cos tp 6f̂ >e<̂  represents dif-
fusion flux. The equation for the correction 6f
to the distribution function has the form

9 6 f j . • a f 9 sin(p 3 \ .„
-r— + v sine ( cos cp r — J 6f
3t \ r 3r r dcpj

vsine coscp ^ r

Here and subsequently F denotes ^
The dependence of the diffusion coefficient on the

spectral density of the oscillation energy can be
found by means of formula (15):

D(v, r) =
4?r 2 e 2 1

v J
0

X (r, k, 9\

sin3e'de«

(we confine ourselves to the zero-order approxi-
mation with respect to the parameter vph /v).
Taking formula (11) into account, it is possible to
find the explicit dependence of D on r for r » r b :
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D ( V f r ) = k d k

(k, 0\<p')d<p' (23)

is the "coefficient of diffusion" in velocity space.
The angular brackets in this formula have the
following meaning:

= i J sin0d0

-3 -1
It can be seen that D (v, r) ~ r v .

We introduce

U= / kzdk / s in0'd0' / W (r, k, 0', <p')d<p'
J J J
0 0 -IT

which represents the energy density of the Lang-
muir oscillations. For r ~» rb

u = — u0
r u

(24)

where UQ is the oscillation energy density for
r = rb. It follows from formula (23) that

where A is a numerical coefficient of the order of
unity dependent on the detailed form of the
function W-£ . In this expression it is possible to
isolate the factor

U (25)

which signifies the effective electron-oscillation
collision frequency [13]. Thus

D=A (26)

A particular feature of this expression is the
factor (rb/r)2 by which the latter result differs
from the usual estimate for the magnetized dif-
fusion coefficient. The appearance of this factor
is due to the close dependence of the function W"£
on the angle <pf: when r » rb, the function W£
is non-zero only for | cp1 | 4 r b / r (see section 3).

By averaging over the angular variables it is
possible to consider also effects associated with
inelastic collisions. We present only the final
result, without going into the intermediate cal-
culations (which are completely analogous to the
previous ones). It appears that allowance for in-
elastic collisions leads to the appearance on the
right-hand side of Eq. (22) of a new term having the
form

1 9 9 F

where

The connection between d and the spectral function
W~£ can be found by means of Eq. (15). The
resulting expression is very cumbersome and will
not be written out in full. It should merely be
noted that the coefficient of diffusion d is propor-
tional to v'^r'1 and can be estimated by means of
the formula

(27)

where B is a numerical factor of the order of unity.
So far we have assumed that the function W-£ is

exactly zero when 01 > 0O . However, in an actual
experiment there is probably also a non-zero
(albeit low) level of oscillations even in the region
0' >0O . Interacting with these oscillations, the
electrons will be scattered into the loss cone and
will escape from the trap. The corresponding
losses can be taken into account by including on
the right-hand side of Eq. (22) the term vs F,
where vs is the frequency of electron scattering
into the loss cone (vs « v). Since the phase veloci-
ty of the oscillations excited by the beam is small
compared with the velocity of the fast electrons,
and the energy density of these oscillations de-
creases along the radius in proportion to r"1, we
can write

-1 -3r v (28)

(it should be remembered that for v 2$> vph the
electron-oscillation collision frequency is pro-
portional to v'3). Thus, the kinetic equation tak-
ing into account the diffusion and acceleration of
the electrons and their scattering into the loss
cone has the form

9F
8t

1 a r-n^I.
r"8r" r D9r

9 2 , 9Fr~ v ^ r - ^ F (29)

Let us now formulate the boundary conditions
for Eq. (29). The actual form of the function F(v)
for r = rb (we shall use the notation
F(v, rb) = FQ(V)) is determined by the processes oc-
curring in the beam itself. However, a line of
reasoning exactly analogous to that employed at
the end of section 3 demonstrates that the
function Fo (v) is independent of the magnetic field.
Moreover, on the basis of experimental data it
may be stated that the values of v at which the
function FQ is substantially non-zero are small
compared with the final velocity acquired by the
electrons in the course of acceleration. Sub-
sequent results are therefore only slightly depen-
dent on the actual shape of the function Fo . For
the sake of simplicity, we assume
Fo = (no/47rvQ) 6 (v - v0), where n0 and v0 are fixed
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quantities independent of the magnetic field and
determined by the beam parameters. Thus, we
shall use the boundary condition

P=R' e =

(30)

The quantity n0 signifies the fast electron density
near the beam, while vo represents the velocity of
these fast electrons.

For v = 0 the boundary condition can be found in
the following manner. If the electron velocity is
comparable with vpji, then - as can easily be seen
from formula (15) - in spite of the anisptropy of
the oscillation spectrum, the components of the
tensor Dag are non-zero throughout the range of
variations in 6 :0< 64 n• Thus, if the electron
velocity becomes comparable with vph , the elec-
tron is rapidly (in terms of the acceleration time)
scattered into the loss cone and leaves the trap.
Consequently, the function F vanishes when
v ~ Vph . However, since vph is small compared
with the velocity of the fast electrons, this con-
dition may be written in the form

F(0, r )=0 (31)

For r =R and v =oo the boundary conditions are
obvious:

F(v, R)=0 (32)

F(oo, r )=0 (33)

5. INVESTIGATION OF THE KINETIC EQUATION
AND DISCUSSION OF THE RESULTS

By solving Eq. (29) with boundary conditions
(30) - (33) it is possible to determine the para-
meters of the hot plasma inside the trap at any
moment of time. We shall confine ourselves to
investigating the steady state, which is described
by the equation

1 9 o j / > 9 F 1 9 . . 9 F . \ T-i n
^ — V2d(v, r) — + - — r D (v, r) — - vs (v, r) F = 0

(34)

Taking into account the relations d(v, r ) ~ v ^ r ' 1 ,
D(v, r) ~v"1r"3, vs ~ v"3!1"1, we can write

D <v.r)=D0

where do = d(v0, r b ) , Do = D(v0, r b ) , vs0 - vs(v0, r b ) .
We then introduce the new variables

which represent the dimensionless radius and
dimensionless energy, respectively. In these
variables, Eq.(34) and boundary conditions
(30) - (33) assume the form

1 _L JL
T D 9p

1 9F
dp

F (1, e) = 0,

6 (e - 1), F ( p , 0 ) = 0

F (p, oo) = 0

(35)

(36)

where T D = (R2/Do) (R/rb)3, ra = (4v§/d0 )(R/rb),
Ts = ys0 (R/rb)- The physical meaning of these
constants is the following: ra represents the time
within which the energy of an electron changes
during acceleration by an amount of the order of
unity; TD is the time of electron diffusion from the
trap axis to the diaphragm; TS is the effective
time of electron scattering into the loss cone.

The final energy acquired by the fast electrons
during acceleration is determined by their lifetime
in the trap. As was noted in section 2 (and as is
reflected formally in Eq. (35)), there are two
mechanisms whereby the fast electrons are lost:
diffusion losses to the diaphragm (characteristic
time TD ) and scattering into the loss cone
(characteristic time TS ). The characteristic time
TD is proportional to H2, while TS is independent
of H. When considering the heating effect in the
region of weak magnetic fields, one can therefore
neglect losses connected with electron scattering
into the loss cone and omit the last term on the
left-hand side of Eq.(35):

_1_ 9£F_ , 1 9 1 9 F _ Q
Ta 9e2

 TD dp p2 dp

The characteristic feature of the resulting equation
is that it does not contain the oscillation energy
density Uo, since the constants r a and TD are pro-
portional to Uo. This equation can be solved by
the method of separation of variables. The result
has the following form:

X sin

where the Bessel functions of an imaginary argu-
ment are designated by Ij and I _|.

The function F is not measured in actual experi-
ments; only certain of its integral characteristics
are determined. These will be designated by the
letters Q and E:
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= 8TT r d r Fv2dv (38)

r d r

E =

Fv2dv

(39)

rdr / Fv^dv
rb

Q represents the hot plasma energy per unit length
of system, while E represents the mean energy of
the hot electrons5. Calculation of Q and E by
means of formulas (38) and (39) gives the follow-
ing result:

(40)

E=B« ID (41)

where A1 and B' are numerical constants of the
order of unity expressed in the form of complex
Bessel function integrals6. These formulas can
be represented in the following form:

2 2

Q ~ mvnnnR' o i X o

E

(42)

(43)

It follows that Q ~ R3H* and E ~ R2H. This form
of the dependence of Q and E on R and H is in good
agreement with the results reported in Ref. [5] for
the region of weak fields. With regard to the ab-
solute values of Q and E, they depend on the
constants vQ, nQ and v h, which at present cannot
be determined theoretically. Agreement with ex-
periment is obtained if one assumes

nn ~ n. (44)

'ph

Expressions (44) are completely rational from the
viewpoint of the theory of quasi-linear beam relax-
ation in a plasma [14].

In Ref. [5], the time of electron diffusion from
the beam to the diaphragm was also determined
and found to be proportional to H2 - in agree-
ment with the formula for TD presented above.

Using the measured value of TD and the relation

2 ^ 2
1

W p T D

He.
nb

(45)

it is possible to estimate the energy density of the
oscillations near the beam. Substituting
wH =1.7X 10!0 s-1, TD ~10"4 s, R - 10 cm,

H D

vb ~ 1010 cm/s, r b ~ 1 cm, wp

Ref. [5]) into expression (45) and taking into account
expressions (44), we obtain

1

i .e . the energy density of the oscillations near the
beam is comparable with the energy density of the
beam electrons. This conclusion is in good
agreement with current ideas regarding the
mechanism of quasi-linear beam relaxation [14].
With increasing distance from the beam the energy
density of the oscillations decreases in proportion
to r-1 (this follows from expression (24)).

Knowing Uo, it is possible to estimate the
electron-oscillation collision frequency in the
vicinity of the beam with the help of formula (25):

vQ = J ^ ( v o , r b ) - 3 X 1 0 ' 3 Up 10{

(VQ should not be confused with vS0 ). The col-
lision frequency for arbitrary values of r and v
is found from the relation

It can easily be seen that for fast electrons the
collision frequency is low compared with the
transit frequency v/L (use was made of this fact
in section 4).

Let us now consider Eq. (35) in the region of
strong magnetic fields when escape through the
mirrors becomes the principal electron loss
mechanism. A comparison of the second and third
terms in Eq. (35) shows that this mechanism is
comparable with the diffusion mechanism when

'D ' a

or when

H ~ H _ me rb vp vPh

In the region H>H0, the lifetime of a fast electron
in the trap is determined by TS , which is inde-
pendent of the magnetic field. Accordingly, the
mean energy of the fast electrons E is also inde-
pendent of the magnetic field:

5 In Ref. [5], Q was called the energy content of the plasma and
E the temperature of the fast electrons.

6 In principle, it is possible to find the exact values of A" and B',
but there is little point in doing so since Ta and r p are themselves
determined to within factors of the order of unity.

E (46)

Expression (46) is obtained by comparing the first
and third terms in Eq. (35). It follows from rela-
tions (41) and (46) that the function E(H) should have
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the form shown in Fig. 3a - in accordance with the
results reported in Ref.[5]. If one uses the value
of E measured at high values of H, it is possible
to estimate the frequency of scattering into the
loss cone vsQ with the help of expression (46). It
is found that

i. e. the oscillation level in the region 01 > 60 is
approximately one hundred times lower than the
oscillation level in the region 0' < 0O •

On the basis of Eq. (35) it can also be shown that
when H » Ho

to H
(47)

where Qo = Q(H0). From a comparison of formulas
(40) and (47) it can be seen that the function Q(H)
has a maximum at H ~ H Q . The shape of the
function Q(H) obtained by us (Fig. 3b) is in good
agreement with experiment [5].

E

FIG.3. Mean energy E and energy content Q of fast electrons as functions
of the magnetic field. Curves 1 and 2 correspond to two different
diaphragm radii (Rt > R2).

The decrease in Q at high values of H can be ex-
plained in the following manner. In the region
H>H0, the diffusion time exceeds the time taken
for scattering into the loss cone. This means that
the fast electrons enter the mirrors before they
reach the diaphragm; i.e. the radius of the hot
plasma Rn becomes less than the radius of the
diaphragm R. An increase in the magnetic field
leads to a decrease in Rn (since the diffusion coef-
ficient D is proportional to H"2). On the other

hand, since Q is proportional to ER2, a decrease
in Rn (for E = const) causes a corresponding de-
crease in Q.

Let us summarize the main conclusions derived
from the diffusion model:

1. The diffusion model satisfactorily explains
the observed form of the functions Q(H, R) and
E(H, R);

2. With reasonable assumptions regarding the
properties of the beam as a source of waves and
particles, the diffusion model gives correct ab-
solute values for Q and E;

3. The diffusion model makes it possible to
understand many qualitative aspects of experi-
ments (e.g. the threshold dependence of the
heating effect on the mirror ratio the de-
pendence of the diffusion time on the magnetic
field, and the decrease in plasma radius in the
region of strong magnetic fields).

The author wishes to express his sincere
gratitude to L. P. Zakatov, A.G. Plakhov,
L.I. Rudakov and V.V. Shapkin for their sustained
interest in this work.
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