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Summary. — An analysis of the behaviour of the pion form factor at
t->+ oo has been carried out under some definite agsumptions on the
property of the form factor as an analytic function in a complex plane
of the momentum transfer ¢. Bounds on the modulus of the form factor
and the electromagnetic radius of the pion have been found. The method
has been formulated which permits one to obtain the integral representations
of the form factor, and some definite representations have been obtained.
The sum rules for the form factor have been found and analysed, and
some questions connected with the usage of the sum rules have been
considered. The experimental situation of to-day for the pion form
factor has been discussed.

1. — The cross-section of the process £+ /- —nt+n~ has been recently
rather accurately determined from the colliding beam experiments in the region
of p° resonance (*%).

Hence the modulus of the electromagnetic form factor of the pion F(t)
can be found for the timelike momentum transfer ¢ (for details concerning the
results obtained, see Sect. 7).

For the spacelike region of the momentum transfer, the form factor is
determined from measurements of the cross-section of electroproduction of the
pion on a proton under the kinematic conditions when contribution from the

(*) V.L. AUSLANDER, G. I. BUDKER, YU. N. PEstov, V. A. SIDEROV, A. N. SKRINSKY
and A. G. KHABAKPASHEV: Phys. Leit., 25 B, 433 (1967).

(?) V. L. AUSLENDER, G. I. BUDKER, E. V. Pakurusova, Yu. N. Pesrov, V. A,
Siporov, A. N. Skrinskil and A. G. KHABAKHPASHEV: Yadern. Fiz., 9, 114 (1969).

(3) J. Aveustin, J. Bizor, J. BuoN, J. HaissiNsgi, D. LALANNE, F. LAPLANCHE,
J. LErraNgors, P. LEAMANN, P. MariN, F. Rumpr and E. Sinva: Phys. Lett., 28 B,
508 (1969).
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pion-pole diagram dominates (*) (for other experiments, see ref.(4)). The
degree of reliability of these results is essentially lower than that for the time-
like region because of the uncertainities present in the theoretical analysis and
also because of considerable experimental errors. The averaged experimen-
tal data yield

(1) Fo=(1+ LY

mz)
where m?= (0.56 - 0.08) (GeV)2, t<< 0, 0< |t| < 0.4 (GeV/e)2. From (1) it fol-
lows that the charge radius of the pion equals to 7, = (0. 86 4 0.14) fm. The
results obtained from some different experiments in this field have been less
definite (r, <3 fm from the data concerning m-¢ scattering and » < 1fm from
the experimental data concerning w-« scattering).

The properties of the form factor resulting from the experimental informa-
tion available (in particular, restrictions on the speed of decrease of the form
factor as well as the asymptotic behaviour at ¢— 4 oo) are of great interest,
if one proceeds from the reliably established properties of the form factor discon-
nected with certain models. We shall assume that the form factor has the fol-
lowing properties:

1) The form factor F(f) is an analytic function in the complex #-plane
with a cut (*) from {=1 to oco.

2) The function F*(¢) = F(#*), so that F(¢) is a real function on the
real axis when ¢<C1.

3) |F(#)| < A exp [¢/|V/1]] holds for any >0 in the whole complex ¢-plane.
The assertion exists that this inequality results from a local field theory (see, for
example, ref. (%)).

4) The normalization condition F(0) =1 is fulfilled.

2. — The relation between the asymptotic behaviour of the form factor at
t— - oo is of interest. For comparison of the behaviour of the form factor
at t-—>-— oo and at t— oo one may use the following assertion. For any
funetion A(f) which is analytic in the upper half-plane satisfying the condition
|[A(t)| < Cexp [e]t|] for any ¢ >0 at Im?>0 such that F(f)A(t) —a at t-—>— oo,
there holds |a|<a,, with a, being the superior limit of |F({)A(t)] at t— -+ oo.

(%) C. MisTRETTA, D. IMRIE, J. A. ArPEL, R. BUDNITZ, L. CARROLL, M. GOITEIN,
K. HaxsoN and R. WirsoN: Phys. Rev. Lett., 20, 1523 (1968).

(*) In investigating the analytic properties of the form factor, the authors will
make use of the momentum in the units of 4my.

() N. N. MEmMax: Zurn. Eksp. Teor. Fic., 46, 1502 (1964).
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This follows from the Phragmén-Lindel6f theorem (¢), and also from the theorem
on sets of the limit points of the analytic function w = f(z) when z tends to
reach some boundary point of the region along the boundary arcs (vef. (7)).
For ingtance, this assertion implies that when

@ exp [— bi*1]
@) F(—1) —> mfIn g 0<a, <3,

then in the case when |F(¢)| tends to some definite limit at ¢ — -+ oo

|a] exp [— bi*1 cos 7oy |

) FOl= toa(In 1)

The possibility of the exponential decrease of F(— 1) - aexp [—b\/ t]
(b > 0), may be of particular interest. The point is that the modern experi-
mental data for the form factor of the nucleon (it is quite probable that the
qualitative peculiarities in the behaviour of the form factors of the nucleon
and the pion are the same) seem to indicate such a decrease. Then at
t—>+ oo, [F(t)>|al.

8. — The form factor F(t) satisfying the above requirements cited in Sect. 1
cannot arbitrarily decrease at ¢—>-4oco. The restriction for the rate of de-
crease can be obtained from a theorem on the two constants (ref. (°)). This
theorem implies that if the function f(¢) is analytic and bounded in the domain
D whose boundary € consists of the two sets o, and o,, each of the latter con-
taining a finite number of arcs, where

(4) Im [f)|<my,  Lm [f(2)|<m,

z—>bex, z—>Ex,
then for any 2¢€2

(5) If(z)l <m’;z)(z.m1,9)mg)(z,az,9) ,

where w(z, «, 2) is the harmonic measure of the set o with respect to the do-
main & at the point z. By definition, w(z, «, 2) is the harmonic and bounded
function in the domain D such that

2 1, ZEQ,
w(z, o =
o Gu D=1, .

o7y 00, D)+ w(z, 0, D)=1.
() 8. SroiLow: Teoria Functiilor de a Variabila Complexa (Bucharest, 1954).

(?) R. NEVANLINNA: Findeutige analytische Funktionen (Berlin, Gottingen, Heidel-
berg, 1953).
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If the domain 2 is conformally mapped into the circle so that point 2 goes
into the cirele centre, then the harmonic measure w(z, %, 2) will be equal to
the angle of the arc into which «; goes divided by 2.

As implied by the Phragmén-Lindel6f theorem, the form factor F(f) because
of condition 3 is bounded in the complex #-plane if it is bounded on the cut.
Hence the theorem on the two constants may be applied to the form factor F(f)
bounded on the cut. Let

(M [F@) <my, 1<ti<ty; [F{)]<m,, §<I< o005

then on caleulating, in accordance with the above-mentioned reasonings, the
harmonic measure, we obtain for (—%,)<C1

) |F(— )| <my ooy Thesd
where

2 Vi, —1
9 w(—1y, &) = — aretg -
) v Vo +

Hence in passing to the large ¢ we obtain
(10) max |F(t)] >m,[|F(— )| m7 @ oV alVik),
The theorem on the two constants admits generalization for the case when

restriction for the modulus of the function ig given more than on the two parts
of the boundary, i.e. when
zgéneuak @) <ms k=1,2,...,n).

The generalized theorem (on n constants) asserts that for any 2 from &
(11a) If(2)] <exp [Eln M (2, o, 9)] ,
k=1

where the harmonic measure is now

1, zea,,

0, BE Mgy vuey Xy y

(11b)
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Let us apply this generalization to the form factor F(¢). Taking into account
that

n Vi,—1 —
12 w(—ty, o) = = |arctg —-"-— —arctg —=-——
( ) ( 0 Ic) 2 [ g'\/to + 1 g )

where «; is the part of the cut between the points ¢, and ¢, (& > t,—,), so by
passing over the limit ¢, —1%,_;,—0 (n-—>00) we obtain

(13) |[P(—1,)| <exp

\/1+to lnIF )| di
o —

In this case inequality (10) becomes more definite:

& =
Vie+1 [ In [Pt T el y/ioifv/icd)
(14)  max [F(1)| > [IF(—%)I exp [_ S Vit to)] o

If one replaces here In |F(#')] by its maximal value within the integration
range, then one comes back to (10). From the condition F(0) =1 and (13) it
follows that (cf. (59))

(15) f In |F@ide_

and from the condition F(0) =1 and (14)

—1 In |F(t')| ¢’
16 Pt .
19 N l Al>exp [2 arctg (l/th—l)f tVi—1 }

Nofe that from (13) it follows that the form factor F(t) at {->- oo cannot
fall down faster than the exponent of the type

lntlnlnt

exp [ __W_—]

for any ¢>0. Formula (14) at #, >t gives

(17 max |[F(t)|> [ F(—4)|,

>

(®) B. V. GESHRENBEIN and B. L. Yorre: Zurn. Eksp. Teor. Fiz., 46, 903 (1964).
(®) B. V. GESHRENBEIN: Yadern. Fiz., 9, 1232 (1969).
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where one does not require that this function should tend to some definite
limit at ,—oo (cf. Sect. 2).

If the function F(#) has no zeros in the complex plane, |F(t)| >4 exp [—elv|]
at any ¢> 0 and 1/F(t) is bounded on the cut, then the same arguments can
be attributed to the function 1/F(t) which had led us to formula (13), i.e.

V1=t [ In|F@")|dt ]’ 1.

(18) |1/F(t)] <exp [" VimTe—s

From (13) and (18) it immediately follows that when the above conditions are
fulfilled

! !
(19) P(t)= exp [Vl—t In [F(t)| ¢ ] .
S ()
I6 is evident that this formula can be applied for any #; below we shall arrive
at this integral representation from much more simple considerations.

If one applies the theorem on the % constants (11) to the function F(t) B(f)
(the function B(t) satisfies the properties of (1)-(3)), then we obtain an assertion
similar to the theorem cited in Sect. 2. Note that here one does not require that
F(t)B(ty should tend to some definite limit at ¢ —+— oo, whereas the quan-
tity @ is the superior limit of the values |F(¢)B(t)| at { —>— oo.

4. — Consider the restrictions for the rate of the change of F(t) at ¢t < 1. For
this purpose, we map the plane with the cut 1<{<<oco into the unit circle
with the centre 2 =0 so that the point #,< 1 would go into the circle centre

det(1—e)

(20) 1+ o)

Taking into account that for the function ¢(z), which is analytic in the unit
circle, such that |p(2)]<M in the circle, there holds the inequality

(21) PO 320 — () 9 (0)|

which is checked directly, and applying Schwarz lemma to the function in
the left-hand side of (21) (ref. (*)), we obtain the restriction for the rate of the
change of the form factor:

M= — F*(to)

(22) |E"(to)] <m ;
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where M is the maximum modulus value of the form factor on the cut.
The electromagnetic radius of the pion is defined from

(23) 2 = 6F"(0) (T; = 25’% F’(O)) .

This and (22) imply (the same restriction has been obtained in (%) using a dif-
ferent method with use made of the explicit representation)

3 1
2 _ — —
(24) T gy (M M) .

If F(#) has no zeros in the complex plane, then restrictions on the rate of change
may be obtained by applying Caratheodory inequality (ref. (°)) to the func-
tion In (F(t)/F(3,)):

[F(t0)| In (M]|F (1))

(25) IF,(tO)I<77 2(1 ;to) T

Here we have a stronger restriction for the electromagnetic radius of the pion
than in (24):

3

The restrictions on the behaviour of the form factor obtained in the Sect. 2-4
are stronger than those found in ref. (11!). We note that in these papers (in
particular, in applying the theorem on two constants) an additional cut was ac-
tually introduced at ¢< 0, so that the results obtained may be referred to a
wider class of functions and may be made more restrictive.

5. — Let us consider the problem of integral representations of the form factor
F(¢ )proceeding from a different (simpler) viewpoint (*). The measurements
of the form factor of the pion in the timelike region of the momentum trans-
fer give F(f) values on the cut so that, in view of the properties of the form
factor adopted by us, one can in principle, using the Cauchy theorem, ex-
press the function inside the region by measured values; for instance, one can

(1) NeYeEN VaN HIeU: Dokl. Akad. Nauk SSSE, 182, 1303 (1968).

(*") V. Baruni, NeuYEN Van Hievu and V. Sureymanov: Yadern. Fiz., 9, 635
(1969).

(*) The main contents of Sect. 5 and 6 was a part of the report of the present

authors (E 860) at the XIV International Conference on High-Energy Physics (Vienna,
1968).
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obtain the well-known expression of the form factor F(f) in terms of ImF(t)
on the cut. However, 1) the modulus F(f) is measured in modern experiments
in the timelike region, 2) when one writes down the representation F(¢) by Im F(¢)
the question always remains about the number of subtractions required.
Therefore one usually passes to considering the function In F(¢) = In | F(¢)| 4 ig(?),
though in this case a rather unpleasant problem does arise about the zeros of
the funetion F(?) in the complex plane. So far we shall consider the case of
absence of zeros. Applying from the beginning the Cauchy theorem to the
function InF(¢) we obtain the well-known representation

«©

1) F() = exp [;ﬁ- | ;”—g—)_%] ,
1

where in accordance with the adopted properties of F(f) one subtraction has
been performed. However, in the experiments the phase of the form factor is
not measured. To obtain the representation of F(f) in terms of |F(?)| on the

cut, it is sufficient to consider the function vV 1—tInF@) or lnF(t)/\/ 1—1
itis necessary to make two subtractions in the first case (so that in the represent-
ation of the form factor, for instance, the pion radius will enter) and, in the second
case, one may restrict oneself to one subtraction only, with more rigid restric-
tions on the function F(f) at the point ¢t = 1. If one applies the Cauchy theo-
rem to the function lnF(t)/\/ 1—t, then we obtain formula (19) (without sub-
traction as implied from the conditions imposed on F(t)). If one considers
functions of the form

V (@, —1) ... (@, —1) In (1)
( b

a,ﬁ.l—t) (dm—t)

then one can obtain different representations for InF(¢) such that the
form factor is expressed by the modulus and the phase of the form factor
at various parts of the cut, if @,>1. If one would choose some @, <1, then
representations of the form factor will contain additional integrals (over the
additional cuts introduced, both finite and infinite). The case when one has
three two-terms (a, — t) under the root has been considered in papers (**%) at
a,=1 and a,, a;<< 0.

Let us give the examples of the representation F(t) (together with (19))
which may be obtained in the above-mentioned way. If one applies the Cauchy

(?) L. A. KaarriN and Ju. P. SHCHERBIN: Sov. Phys. JETP Lett., 8, 588 (1968).
(¥) L. A. Kuarriy and Ju. P. SHCHERBIN: Sov. Phys. JETP Leit., 8, 642 (1968).
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theorem to the function (\/ tl—t/t\/ 1—t) In F(t) for ¢, > 1, then

28)  InF(t)=—

- 12 -
tVI—t| [ Vi,—tIn |F()] dr +f yVi—t,dt’
AVt —1t . Vi—1t(t'—t) VI—1(t—1)|

This representation may appear to be useful if the phase of the form factor
@(t) which in the elastic region is connected with the phase of nn scattering at
t— oo tends to a constant (if there exists only the p-resonance, then it is
quite possible that ¢(¢) —=). Then on taking ¢ to be the boundary of the re-
gion where |F(f)| is measured (and already ¢ ~x) one can obtain F(¢) in spite
of knowing nothing of the behaviour of |F(f)] at ¢ — oo.

If one applies the Cauchy theorem to the function (1/#2)V' 1 —¢In F(¢) then
one obtains for the electromagnetic radius of the pion 7,

6\/1 Vi—11n |F(')| a¢’
9 2 In
(29) T = [ n F(i) + n\/l —; f 2 (t—1)

If one makes use of most accurate measurements of F(t) in the spacelike region
and if due to satisfactory eonvergence of the integral in the right-hand side
the main contribution is given by a narrow region (for which [F(t)| has been
measured), then from (29) we shall define the electromagnetic pion radius (the
right-hand side of (29) must be constant).

We have discussed the case when F(f) has no zeros in the complex region.
If such zeros are present, then the direct application of the Cauchy theorem
tothe function In () is difficult to do due to additional cuts introduced by these
zeros. To eliminate the zeros from consideration one should introduce the func-
tion F(t) which contains no zeros and is such that no characteristics are changed
through which this function is expressed. If we express F(f) in terms of the
values |F(f)] on the cut, then F(f) = x 1) F(t), where [y] =1 on the cut, x(f)
is real at £<<1 and »(0)> 0. The explicit form of (19) with subtraction and
consideration of zeros can be written as follows (cf. (%)):

30 Py — A m/iftf In|P)ar |
. O onvE P T iviste—y
where

(31) A= 1P [T AT VI

% \/1—t+\/1—tk
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where # is the number of zeros on the real axis at ¢ < 0. If we express F(t) in terms
of the phase on the cut (27), then F(f) = p () F(), where pi(t)/y_(t)=1on
the cut (y.(f) are respectively the values of the function on the upper and
lower edges of the cut). For the case when F(f) is expressed in terms of |F(1)]
and the phase on the cut (as, for example, (28)), then one must introduce
F(t) = 51(t) F(t), where 75(t) satisfies the above-mentioned requirements on
the corresponding parts of the cut.

6. — To analyse the experimental data some of the sum rules following from
the integral representations for the form factor F(t) may be helpful.

We have written down the sum rules (15) implied from condition F(0) = 1.
The same sum rule is derived from the representation (30) and condition
|F(t)] < A exp [¢|Vt]], e>0. From formulae (19) and (30) it follows that the
equality sign in (13) holds when the following conditions have been fulfilled:

a) F(t) has no zeros in the complex plane with a cut,

b) |F(t)|> A exp [—elV[], e>0.
If these conditions are not fulfilled, then we have an inequality sign in the
sum rule (15).

Another sum rule containing only |F(t)| on the cut may be obtained from
formula (19) (or (30)), if one takes into account that in the vicinity of
¢t =1 the phase of wr scattering &,,(t)~ (t — 1) and the phase @(t) = 0..(t) +
+ (1 — (= 1)")(/2), where n is the number of zeros of F(t) in the interval (0, 1).
If one puts ¢>1, then (19) implies

spy 0P MIF®a 1w lpeRe)dr
Vi1l 7 ) V=1t~ 1) . VI—1(t'—1)

bS]

Such sort of consideration leads to the sum rule

@

In [F(t)/F(1)] dt

1

where the equality sign stands for the same conditions as in formula (15).
There exist various sum rules besides this one, which contain integrals of
|F(t)] not only on the cut or an integral on the cut contains | F(t)| in some intervals,
while it contains ¢(t) in some other intervals. Some rules of the 1st type have
been discussed in ref. (1*13).
We consider a general scheme of derivation of the sum rules of this sort. Let

us apply the Cauchy theorem, for instance to the function In F(t) /\/ L= +1)
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for F(f) which has no zeros, (—it,<< 1),

v (1~t)<t+ to)

” In IF—t |ds’ +f In |F(t')| dt'
V- 1) —to)(t 1) . V([ — 1)t + t,)(t'—1)

From the condition F(0) =1 we have the sum rule. In order to introduce
zeros of F(f) in consideration let us define F(f) = v(t) F (), where F(t )has
no zeros in the plane with the cuts (— oo, —1%,}), (1, + oo), |t{f}] =1 on the
cuts, t(?) is real in the interval (—#,, 1), 7(0)> 0.

For this case (cf. (31))

(34) InF()=

VI—t—V @ —=1)/{ty+ t) VI 1
35 — (1) ] ! 0
3% A D TS VAT L evit

where n is the number of zeros in the interval (0, — ¢,).
In accordance with the principle of maximum we have 7(0) <1 and, hence,
F(0)>1, i.6. the sum rule for the general case has the form

foed el

In |F(—1t)| di J' In |F(t)| dt
36 S e N b —
(36) fz\/(tjtl)(t—t0 + tV{E—1)(t+ 1)

One can also obtain, besides this sum rule, the analogue of (33) being an
analogue of (15).

Let us apply the Cauchy theorem to the function In F(t)/V/ (t,—t)(1 —t) att,>1
here F(t) = w—1(t) F(t), where o(t) is the analytic function with the cut 1, t,),
and |o(¢)] =1 on the cut and w(t) is a real function on the real axis outside
the cut, w(0)> 0 and F(#) has no zeros in the plane with the cut (1,%). The
explicit form of the function w(t) (also of all such functions given above (31),
(38)) is derived from

R— 2
(37) o=+ 17—

where z(f) is a conformal mapping of the plane with the cut (1,t,) into a unit
cirele so that the real axis goes into the real axis. Sincein accordance with the
principle of maximum in the plane |w(f)] <1, then we obtain the sum rule

C R f o(t)at
38 AU Oy,
(38) ftV t— 1)t —1) t\/(t—l)(t—tl)>
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Another sum rule may be obtained from condition
Srnlt) ~ (t— 1)} .
In a similar way one can obtain other sum rules.

7. — The experimental information on the electromagnetic pion form factor
I'(t) is at present very restricted (measurements of the form factor have been
conducted within narrow intervals of the momentum transfer, the accuracy
of experiments is not, so far, very high). Therefore, to compare the integral
representation obtained in the preceding Sections with the experiments and
also the sum rules containing integrals of modulus or phase of the form factor
along the whole cut one is obliged to make use of the simple analytic approxi-
mation. In the timelike region there are expressions of a resonance type (the
process proceeds through the g-meson), where the parameters entering in them
are determined from experiment. The most simple formula of Breit-Wigner
type (in the usual units) has the form

Fimil™
(= mat m T

(39) ()] =

where
Fﬁ =42 + 8 (55.6 4- 6.2),

m, = (754 & 9) MeV ((760 + 5.5) MeV) ,
I'= (105 4 20) MeV (I"= (112 & 11.5) MeV)

have been defined in (?) ((*)). In the spacelike region in which the accuracy
of measurements is essentially lower (cf. formula (1)) for an approximation to the
form factor, the model of vector dominance is also used.

One must take into account that formulae of type (39) are valid only in a
narrow region 4/t ~ m,. Naturally, formulae which are valid in a wider region
of the momentum transfer are interesting (at best at all the momentum transfers)
having at v/t ~ m, the Breit-Wigner form (39). Formulae of this sort must
satisfy obviously the requirements 1)-4). To obtain them one can use several
methods:

a) If the phase of nw scattering in the state I=J =1 of the reso-
nance form is given (p-meson), then by substitution in formula (21) we shall
obtain an expression for the form factor satisfying all the requirements (in this
case by neglecting all the inelastic channels).

b) If one assumes that the modulus of the form factor is everywhere
rather well given by formula (39), then substituting in (30) we shall also get the
representation of the form factor. In this case the modulus of the form factor
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must satisfy the sum rule (15), (33) otherwise we shall arrive at the inner con-
tradictions (for greater detail, see below). One can make use of formula (28)
as well, ete. All the representations of the form factor obtained in this way
possess the Breit-Wigner behaviour at 4/f ~ m,. At the same time they some-
what differ from each other in the resonance region. The parameters of the
resonance (p-meson), defined by various formulae are also different as well
as the width of the resonance peak of the form factor and its position differs
from those of the resonance in mw scattering. All these distinctions are of the
order of I'/m,; this is connected with the fact that Breit-Wigner approximation
is valid up to this accuracy. Far away from the resonance the form factors
may be quite different. At present, there are no theoretical arguments, in ge-
neral, that would permit to separate some definite representation for the form
factor, or, at least, a class of representations. To do this one must go beyond
the framework of the Breit-Wigner approximation to describe wide resonances
(unstable particles). At the time being various authors place additional «rea-
sonable requirements » on the form of the form factor. Thus, in ref. (14) some de-
finite (still not unique) form of the phase of =w scattering was used, which per-
mitted one to obtain some concrete representation for the form factor, and
in the authors’ opinion, to calculate the corrections [/m,. This representation
was then used in ref. (3) for fitting the experiments and it turns out to be quite
suitable because the calculated correction (1 - 0.48 /'/m,) coincides nume-
rically with F,I'/m, which were obtained in ref. (%). However it is too early
to attach any importance to this coincidence. In ref. (**) an analysis of various
representations of the form factor has been carried out, in which the author
gives preference to representations for which the phase of w=r scattering de-
pends in a more complex way on the momentum, since they lead to the desired
result (/"~ 120 MeV). Note that treatment of the experimental data by a for-
mula of the same type (1) carried out in ref. (315) yields [I'= (111 4 6) MeV
and I'= (123 - 7) MeV, respectively. All this information supports that the
spread of the parameter values is objective, and cannot be eliminated within
the framework of the Breit-Wigner approximation.

In the subsequent analysis of the form factor it is desirable to establish the
qualitative peculiarities initsform (the extent of asymmetry, the rate of decrease
at V1> m,, the behaviour near the threshold of the reaction). For this purpose
measurements must be made far away from the resonance (*). By the above-
cited reasons this seems to be much more interesting than the subsequent more
accurate definition of the experimental information on the p peak. Thus this
treatment finally permits one to have a better understanding of the properties

() G. Gounaris and J. SAKURAI: Phys. Rev. Lett., 21, 244 (1968).

{¥*) M. Roos and J. PisuT: Nuel. Phys., B 10, 563 (1969).

(*) We shall not discuss the problem of g-w interpretation, the study of which is
highly interesting.
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of the trinteraction. Independent measurements of the phase of the form factor
are also desirable though this would require more complicated experiments
(for example, measurements of photon polarization in the reaction ete~— win—y).

8. — We make one more note on the use of the sum rules. Their direct use
is so far impossible, since the experimental data are not sufficient so that, in
fact, a check is made of the consistency of the analytic approximations to the
form factor at the experimental parameter values only. Let the representation

(40) F0)) = t>1,

hold, in which P,(¢), @,.(t) are polynomials of corresponding ranks. Hence
one can find the form factor (assuming that zeros are lacking)

(41) F(t) = R(t) exp[—V1—tIn R(0)],

where

k3

IT(+va—a—un)

=
I
A

(42) R(t)= |F(1)]

B

(1 +V(E—1)/d—t))

-~
-

-

Here ¢, are the roots of corresponding polynomials. From formula (41) it fol-
lows that at R(0)<1 the form factor increases exponentially at #<C0, but
this is forbidden. Therefore we must have R(0)>1 (") (exponential decrease
may generally be absent if the form factor has zeros). For the form factor (39)
(if one applied it over the whole region) proceeding from these reasonings, we
have-that at k= F,I'jm,< 1+ 2m,I'/m}, (R(0)<1) so we have come to a
contradiction.

In ref. (*2) the sum rules derived by the authors were checked with the aid
of numerical calculations. It has been found that the sum rules are poorly
satisfied. It must be stressed that the authors used representation (39) with
k= 0.77 at which, as it was shown above, the sum rules cannot be satisfied
at all.

(*) This condition follows directly from the sum rule (15).
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RIASSTUNTO (%

Si & condotta un’analisi del comportamento del fattore di forma del pione per
t{— + oo in definite ipotesi sulla proprietd del fattore di forma come funzione ana-
litica in un piano complesso dell'impulso trasferito ¢. Si sono trovati i limiti del
modulo di fattore di forma e del raggio elettromagnetico del pione. Si ¢ formulato
il metodo che permette di ottenere le rappresentazioni integrali del fattore di forma
e si sono ottenute alcune rappresentazioni definite. Si sono trovate ed analizzate le
regole di somma per il fattore di forma e si sono considerate alcune questioni collegate
all’uso delle regole di somma. 8i & discussa la situazione sperimentale odierna del fattore
di forma del pione.

(*) Traduzione a cura della Redazione.

O TeopHH 3JIeKTPOMATHUTHOIrO (hopm-PaKTOpa NHOHOB.

Pestome (*). — BBIT npoBeneH awanm3 IMOBEASHMS IMMOHHOrO (opM-(akTopa mpu
t— 4 co IpH HEKOTOPBIX OMPEIENCHHBIX MPEAIOTOKCHHAX Ha CBONCTBO (opm-hakTopa,
KaK aHaJMTHYeCKON (yHKIME B KOMILIEKCHOM IUIOCKOCTH IIEPEIABAEMOrO HMIYAbCa f.
Beum malinenst rpaHmnbel A MOAyIA dopM-aKkTopa ¥ 3IEKTPOMATHWTHBIL pPamnyc
mioHa. Beur chopMynupoBaH MeTOm, KOTOPHIA HO3BOJISET IIOJIYYMTH HHTErpajibHEIC
npeacTaBneErd GopM-pakTopa, u OLUIM IIOJYyYeHBI HEKOTODPHIE ONpPENCICHHEIE MpeaCcTa-
BicHud. BpUIn HalfZeHB W HpOaHAN@3HPOBAHB! MpaBWilA CyMM s dopM-hakropa, u
OBIIN PACCMOTPEHBI HEKOTOPHIE BOIPOCHI, CBA3AHHBIC C MCHONB3OBAHMEM IIPABHII CYMM.
Bruta obcyxpena dkCOepUMEHTANIbHAN CHTYAlHWs IS NMHOHHOTO dopM-akTopa Ha cero-
OHAWIHWA [I€Hb.,

(*) Hepesederno pedaryueit.



