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S u m m a r y .  - -  An analysis of the behaviour of the pion form factor at  
t->=k co has been carried out under some definite assumptions on the 
proper ty  of the form factor as an analyt ic  function in a complex plane 
of the momentum transfer t. Bounds on the modulus of the form factor 
and the electromagnetic radius of the pion have been found. The method 
has been formulated which permits one to obtain the integral representations 
of the form factor, and some definite representations have been obtained. 
The sum rules for the form factor have been found and analysed, and 
some questions connected with the usage of the sum rules have been 
considered. The experimental  si tuation of to-day  for the pion form 
factor has been discussed. 

1. - The  c ross - sec t ion  of t h e  p rocess  [+ + t - - -~  =+ + ~ -  has  been  r e c e n t l y  

r a t h e r  a c c u r a t e l y  d e t e r m i n e d  f r o m  t h e  co l l id ing  b e a m  e x p e r i m e n t s  in  t h e  reg ion  
of po r e s o n a n c e  (1.3). 

H e n c e  t h e  m o d u l u s  of t h e  e l e c t r o m a g n e t i c  f o r m  f a c t o r  of t h e  p ion  F(t)  

c a n  be  f o u n d  for  t h e  t i m e l i k e  m o m e n t u m  t r a n s f e r  t (for de t a i l s  c onc e rn ing  t h e  

r e s u l t s  o b t a i n e d ,  see Sect .  7). 

F o r  t h e  space l ike  r eg ion  of t h e  m o m e n t u m  t r ans f e r ,  t h e  f o r m  f a c t o r  is 

d e t e r m i n e d  f r o m  m e a s u r e m e n t s  of t h e  c ross - sec t ion  of e l e c t r o p r o d u c t i o n  of t h e  

p i o n  on a p r o t o n  u n d e r  t h e  k i n e m a t i c  cond i t i ons  when  c o n t r i b u t i o n  f r o m  t h e  
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a n d  A .  G.  KHABAKPASIIEV: Phys. Lett., 25 B, 433 (1967). 

(2) y.  L. AUSLI~NDER, G. I. BUDKER, E. V. t)AKHTUSOVA, YU. N. PESTOV, V. A, 
SIDOROV, A. N. SKRINSKI~ and A. G. KHABAKHPASHEV: Yadern. Fiz., 9, 114 (1969). 
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pion-pole diagram dominates (4) (for other  experiments,  see ref. (4)). The 
degree of reliabili ty of these results is essentially lower than  tha t  for the  time- 
like region because of the uncertainit ies present  in the theoret ical  analysis and 

also because of considerable exper imenta l  errors. The averaged experimen- 
tal  da ta  yield 

( (1) f ( t )  = 1 + , 

where m 2 = (0.56 =J= 0.08) (GeV) 2, t ~ 0, 0 ~ It[ ~ 0.4 (GeV/c) 2. F r o m  (1) it  fol- 
lows tha t  the  charge radius of the  pion equals to ~ = (0.86 • 0.14) fm. The 
results obtained from some different experiments  in this field have been less 
definite (r~ ~ 3 fm from the da ta  concerning w-t scattering and r~ ~ I fm f rom 
the exper imenta l  da ta  concerning v:-~ scattering). 

The propert ies of the form factor  result ing from the exper imenta l  informa- 

t ion available (in particular,  restrictions on the speed of decrease of the form 
factor  ~s well as the asymptot ic  behaviour  at  t ~ ~- oo) are of great  interest ,  
if one proceeds from the reliably established propert ies  of the form factor  discon- 
nected wi th  certain models. We shall assume tha t  the  form factor  has the  fol- 
lowing propert ies :  

1) The form factor  F(t) is an analyt ic  funct ion in the complex t-plane 
with a cut (*) f rom t----1 to oo. 

2) The funct ion F * ( t ) =  F(t*), so tha t  F(t) is a real  funct ion on the  
real axis when t <  1. 

3) IF(t)] < A exp [s/l~/T[] holds for any  s > 0  in the whole complex t-plane. 
The assertion exists tha t  this inequal i ty  results f rom a local field theory  (see, for 
example,  ref. (5)). 

4) The normal izat ion condit ion F ( 0 ) =  1 is fulfilled. 

2. - The relat ion between the  asymptot ic  behaviour  of the  form factor  at  
t--> =~ oo is of interest .  For  comparison of the behaviour  of the  form factor  

at  t - + - - o o  and at  t - *  oo one may  use the  following assertion. For  any 

funct ion A(t) which is analyt ic  in the upper  half-plane satisfying the condition 
]A(t)[ < Cexp  Is]t[] for any  e >  0 at  I m t > 0  such tha t  F(t)A(t) -+a at  t - ~ - -  0% 

there  holds ]a] •ao, with ao being the superior l imit  of IF(t)A(t)I at  t-->-~oo. 

(4) C. MISTI%ETTA, D. IMm]~, J. A. AI't'EL, R, BUDNITZ, L. CARROLL, M. GOITEIN, 
K. HANSON and R. WILSON: Phys. l~ev. Lett., 20, 1523 (1968). 

(') In investigating the analytic properties of the form factor, the authors will 
make use of the momentum in the units of 4m~. 

(5) N. N. M~I~AN: ~urn. l~ksp. Teor..Fiz., 46, 1502 (1964). 
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This follows from the  Phragm6n-LindelSf theorem (6), and also from the theorem 

on sets of the l imit  points of the  analyt ic  funct ion w = ](z) when z tends to 
reach some boundary  point  of the region along the boundary  arcs (ref. (7)). 
For  instance,  this assertion implies tha t  when 

a exp [--  bt~] 
(2) F ( - - t )  , _ ~ + > - ~ [ l n t ] ~ ,  , 0 < e ~ <  �89 

then  in the case when IF(t)[ tends to some definite l imit at  t -+  + oo 

]al exp  [--bt  ~, cos a ~ ]  
(3) l ~ ( t ) l >  

t~,(ln t) -,  

The possibility of the exponential  decrease of ~'(-- t) ~ + ~  a exp [ - -  b ~/t] 

(b > 0), m a y  be of par t icular  interest .  The point  is t ha t  the modern experi- 

menta l  da ta  for the form factor  of the nucleon (it is quite  probable tha t  the 
qual i ta t ive peculiarities in the  behaviour  of the form factors of the nucleon 

and the  pion are the same) seem to indicate such a decrease. Then a t  
t ~ + ~ ,  li~(t)l > lal. 

3. - The form factor  F(t) satisfying the above requirements  cited in Sect. 1 
cannot  arbi t rar i ly  decrease at  t-~=~oo. The restr ict ion for the rate  of de- 
crease can be obtained from a theorem on the two constants (ref. (~)}. This 

theorem implies tha t  if the funct ion ](z) is analyt ic  and bounded in the domain 

/ )  whose boundary  C consists of the two sets el and e2, each of the la t ter  con- 
taining a finite number  of arcs, where 

(4) lira I](z)I<m~, lira I](z)l<m3 

then  for any  z a 9  

(5) I/(z) l < ~:'~ ..... ~'ms~( ..... ~ '  , 

where ~o(z, e, 9 )  is the harmonic  measure of the set e with respect to the do- 
mMn 9 at  the  point  z. By  definition~ co(z, e, 9 )  is the harmonic and bounded 
funct ion in the domain D such tha t  

(6) 
(~'l( z, gl, ~ )  : O, ZeO~2, 

o)(z, ~ ,  9 )  + m(z, ~ ,  9 )  = 1 .  

(6) S. STOILOW: Teoria ~'unctiilor de a Variabila Complexa (Bucharest, 1954). 
(7) R. N]~VAI~I~I~NA: Eindeutige anatytische .Funktionen (Berlin, GSttingen, Heidel- 

berg, 1953). 
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I f  the  domain  ~ is eonformal ly  m a p p e d  into the circle so t ha t  poin t  z goes 

into the  circle centre,  t hen  the  harmonic  measure  to(z, el, N) will be equal  to 

the  angle of the  arc into which ~ goes divided b y  2z. 

As implied b y  the  Phragmdn-LindelSf  theorem,  the form factor  F(t) because 

of condit ion 3 is bounded  in the  complex t-plane if i t  is bounded  on the  cut. 
Hence  the  theorem on the  two constants  m a y  be applied to the  fo rm factor /~( t )  

bounded  on the  cut. Le t  

(7) IF( t ) l<m~,  l < t < t .  ; I F ( t ) l < m . ,  t ~ < t <  0% 

t hen  on calculating, in accordance with  the  above-ment ioned  reasonings, the  

harmonic  measure ,  we obta in  for ( - - t o ) <  1 

m ( - - t o , ~ i )  ~ (O(--to,c % ) (8) IF(- -  to) [ ~ m~ ...~ , 

where 

(9) 
= _ 1/ti - -  1 

oo(-- to, ~ )  2 are tg  
= Vto + i 

t t enee  in passing to the  large t we obta in  

(10) max  IF(t)l > ml[IF(--  to) lm~~] {"~')(V~w'~T~~) . 
t ~ t l  

The theorem on the  two constants  admi t s  general izat ion for the  ease when 
rest r ic t ion for the  modulus  of the  funct ion is given more  t h a n  on the  two par t s  

of the  boundary ,  i .e. when 

lira l](z)l<m,: (k=  1, 2, ..., n). 

The generalized theorem (on n constants)  asserts  t h a t  for any  z f rom 

(lla) 
" ~ 1  

where the  ha rmonic  measure  is now 

(lib) 
o~(z, Gq, 9) = I i, 

0,  

n 

~ ( z ,  ~k,-@) = 1 .  
k ~ l  

ZEC(I, 

Z E 6(~, . . . ,  OC n , 
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Let  us apply  this generalization to the form factor F(t). Taking into account 
tha t  

r ~/t; - 1 ViT_~-- 11 
/arctg ~ -~_ - -  arctg / (12) ~o(-to, ~ )  = ~ [ Vto + 1 ~ t o + ~  j 

where ~k is the  par t  of the cut  between the points tk-x and tk (tk > t~_~), so b y  
passing over the limit tk--tk-~-+ 0 (n-~c~) we obtain 

(13) 
[~/i ~ t~ ~ in IF(t)jd_t ] 

IF ( - - to ) l<exp[  g J ~/t-fLi(t + to) " 
0 

In this case inequal i ty  (1O) becomes more definite: 

(14) max [F(t)] >~ [].F(--to)] ~/io + i i' ln iF(t')[dt' -I ] ~:'~t:<Vt~+l/~/'t~mi-1) 

- J ~ / t ' ~  7:)J J 
1 

I f  one replaces here in IF(t')l b y  its maximal  wdue  within the integration 
range, then one comes back to (10). l~rom the condition .F(0) ---- 1 and (13) it 
follows tha t  (cf. (s,9)) 

co 

(15) f i n  ]/7(t)[ d r > 0  
t ~ / ~ i l  

1 

and from the condition /~(O) = 1 and (14) 

(16) max [F(t)l> exp [ - - 1  
~>a [2 arctg (1/V/t1 ~ )  

t l  

lnlF(t ')ldt '] , 

1 

~Tote tha t  from (13) it follows tha t  the form factor ~(t) at  t-->-7-oo cannot 
fall down faster  than the exponent  of the type  

exp - -  e In t In in t ... 

for any  e > 0. Formula  (14) at  to >> tl gives 

(17) max I~(t)f > ls~(- to)l, 
t ~  t 1 

(s) ]3. V. GESI-IKElqBF.IN and B. L. YOFFE: 2urn. Eksp. Teor. _Fiz., 46, 903 (1964). 
(~) B. V. GV.SHK~.~B]ZX~: Yadern. ffiz., 9, 1232 (1969). 
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where one does not  require tha t  this funct ion should t end  to some definite 
l imit  at  to-+Oo (cf. Sect. 2). 

If  the function/~(t) has no zeros in the complex plane, ]F(t)[ > A exp [ - -  sIV~J] 
a t  any  s > 0 and 1/F(t) is bounded on the cut,  then  the same arguments  can 
be a t t r ibu ted  to the funct ion 1/F(t) which had led us to formula (13), i.e. 

(18) ]l/F(t)[ < exp 

co 

" - - ~ V ' I ~  ( l n [F ! t ' ) ]d t ' . ]  

1 

t < l .  

:From (13) and (18) it  immedia te ly  follows tha t  when the above conditions are 
fulfilled 

(19) [ ~ / l ~ - t  ~ in tF(t ')[dt '  ] 
F(t) = e x p / - ~ -  ! ~U:,-~- ~ - / � 9  

[ .I V t - l ( t - t ) J  

I t  is evident  t ha t  this formula  can be applied for any  t; below we shall arr ive 
at  this integral  representat ion f rom much more simple considerations. 

I f  one applies the theorem on the n constants (11) to the funct ion E(t)B(t) 
(the funct ion B(t) satisfies the  propert ies  of (1)-(3)), then  we obtain an assertion 
similar to the theorem cited in Sect. 2. Note  tha t  here one does not  require t h a t  
~(t)B(t)  should tend  to some definite l imit  at  t - ->- -o% whereas the  quan- 
t i t y  a is the superior l imit  of the values l/~(t)B(t)[ at  t - + - - c o .  

4. - Consider the restrictions for the  ra te  of the change of/~(t) at  t < 1. For  
this purpose, we map the  plane with the  cut  l < t < c o  into the  uni t  circle 
wi th  the centre z ---- 0 so tha t  the point  to < 1 would go into the  circle centre  

(20) t = 
4z -F to(1 - -z )  2 

(1 § z) 2 

Taking into account t ha t  for the  funct ion 9(z), which is analyt ic  in the uni t  

circle, such tha t  @(z) j<M in the  circle, there  holds the inequal i ty  

~(z)-w(0) <1, 
(21) ~l~(O)l M ~ ( 0 ) _ ~ ( z ) l ~ ( O ) l ~  

which is checked directly, and applying Schwarz lemma to the funct ion in 
the  left-hand side of (21) (ref. (6)), we obtain the  restr ict ion for the ra te  of the  
change of the  form factor:  

. . . .  M 2 - -  F 2 ( t o )  

(22) ~, (to) < ~ i j o )  ' 
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where M is the  m a x i m u m  modulus value of tile fo rm factor  on the  cut. 

The e lec t romagnet ic  radius of the  pion is defined f rom 

3 /7'(0)). (23) z~ = 6/7,(0) T~ = 2m~ 

This and  (22) i m p l y  ( the same restr ic t ion has been obta ined  in (") using a dif- 

ferent  me thod  with  use made  of the  explicit  representa t ion)  

(2~) 
D ig  

I f  F(t) has no zeros in the  complex plane,  then  restr ict ions on the  ra te  of change 

m a y  be obta ined b y  app ly ing  Cara theodory  inequal i ty  (ref. (~)) to the  func- 
t ion in (/7(t)/F(to)): 

(25) l/7'(to)] < IF(t~ In (M/IF(to)t) 
2(1 --to) 

Here  we have  a s tronger  res t r ic t ion for the e lect romagnet ic  radius of the  pion 
t h a n  in (24): 

(26) z ~ < ~  In M 
4mr: 

The restr ict ions on the  behaviour  of the  fo rm factor  obta ined in the  Sect. 2-4 
are stronger t h a n  those found in ref. (10.11). We note  t ha t  in these papers  (in 

par t icular ,  in apply ing  the  theorem on two constants)  an addi t ional  cut was ae- 
tuMly int roduced a t  t < 0, so t h a t  the  results  obta ined m a y  be referred to a 
wider class of funct ions and m a y  be made  more  restr ict ive.  

5. - Le t  us consider the  prob lem of in tegral  representa t ions  of the  fo rm factor  
/7(t )proceeding f rom a different (simpler) v iewpoint  (*). The measurements  

of the  fo rm factor  of the  pion in the  t imel ike  region of the  m o m e n t u m  trans-  

fer  give F(t) values on the  cut  so tha t ,  in view of the  proper t ies  of the  fo rm 
fac tor  adopted  b y  us, one can in principle,  using the  Cauchy theorem,  ex- 

press the  funct ion inside the region b y  measured  values;  for instance,  one can 

(lo) NGYEN VAN I:tIEU: Dokl. Akad. Nauk SSSR, 182, 1303 (1968). 
(11) V. BALUNI, NGUYEN VAN HIEU and V. SULEYMANOV: Yadern. •iz., 9, 635 

(1969). 
(*) The main contents of Sect. 5 and 6 was a part of the report of the present 

authors (E 860) at the X I V  International Con]erenee on High-Energy Physics (Vienna, 
1968). 
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obtain the welLknown expression of the form factor  E(t) in terms of ImE( t )  
on the  cut.  However ,  1) the modulus E(t) is measured in modern experiments  
in the t imelike region, 2) when one writes down the representat ion E(t) by  Im 17(0 

the question always remains about  the number  of subtractions required. 

Therefore one usually passes to considering the funct ion ln/~(t) = In IF(t)] -~ iq~(t), 
though in this case a ra ther  unpleasant  problem does arise about  the zeros of 
the  funct ion E(t) in the  complex plane. So far  we shall consider the case of 
absence of zeros. Applying from the beginning the Cauchy theorem to the  

funct ion lnE(t) we obtain the  well-known representa t ion  

(27) 

co 

f ( t )  = e~p [~ j t ' ( t ' -  t)J' 
1 

where in accordance with the adopted propert ies  of E(t) one subtract ion has 
been performed.  However,  in the  exper iments  the phase of the  form factor  is 
not  measured. To obtain the representa t ion of _F(t) in terms of [E(t)] on the 

cut,  it  is sufficient to consider the funct ion V/1- - t ln /V( t )  or lnE(t ) /%/i - - t ;  
i t  is necessary to make two subtractions in the first case (so tha t  in the represent-  
at ion of the form factor,  for instance, the  pion radius will enter) and, in the second 
case, one ma y  restr ict  oneself to  one subtract ion only, with more rigid restric- 
tions on the  funct ion E(t) at  the  point  t = 1. If  one applies the  Cauchy theo- 

rem to the function ln_F(t)/%/~---t, then  we obtain formula (19)(wi thout  sub- 
t rac t ion  as implied from the  conditions imposed on ~(t)). I f  one considers 

functions of the form 

( 
( ~ l - $ ~ ' - ' - ' - ! a n - - t )  I n  E ( t ) ,  

( a . + l -  t) . . .  (am-- t) 

then  one can obtain different representat ions for ln E(t) such tha t  the 
form factor  is expressed by  the modulus and the phase of the form factor  
at  various parts  of the cut,  if a ~ > l .  I f  one would choose some ak ~ 1, then  
representat ions of the form factor  will contain addit ional  integrals (over the 
addit ional  cuts introduced,  bo th  finite and infinite). The ease when one has 
three  two-terms ( a k -  t) under  the root  has been considered in papers (12.1~) at 

a 1 ~ 1  and a2, a s ~ 0 .  
Let  us give the  examples of the representa t ion /~(t) ( together with (19)) 

which m a y  be obtained in the  above-ment ioned way. I f  one applies the  Cauchy 

(12) L. A. KHALFIN and Ju. P. SHCHERBIN: SOV. Phys. JETP Lett., 8, 588 (1968). 
(18) L. A. KHALFIN and Ju. P. SHCItERBIN: Soy. -Phys. JETP Zett., 8, 642 (1968). 
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theorem to the  funct ion (Vt~--t/ tVi--t)lnF(t) for  t~ > 1, then  

(28) 

co 

in F(t) = z , / t -~- - t  [ J ~ / - ~ t ; ~ t )  t't'v/iT---l(t'-t~J " 

This representat ion may  appear  to be useful if the phase of the form factor  
~(t) which in the  elastic region is connected with the  phase of ~r~ scattering at  

t -+  c~ tends to a constant  (if there  exists only the p-resonance, then  i t  is 
quite possible tha t  ~(t) -~ ~). Then on taking t~ to be the boundary  of the re- 
gion where IF(t)] is measured (and already ~ ~ ~) one can obtain F(t) in spite 
of knowing nothing of the behaviour  of IF(t) I at  t -~  c~. 

I f  one applies the Cauchy theorem to the funct ion (1/t2)V/-i----tlnE(t)then 
one obtains for the electromagnetic radius of the pion ~= 

6 [ 
/ ln F(t) + - -  (29) ~ --  t 
1. 

t 2 ;~/~--llntF(t')]dt'  1 
~v/~--~_t t'2(t'--t) �9 

1 

I f  one makes use of most  accurate measurements  of E(t) in the spacelike region 
and if due to sat isfactory convergence of the integral  in the r ight-hand side 
the  main contr ibut ion is given by  a narrow region (for which IF(t)[ has been 
measured),  then  from (29) we shall define the electromagnetic pion radius (the 
r ight-hand side of (29) must  be constant) .  

We have discussed the case when E(t) has no zeros in the complex region. 

I f  such zeros are present,  then  the direct application of the Cauchy theorem 
to the  funct ion In F(t) is difficult to do due to addit ional  cuts in t roduced by  these 
zeros. To eliminate the zeros from consideration one should introduce the func- 
t ion ~(t) which contains no zeros and is such tha t  no characteristics are changed 
through which this funct ion is expressed. If  we express F(t) in terms of the 
values IF(t)l on the cut, then ~ ( t ) =  x-l(t)F(t), where [•] = 1 on the cut, z(t) 
is real a t  t < 1 and Z(0) > 0 .  The explicit  form of (19) with subtract ion and 
consideration of zeros can be wri t ten as follows (cf. (g)): 

(30) 

co 

- r 1 
[Z(0)]~/1-t J t'~/t~-~--~tti~--t)J ) 

I 

where 

(31) z ( t ) =  (-- 1)~ l~l " ~ t - V : ~ - t k  . . . .  ,v- ' 
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where n is the number  of zeros on the real axis at  t < 0. If  we express F(t) in terms 
of the  phase on the  cut (27), then  _~(t) = ~f-~(t)F(t)~ where ~f+(t)/yJ_(t)= 1 on 
the  cut (~v~(t) are respect ively the  values of the  funct ion on the  upper  and 
lower edges of the cut). For  the  case when F(t) is expressed in terms of IF(t)] 
and the phase on the cut  (as, for example,  (28)), t hen  one must  in t roduce 

~(t) =~-l(t)F(t)~ where ~(t) satisfies the  above-ment ioned requirements  on 

the  corresponding parts  of the  cut. 

6. - To analyse the  exper imenta l  da ta  some of the sum rules following f rom 

the  integral  representat ions for the form factor  ~(t) m ay  be helpful.  
We have wri t ten  down the  sum rules (15) implied f rom condit ion F(0) = 1. 

The same sum rule is derived from the  representa t ion (30) and condit ion 
[F(t)[<Aexp[s[~/'[]], s > 0 .  F rom formulae (19) and (30) it  follows tha t  the 

equal i ty  sign in (15) holds when the  following conditions have  been fulfilled: 

a) F(t) has no zeros in the complex plane with a cut~ 

b) 1F(t)l > A exp [ - s ] V t l ] ,  e >  o. 
I f  these conditions are not  fulfilled, then  we have an inequal i ty  sign in the  

sum rule (15). 

Another  sum rule containing only [F(t)] on the  cut  m ay  be obta ined f rom 
formula  (19) (or (30))~ if one takes into account  t ha t  in the  v ic in i ty  of 
t = 1 the  phase of z~z: scattering (t=~(t) ~ ( t - -  1) t and the phase q(t) ---- 6~(t) + 
-4- (1 - -  (-- 1)~)(Jr/2), where n is the  number  of zeros of F(t) in the in te rva l  (0, 1). 
I f  one puts  t> l ,  t hen  (19) implies 

(32) ~(t) _ P ~ In ]F(t ')[dt '  _ 1 ln[~( t ' ) /~( t ) [d t '  

%/ t - -1  ~ J ~ - ' ~ l ( t ' ~ )  ~ %/~--~-- 1 (t '-- t) 
1 

Such sort of consideration leads to the  sum rule 

(33) f ln [F(t)/F(1)] dt>~ 0 
( t - -  1)~ 

1 

where the  equal i ty  sign stands for the  same conditions as in formula  (15). 

There exSst various sum rules besides this one, which contain integrals of 
IF(t)] not  only on the  cut or an integral  on the  cut  contains ]/7(t)[ in some intervals,  
while i t  contains ~0(t) in some other  intervals.  Some rules of the  1st type  have  
been discussed in ref. (1~.13). 

We consider a general scheme of der ivat ion of the sum rules of this sort. Let  

us apply  the  Cauchy theorem,  for instance to the  funct ion In/P(t)/%/(1 - -  t)(t -k to) 
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for /7(t) which has no zeros, ( - - to< 1), 

(34) In/v(t)  = 
~/(1 --t)(t -7 t~). 

7g 

[ 
td; /( t ;  -7 i)iV-,o)(5-.7 

co 

+ ( In ]F(t')l dt' ] 
J  ij 

From the condition /~(O)= 1 we have the sum rule. In  order to introduce 
zeros of /~(t) in consideration let us define P ( t ) =  v-~(t)F(t), where F(t )has 
no zeros in the plane with the cuts ( - -o%--to) ,  (1, ~ co), lr(t)I = 1 on the 
cuts', r(t) is real in the  intervM (--to, 1), T(O)> O. 

For this case (el. (31)) 

(35) ~/1 - -  t - -  ~/(1 - -  t~,i/(to 4- tk) %/t + t o 
~(t) = (--  1)" 11 ~ l - - t  + ~/(1 -- t i ) / ( to  + t~) ~ / t ~  t o '  

where n is the number  of zeros in the interval  ( 0 , -  to). 
In accordance with the principle of maximum we have ~(0)<1 and, hence, 

P ( 0 ) > I ,  i.e. the sum rule for the general case has the form 

co r 

(36) f In IF(-- t)] dt ( h\lF(t)[ dt 
t ~ / ~ l ) ( t ~ t 0 i  +Jt@( t - -1 ) ( t  + to) ~ O. 

to 1 

One can also obtain, besides this sum rule, the analogue of (33) being an 
analogue of (15). 

Let  us apply the Cauchy theorem to the function In F(t)/~/(tl--t)(1 -- t) at t ~ l  
here ~ ( t ) =  o~-~(t)F(t), where ~o(t) is the analytic function with the cut (1, tt), 
and l~o(t)l = 1 on the cut and (o(t) is a real function on the real axis outside 
the cut, ~o(0) ~ 0 and ~(t) has no zeros in the plane with the cut (1, tt). The 
explicit form of the function ~o(t) (also of all such functions given above (31), 
(35)) is derived from 

Z - - Z ~  
(37) ~o(t) = + I I  ~ ,  

k - -  k 

where z(t) is a conformal mapping of the plane with the cut (i, tl) into a uni t  
circle so tha t  the real axis goes into the real axis. Since in accordance with the 
principle of maximum in the plane leo(t)] ~1 ,  then we obtain the sum rule 

(38) 

t~ co 

f,nF/,/d, f 
t~c/(t--1)(tl--t) tv~(t--1)(t-- t l)  

1 t l  
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Another  sum rule may  be obta ined f rom condition 

~,,(t) ~ ( t -  1)~. 

In  a similar way one can obtain other  sum rules. 

7. - The exper imenta l  informat ion on the electromagnetic pion form fac tor  
F(t) is at present  ve ry  restr icted (measurements  of the form factor  have been 
conducted within narrow intervals of the m o m e n t u m  transfer,  the accuracy  
of exper iments  is not,  so far, ve ry  high). Therefore~ to compare the  integral  
representat ion obtained in the preceding Sections with the exper iments  and 
also the sum rules containing integrals of modulus or phase of the form factor  
along the  whole cut  one is obliged to make use of the  simple analyt ic  approxi- 

mation.  In  the t imelike region there  are expressions of a resonance type  (the 
process proceeds through the 9-meson), where the parameters  entering in them 
are determined from experiment .  The most  simple formula of Brei t -Wigner  
type  (in the  usual units) has the form 

~ $  m s  p 2  
(39) ~,t , ,~  ~ ~ " ~  I"L' ~ ]1 

( t -  m~)~ + m~ r ~ '  
where 

~ ] : 4 2 ~ : 8  ( 5 5 . 6 ~ 6 . 2 ) ,  

mp ~-- (754 =J= 9) ~V[eV ((760 • 5.5) MeV) ,  

F = (105 • 20) MeV ( F =  (112 ~- 11.5) MeV) 

have been defined in (2) ((3)). In  the spacelike region in which the  accuracy 
of measurements  is essentially lower (cf. formula (1)) for an approximat ion  to the  
form factor, the model of vector  dominance is also used. 

One must  take into account  t ha t  formulae of type  (39) are valid only in a 
narrow region ~/ t  ~ mp. Natural ly,  formulae which are valid in a wider region 
of the momen tum transfer  are interest ing (at best at all the  momen tum transfers) 

having at  %/t ~ mp the  Brei t-Wigner form (39). Formulae  of this sort must  
satisfy obviously the requirements  1)-4). To obtain them one can use several 

methods :  

a) I f  the phase of 7~ scattering in the state  I - - - - J =  1 of the reso- 

nance form is given (~-meson), then  by  subst i tut ion in formula (21)we shall 
obtain an expression for the form factor  satisfying all the  requirements  (in this 

case by  neglecting all the  inelastic channels). 

b) I f  one assumes tha t  the  modulus of the  form factor  is everywhere  
ra ther  well given by  formula (39), then  subst i tut ing in (30) we shall also get the 
representat ion of the form factor. In  this case the  modulus of the form factor  
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must  satisfy the sum rule (15), (33) otherwise we shall arrive at  the inner con- 

t radict ions (for greater  detail, see below). One can make use of formula (28) 

as well, etc. All the representat ions of the form factor  obtained in this way 
possess the Brei t -Wigner  bchaviour  at  %/t_~ mp. At the same t ime they  some- 
what  differ f rom each other  in the resonance region. The parameters  of the 
resonance (p-meson), defined by  various formulae are also different as well 
as the width of the  resonance peak of the  form factor  and its position differs 
f rom those of the resonance in =~ scattering. All these distinctions are of the 
order of F/mp; this is connected with the fact  tha t  Brei t -Wigner  approximat ion  
is valid up to this ~ccuracy. l ~ r  away from the  resonance the  form factors 
m a y  be quite different. At present,  there  are no theoret ical  arguments ,  in ge- 
neral,  t ha t  would permi t  to separate some definite representat ion for the form 

factor,  or, at  least, a class of representations.  To do this one must  go beyond 
the  f ramework of the Brei t-Wigner approximat ion to describe wide resonances 
(unstable particles). At  the t ime being various authors  place addit ional  (( rea- 

sonable requirements  ~ on the form of the form factor. Thus, in ref. (14) some de- 
finite (still not  unique) form of the phase of ~ scat ter ing was used, which per- 

mi t t ed  one to obtain some concrete representa t ion for the form factor,  and 
in the authors '  opinion, to calculate the corrections l~/m~. This representa t ion 
was then  used in ref. (3) for f i t t ing the experime~lts and it  turns  out to be quite  
suitable because the calculated correction (1 + 0.48F/mp) coincides nume- 
rically with ~'ol"/mp which were obtained in ref. (3). However  it  is too early 
to a t tach  any  impor tance  to this coincidence. In  ref. (1~) an analysis of various 
representat ions of the form factor  has been carried out, in which the au thor  
gives preference to representat ions for which the phase of ~ scattering de- 
pends in a more complex way on the momentum,  since they  lead to the  desired 
result  (F ~ 120 l~eV). Note tha t  t r ea tmen t  of the exper imenta l  da ta  b y  a for- 
mula of the  same type  (~4) carried out in ref. (3.~) yields f ~  (111 • 6) MeV 
and / ' =  (123 ~ 7)~s respectively.  All this informat ion supports t ha t  the 
spread of the parameter  values is objective,  and cannot  be el iminated within 
the  f ramework of the  Brei t -Wigner  ~pproxim~tion. 

In  the subsequent  analysis of the form factor  it  is desirable to establish the 
qual i ta t ive  peculiarities in its form (the ex ten t  of asymmetry ,  the ra te  of decrease 
at  %/[ > rap, the behaviour  near  the threshold of the reaction). For  this purpose 
measurements  must  be made far away from the resonance (*). By  the above- 

c i ted reasons this seems to be much more interest ing than  the subsequent more 
accura te  definition of the exper imenta l  informat ion on the  p peak. Thus this 

t r ea tmen t  finally permits  one to have a be t te r  unders tanding of the properties 

(14) G. GouNxalS and J. SAKU~AI: Phys. Rev..~ett., 21, 244 (1968). 
(is) M. Roos and J. PISUT: Nucl. Phys., B 10, 563 (1969). 
(') We shall not discuss the problem of p-~ interpretation, the study of which is 

highly interesting. 
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of the ~= interaction.  Independent  measurements  of the phase of the form factor  
are also desirable though this would require more complicated exper iments  
(for example,  measurements  of photon  polarization in the reaction e+e - - +  ~+z:-y). 

8 .  - We make one more note  on the use of the  sum rules. Their  direct use 
is so far  impossible, since the exper imenta l  da ta  are not  sufficient so tha t ,  in 
fact,  a check is made of the consistency of the analyt ic  approximations to the  

form factor  a t  the exper imental  pa ramete r  values only. Le t  the representa t ion 

P,,(t)  
(40) IF(t)]~ - Q~(t)  ' t > : t ,  

hold, in which P.(t), Q.,(t) are polynomials of corresponding ranks. Hence  
one can find the form factor  (assuming tha t  zeros are lacking) 

(41)  

where 

_F(t) = R(t) exp [--~/1 - - t  ln R(O)] , 

(42) 
~I (1 q- ~/(1 --t)/(1--tk)) 

.~(t) = IF(1)I ,~=1 
m 

I I  (1 + ~/(i-0/(i -4)) 

Here  t~ are the roots of corresponding polynomials.  F ro m  formula (41) i t  fol- 
lows tha t  at  i ~ ( 0 ) < l  the form factor  increases exponent ia l ly  at  t < 0 ,  bu t  
this is forbidden. Therefore we must  have /~(0)~1 (*) (exponential  decrease 
ma y  generally be absent  if the  form factor  has zeros). For  the form factor  (39) 
(if one applied i t  over the  whole region) proceeding from these reasonings, we 
h a v e - t h a t  a t  k=~'oI ' /mp< 1 q-2m~F/m~, ( /~(0)< 1) so we have come to a 

contradic t ion.  
In  ref. (15) the sum rules derived by  the authors  were checked with the  aid 

of numerical  calculations. I t  has been found tha t  the sum rules are poorly 

satisfied. I t  must  be stressed tha t  the  authors  used representa t ion (39) with 
k----0.77 at  which, as i t  was shown above, the sum rules cannot  be satisfied 

at  all. 

(') This condition follows directly from the sum rule (15). 
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R I A S S U N T O  (*) 

Si 6 eondo t t a  un 'ana l i s i  del compor t amen to  del fa t to re  di fo rma  del pione per  
t ~  ~ oo in definite ipotesi  sulla p ropr ie t~  del f a t to re  di fo rma  come ~unzione ana-  
l i t ica in un piano complesso del l ' impulso t rasfer i to  t. Si sono t r o v a t i  i l imi t i  del 
modulo  di f a t to re  di fo rma  e del raggio e le t t romagnet ico  del pione.  Si 6 fo rmula to  
il metodo  che per lne t te  di o t tenere  le rappresentaz ioni  integrMi del fa t to re  di fo rma  
e si sono o~tenute aleune rappresentaz ioni  definite. Si sono t r o v a t e  ed  ana]izzate le 
regole di somma  per  il  f a t to re  di fo rma  e si sono considerate  alcune quest ioni  collegate 
all 'uso delle regole di somma.  Si ~ discussa la si tuazione sper imcnta le  odierna del fa t to re  
di fo rma  del pione. 

(*) T r a d u z i o n e  a eura  de l la  R e d a z i o n e .  

O TeopHH 3aeKTpOMarHHTHOrO ~OpM-OaKTopa nnOHOB. 

Pe3mMe (*). - -  Bb~i ilpoBeReH auan~3 iIoBe~eHnn IIHOHHOFO ~opM-~aKTopa ~p~ 
t--> -~-c~ llpI4 HeKOTOpI, IX on:pe~:eJieHHblx n:pe~IIOJIO~KeHrtflx Ha CBO~ICTBO qbopM-~aKTOpa, 
KaK aHaJIrlTI4~eCKO~ qbyHKUHH B KOMIIJIeKCHO~I nFIOCKOCTH 1]epe~aBaeMoro rlMnyJibca t. 
Bblnri Ha~:en~i rpanmlbi  ~nn MO~yna qbopi-qbaKTopa rI 33IeKZpOMarrmTHbl~ pa~;nyc 
IIrlOHa. BI, IJI c~opMyYmpoBaFI MeTO~,  KOTOpI~II~ IIO3BOJIaeT llOnyq~Tb I4HTerpanbHble 
Ilpe~cTaBJIeHl~l qbOpM-qbaKTOpa, 14 6~IYlH IIOJIy~IeHbI HeKOTOpble oiIpe~eJieHHi, ie ilpe~cTa- 
Baenrm. B~iarI r la~enl~i I/1 ilpoaHaJiH3riposaHl,t IlpaBriJIa CyMM ,~YDI qbOpM-qbarTopa, I4 
6~lm, I pacCMOTpeHbI HeKOTOpbIe BOIIpocbI, CB~3aHHble C /,IClIOYrb3OBaHleleM IlpaBHJI CyMM. 
B~,I~Ia 06cyz<~elIa 3KCrlepaMeHTa~IbHa~t cnTyalmn ~ a  ImOHHOrO qbOpM-qbaKTOpa Ha ceFo- 
~H,qmHH~ ,ReHb. 

(') HepeaeOeno peOaKgue~. 


