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Collective Excitations and Their Microscopic Models.

S. T. BELYAEV

Academy of Sciences, Siberian Division, Institute of Nuclear Physics - Novosibirsk

The topic of these lectures is a eritical analysis of existing models of col-
lective excitations (mostly mieroscopic ones) and ways of their improvement.
The lectures do not claim either to make a full survey of the subject or to pre-
gsent a complete solution of the problem. The author was led mostly by his
personal interests and stresses, not by existing results and achievements but
rather by problems which remain to be solved.

1. — Phenomenological models.

The low-lying excited states of even-even nuclei (below (2,5--3) MeV), have
mostly a collective nature. But the character and structure of this «collecti-
vity » cannot be interpreted unambiguously. The great number of 07, 1" states,
and the large static quadrupole moments in «spherical » nuelei, are not the
only examples which cannot find any satisfactory explanation within the
framework of the traditional models.

In fact, all of our phenomenological models are based on the two simplest
models: namely, the rigid rotator and the harmonic vibrator.

One can only conditionally speak of harmonic vibrations in nuclei. This
model allows only a very rough description of experimental trends for the
first one or two excited states, and one could hardly speak of well-defined
vibrational bands.

As for the rotational model, the situation is much more satisfactory. The
predictions of the model are rather well confirmed for « deformed » nuclei.
But even in this region we are facing essential deviations from an ideal model.

This becomes more evident as new data are collected and as the experi-
mental accuraey is increased.

Vibrations and rotations are only two ideal limiting cases. The structure
of the real nuclear excitations are more complex and very likely to be of some
intermediate structure between vibrations and rotations. Thus the search for
new phenomenological models is going today along the path either of gene-
ralization of the ideal models or of a construction of some interpolation formula.
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Let’s consider as an example some modifications of the rigid rotor model.
It is well known that for not very high angular momenta good approximations
to experimental data are achieved with the series

(1.1) B(I) = AI(I +1) + BI*(I +1)* + CI¥I +1)* + ....

But discrepancy grows when higher angular momenta come into play and
more sophisticated formulae for the energy levels E(I) are needed. Several
more or less successful approximations are known [1]. It is very convenient
to represent their results in terms of a variable moment of inertia (VMI) [2].
‘We write down the energy as

(1.2) B(I)=I{I+1)2F+ ¥(F)

and agsume the moment of inertia # to be determined from the extremum
condition

ol
(L% (gf);= =¥

The funetion ¥7(#) is to be chosen and parametrized to fit experimental
data. We restrict ourselves to the two-parameter approximations

a) | 7(F) ! (’f —1)2 (Harris) ,

(1.4) h éfuk Fo
b) Y(F) = 2;% (;ifl)z (Holmberg, Lipas) .

For small values of the parameter %k (kI(I +1)< 1) eqs. a) and b) are
equivalent:

(1.5) FUI) ~ Fo+ LI 4 1) .

In the opposite limiting case (kI(I +1)>31) eqs. a) and b) lead to diffe-
rent asymptotic behaviour, namely

(1.6) a) Foclb, b el

Experimental data available today do not allow one to make an unambi-
guous choice between the two formulae, but the «oscillatorlike » asymptotic
relation

Lo, Foo

&

seems to be more favourable (see Prof. Kienle's lectures).
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Now, it is a good place to make one general remark concerning phenome-
nological models. If one has in mind these models as the only goal to fit
experimental data, unlimited possibility for speculation becomes open. In
fact, the models must not be in contradiction to the consequences of more
basie and fundamental microscopic models, which comprise much broader
sets of phenomena. Two examples for illustration are:

1) A rigid static y-deformation was postulated in the Davydov-Filippov
model, But all attempts to find a microscopic confirmation of this assumption
failed. Oaleulations gave too soft y-deformations if any.

2) Different modifications of the original Bohr-Mottelson rotation-
vibrational Hamiltonian have been used with hydrodynamical expressions for
inertial parameters. On the other side, realistic microscopic calculations give
inertial parameters which have nothing to do with hydrodynamical form.

In this sense the VMI model is not at all a model since it does not contain
any cause of variation of the moment of inertia. It is rather an empirical
formula for the interpretation of experimental data.

The microscopic calculation of the moment of inertia 7 is possible within
the framework of the cranking model. In this model one considers rotation
induced from the outside with a definite angular velocity £. Therefore this
model defines in fact the function #(£2). The angular momentum I appears
only at the last stage, in the relation

1.7 I=0792).

It is worth-while to stress that the asymptotic solution Eoc I, focl
(and correspondingly 0~ 0, =const (")) ean be consistent with the crank-
ing model relation (1.7) only if the function #(£2) has a singularity for 0
near 2., e.qg.,

'Qz c 2 2 fo
F()~ 7, T and 0 (1);3; Q,(l o T) )

Whether this is an indication of an inconsistency in the usually made ex-
pansion in £ when solving the cranking-model equation, or of an inconsistency
in the model itself, remains to be investigated.

2. — Microscopic models.

The more profound regularities of the collective states and their nucleon
structure can be found only within the framework of microscopie models.

{*) Interrelations among the quantities ¥, #, 2 and angular momentum I are deter-
mined by the general equations ()= dHE)/dl =1/ 7.

PEEEY T e——————
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The starting postulate of the models is the following. Nueleons move in a
potential well (its self-consistency is assumed but not always proved expli-
citly) and interact via residual (effective) forces. The final goal is to find col-
lective types of excitations in this system and determine their characteristics.

Every particular realization of the microscopic model has at least two
weak points:

a) choice of the initial effective interaction and

b) validity of the approximations made.

Correspondingly, there are two ways of improving the model: to vary and
correct the type of interaction (unfortunately, it is often done by justinereasing
the number of free parameters), or to correct the scheme of calculations (usually
by expansion and subsequent complication).

A few words concerning the choice of effective interaction. We do not
know the effective interaction in every detail but we do know parts of it. First
of all we believe that there is some type of quadrupole-quadrupole interaction.
The existence of deformed nuclei, the low-lying 2"-states and some other pheno-
mena are their indications.

Then, we have an evidence of pairing forces which manifest themselves
in odd-even binding energy differences, energy gap in excitation speectra of
even-even nuclei, ete.

But the pairing and quadrupole forces alone cannot explain even quali-
tatively the whole variety of collective excitations in real nuclei.

So, we face the problem of how to search for additional parts of the effective
interaction without so manysided promptings from nature as in the case of
pairing and quadrupole forces. One has to realize that to put simply an addi-
tional term in the effective interaction (usually in a separable form with free
parameters) and to fit restricted experimental data of a collective state is a
very simple but rather dangerous way to solve the problem. One should always
be sure that the choice made is consistent with more fundamental facts
and laws; and, even better, to try to use these «first principles » as a search
tool. It iz useful to give a few examples for illustration.

i) The simplified version of pairing forces usually used is not consistent
with general principles. It takes into account only matrix elements of a very
gpecific form, namely

o, 7|V P, 75,

where » and # are time-conjugated single-particle states (7).

(*) Ininfinite media it corresponds to the interaction matrix elements {p,—p|V|p’,—p">.
It means that a pair of nucleons interact only if their total momentum equals zero.
When the pair starts to move as a whole the interaction is switched off.
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Such an interaction violates gauge invariance. But it turns out that starting
from the given pairing matrix elements one can complete the interaction by
additional elements exploiting just the principle of gauge invariance without
an introduetion of any new parameters. The additional terms in the interaction
generate @ new branch of excitations, « pairing fluectuations » [3]. From the
general point of view this is an example of the « Goldstone theorem » which
states that when a symmetry is broken in the process of formation of single-
particle excitations, the symmetry must be restored by the proper collective
excitations. Therefore, from a knowledge of the single-particle structure
(pairing forces) we can unambiguously predict the ecollective excitations
(« pairing fluctuations ») needed to restore gauge invariance.

ii) Effective forces and self-consistent potentials have the same origin,
namely, the initial nucleon-nucleon interaction. On the other hand, from the
observed single-particle spectra we know many characteristics of the nuclear
potential, one of them being a spin-orbit splitting which can be described as

14v
2.1 coc (I-8)= — .
(2.1) Aeoc (I-3) T
It is very natural to assume that (2.1) is an image of the corresponding
term in the two-nucleon effective interaction, say of the form

(2.2) Vie= _Jg"k(sl + &) (pr—pP:) XV d(r,—r,)

(r, p, s are position, momentum and spin of the nucleon). One can easily see
that eq. (2.2) leads to the self-consistent potential (2.1) and it fixes the coupling
constant & completely. This allows one to use the term (2.2) in order to find
the new collective excitations, «spin-orbit vibrations » [4].

Now, we shall come to the second « weak point» of microscopic models,
namely, the validity of the approximations made.

Any microscopic model deals with the many-body problem and therefore
needs some approximations. Numerous approximations used for treating
collective excitations are in fact equivalent to the random-phase approximation
(RPA). This can be confirmed to some extent for the excitations which are
sufficiently close to harmonic vibrations. As for the more complicated cases
the problem has to be investigated. The simple models which allow exact
golutions are very useful for this purpose.

We consider fwo simplified models of nucleon pairing. The nucleons ocecupy
two degenerate levels with the splitting & (each with the same degeneracy 2£2)
and interact with pairing forces.

The first model is T, = [1| (i.e. pairing isotopic-noninvariant) with the
Hamiltonian

H,=—GP'P, P=3(t;a,+a;a).
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We restrict ourselves to the most interesting case, when the number of
nucleons N=2£. Then in the absence of interaction (G =0) the lower
level is fully occupied and the upper one is completely empty. The excitations
of the system occur when two nucleons jump from the lower to the upper
level (") with the energy increase AW=—2e. As the pairing constant & in-
creases these two-nucleon excitations become more and more collective (« pair-
ing vibrations»). At the critical point where ¢ =@, —g/202 the permanent
pairing becomes advantageous (¢« pairing deformation »).

It is very instructive to compare this « phase transition» in exact and
approximate solutions. The results for the first two excited states are shown
in Fig. 1 (extracted from [5]), which indicates that RPA gives satisfactory

El2¢

\
1 |

616, —

Fig. 1. — Comparison of the exact solution and RPA for the two first excited states in
the two-level model with |7',| = 1 pairing (from ref. [5]): exact, —— — RPA.

results for G/G.< 1 as well as for G/G,>1 but completely fails near the
G|G, =1 region.
Now let us consider a model with isotopic-invariant 7'=1 pairing with
the Hamiltonian
H=—G 3 PP,

¥=0,%1

where P, corresponds to a nucleon pair with isotope-spin projection 7. The
excitation spectrum for this case (which is represented in Fig. 2 [6]) is
more complicated. Being pure vibrational near ¢ = 0 it turns into the set of
isotopic « rotational bands » (Woc I(T + 1)) for the limit G/G,> 1. So, in this

(*) We are not interested here in odd-nucleon transitions.

5 — Rendiconti S.I.F. - LIII.
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model one can test the applicability of the RPA not only for vibrationlike
excitations but for the rotational ones as well.

5 | B
3
&4
o ‘f
\ o/
N\
£ AT
ol \\} /
’ ' T=3
\‘ :
| NS
\/
1 1 L ’ 1 1
0 1 2 3 4 0 1 2 3
GIG, 616,
Fig. 2. Fig. 3.

Fig. 2. — The level structure of exact solution in the two-level model with 7'=1
pairing (from ref. [6]).

Tig. 3. — Comparison of the exact solution for the first excited state (one of those
plotted in Fig. 2 with the results of the eranking model) and RPA (from ref. [6]):
exact, — — — cranking model, —.—.— RPA.

Fig. 3 shows the energy of the first excited state (7=2) given by exact
solution and RPA (built on & «spherical » as well as a « deformed » basis). It is
seen that RPA is justified only in the case G/G.<1 and completely fails in
deseribing the «rotational » case. In the same plot the eranking-model result
is also represented which gives a rather good desecription of the «rotational»
limit but deviates strongly when coming nearer to the transition point.

One can hardly expect any constructive prescription from such simple
models but two conclusions are evident:

1) RPA cannot be applied for a description of the rotational states,

2) neither RPA nor the cranking model can be effective in the transition
region.

From the first view the method for the proper description of the transition
region can be obtained by making a marriage of the RPA and the eranking
model.
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The union (although put into practice as projection methods) can hardly
be fruitful as the eranking model is too inconsistent to be a good starting point
in breeding new microseopic methods. This point needs to be investigated
in more detail.

3. — Equations of motion for pair operators.

Pair operators are the fundamental quantities in the microscopic theory,
the quadrupole moment ¢, being such an example:

(3.1) Q, = 3 (lg,2>aja, .
1,2

Here a,, a;’ are the destruction and ereation operators of a particle in state [1).
Later, we shall consider the corresponding time-conjugated state .

In the spherical quantum number representation (with definite angular
momentum j, its projection m and additional quantum numbers y)

11> = lydimid ,

(3.2) a5 , ,
Ty = (=1 ™[y, j—m,) .

Note that under two-fold T-conjugation:

1

—_
]
S
—
(=7

\‘:*11>, a’f:_a’l'

Condensing notation, we rewrite (3.1) in the form of the trace over single-
particle states:

Qp e *'E <] qu\:')‘>aza’: S TI'{qr‘ﬂﬂ,’r) )
1.2
where aa’ is understood to be

aa' =3 [1>a,al 2.
1,2

In addition to operators of the Q-type («particle-hole» pair operator),
we need another kind of operator (« particle-particle » and «hole-hole » type)
in order to treat pairing phenomena:

P=—3|p|2)a,a; =— Tr(pad) .
1,2

In order to condense our expressions we introduce the following matriz
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notation (o —=1,2):

p, = ((f}) —glw(;”:_‘) =S Y,
Y —(a', @) = 3 (al, a;) Q| = 3 PLD) U] .

1

(3.3)

In matrix notation, an arbitrary pair operator can be written as
(3.4) X=—3}Tr(@?PY¥",

where the trace is taken over single-particle states as well as over the matrix
indices «, f=1, 2:

3 Qald|2f> CAFP 1) = 3 &,,(1, 2) Pa(2) Pa(1)

1,2;x,8 1,2;«,0
(later, we assume repeated indices are summed).

Note. — A transformation from operators a to ¥ is ambiguous because of
the evident relations

W) =i,
(3.5) ; o
Y1) =—i, W,(1)

(%, 7%, 73 are the Pauli matrices). Using (3.5) we can write the trace (3.4) in
two equivalent forms:

(3.6) Tr (@PP*) =8,,(21) P, (1) P5(2) =
= — 5, (2 T)7% T3 Wy () W (1) + (1) .
It is convenient to eliminate the ambiguity by always defining # invariantly

with respect to the transformation (3.5), i¢.e. by taking the half-sum of the
two equivalent right-hand sides of equation (3.6). Then, the new & defined as

2,5(12),,, = }(8,5(12) — 75y By o @ 1) Thro)
has the symmetry property
(3.7) B,(12) = — 135 By »(31) 2,

With this convention any pair operator X' can be unambiguously written as

(3.4") X =—1Tr(3P¥") + (c-number term).
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The expression (3.4') is specified below for some physical operators:
Quadrupole moment

(3.8a) E: §,=19,.

Pairing operator

(3.8h) P=A[G=—3a8;. P=1r'—14r2.
Angular momentum operator
(3.8¢) Jp; j= T"j‘u — j}‘ .

Particle- Number operator

(3.84d) N=Yala=}Tr(1)—3 Tr (2 P¥"): a=1".

Commutation relations.
From the definition (3.3) it follows '

V(1) PhH2) + PH2) ¥, (1) = 8,50,, ,

(3.9)
yja(l ) qjﬂ(iz) + l{lﬂ(g) Wa{l) = "':r::ﬁ 615 = ?:T;“ 62; .
(Note. — In aceordance with (3.2") é;; =—4d;,). Using eq. (3.9) one can ob-

tain convenient commutation relations of ¥ and ¥ with a pair operator (3.4")

[¥,(1), } Tr (@PYP")]= —&,5(1, 2) Py(2) ,
(3.9)

[P:(1), § Tr (ZPPH)] = P1(2)3(2,1).
As a consequence one obtains
(3.10) [P¥', § Tr (3PP = [PV, 3],

where the right-hand side (or rather its matrix element (le|...[26>) has the
following meaning:

P,(1) P)(3)2,(3, 2) —2,,(1, 3) ¥,(3) ¥5(2) .

Hamiltonian. — For simplicity we consider separable forces when the inter-
action Hamiltonian can be represented as a bilinear combination of pair oper-
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ators:

(3.11) H=H,+3%39,X°X°,

where

H,=—}Tr(@¥¥"), & =1

(Here X° and X° are pair operators of type (3.4) and the g, are the coupling
constants.)

Bquations of motion. — Using equations (3.10) and (3.11) we obtain
(3.12)  [P¥', H] = [&, Y¥P—1 3 g, Tr (@ PP")[a", it —

— 33 g7, PP T @ VY.

1f we further neglect the commutators of X7 with YWt (they result in a
non essential renormalization of & only), eq. (3.12) can be written as

(3.13) [Py, H] =8>, ¥¥'],

where

(3.14) 8> —5,—} 3%, Tr (3" PP —1 29, Tr @Y.
a a

The case of pairing and quadrupole interaction. — The corresponding in-
teraction Hamiltonian in Hq. (3.11) has the form

139, X°X°>—3%3Q.Q,—GP'P,
a u
hence
8% =20+ 3 34} Tr (3, PP + 1 6B Tr (PYY") + 16D Tr (')
I
Using eq. (3.8) one can write this as

(3.15) 80 — g — AP 1 — A 2
where
EZEU_‘%%QZQ;H QP:—%TI‘(?‘*Q‘HW!{’*},
(3.16) A® — GPH ——1G Tr (11 PP) = 1 (4 + 41,
A7 =GP =4 1G4 Tr (G WP = H(d— A"y,
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In explicit matrix notation, eq. (3.15) has the form

o £ —A
(3.17) s _(‘_A+ 3)

and the equation of motion (3.13) is equivalent to four equations following

from:
£ —MN\fa a a d
)’ H} . (_Jf —s )((i"af (7,}(1) B

3 ]8) (1 (L+ a
(3. atat at
+ e
a a a a £ —A
(ci*af L"i*d) (~ At —& ) ’

— Methods of approximation for equations of motion: Hartree-Fock

ST

npproximation.
The eq. (3.13)
(4.1) [P, (1)¥H(2), H] = 821, 3)W,(3) P5(2) — P,(1) ¥;(3) 8753, 2)

is the operator relation containing the destruction and ereation operators of
nueleons. Let |w) be the exact states of a nucleus (eigenfunctions of H):

(4.2) Hlwy =W

Upon taking the matrix element of (4.1) over the ground state of the nu-
cleus |0), the left-hand side vanishes, and for the right-hand side we make the
following fundamental assumption:

(4.3) (0]8=wPH|0) = 3 (0|8 |w) (w|FF*0) ~ (0[8[0)(0[F¥)0) ,

w

which is justified if the nondiagonal matrix elements (0|8|w) are small compa-
red to the diagonal elements (moreover, they are not summed coherently
in (4.3)).

Using approximation (4.3), eq. (4.1) takes the form

(4.4) (8, B] =0,

where

(4.4')  8,5(1,2) = (0]83(1,2)[0) and  R,(1,2) = (0], (1) ¥;2)]0) .
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Equation (4.4) defines the single-particle density matrix R ,(1, 2). The
gquantity S plays the role of the single-particle Hamiltonian, and has a self-
consistent nature due to its feedback dependence on R (through ¢, and A).

The natural way of solving eq. (4.4) is as follows: Let ¢ and B, be the
eigenfunctions and corresponding eigenvalues of the Hermitian operator §

8,,(12) 9P (2) = P(1) B,
(4.5)
@i ?(2) 85,(21) = E LTy

(or symbolically Sg® — ¢ H,; ¢'P8 = H,¢').
Then the combination

(‘-1.6) z(pf}.] . Q? q)'i'(ii(s )

satisfies eq. (4.4) for any set of numbers ,. The quantities #, have the meaning
of particle occupation numbers, ¢.e. the probabilities to find the corresponding
level in the self-consistent well oceupied by a particle (or rather by a quasi-
partiele).

If we consider « pure configurations » only then we have to put all #, equal
to 1 or 0. (The pure configurations with Slater determinants as wave functions
proved to be the most stable solutions of the HF equation. They can also be ob-
tained from the variational prineciple.) This is equivalent to the following
condition imposed upon the density matrix:

(4.7) R*=R

(which is evidently valid for any matrix R with eigenvalues 1 or 0 only).
Thus, eq. (4.4) allows a variety of solutions which is connected, in fact,
with the freedom of the choice of the state [0). The additional condition (4.7)
restricts the choice of possible states only to those with « pure configurations ».
To extract the real ground state of the nucleus one should chose a specific
set of &, (=0,1) describing a Fermi-sea completely filled.

Random phase approzimation (RPA). — In the Hartree-Fock method the
interaction between nueleons is accounted for only in the self-consistent po-
tential. The nuecleon motion inside the potential well is assumed to be com-
pletely independent and uncorrelated.

In fact, to describe the nucleon-nucleon dynamical correlation, a single
particle density matrix R is insufficient and higher (correlational) matrices
should be considered, e.g.

(4.8) (0[P rEto) = 3 (0| |v) (v|P¥0) .
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Usually we can distinguish two different kinds of excited states [v), those
where the correlation in nucleon motion is weak (single-particle states v,,))
and those where the correlation is comparatively strong. The latter are de-
signated as collective states |v,,). Naturally, this distinction is only quali-
tative. Semi-quantitative estimates can be obtained as follows.

Suppose we have found a pair operator, say Y, such that the matrix element
from the ground state into the collective state under consideration is large
as compared to all other transitions

(4.9) (v, Y0) > (?J._p_|Y|0) ;

Then the ratio of these two matrix elements gives some indication of the
«degree of collectivity » for |v_>.

In the case when correlations are strong enough to provide collective behav-
jour, but not so strong as to be compared with the «ground state correlation »
(i.e. a correlation already taken into account in the self-consistent field) one
can make use of the corresponding inequality

(4.10) (0| ¥10) < (0]Y10) .

Then, one may linearize the equation of motion for the nondiagonal elements
(0,,P¥"0) and use the Hartree-Fock results for the diagonal elements

(01P¥H0) ~ (v,,,[F¥|,..) -

coll
This is the main idea of the random phase approximation (RPA).

In the ease of strong correlations when the inequality (4.10) is violated,
the problem becomes very complicated. However in two important cases the
approximate solution may be obtained with the help of the generalization
of the Hartree-Fock method.

Hartree-Fock-Bogoliubov  approvimation. Cranking model. — The pairing
effect of nucleons is related to large nondiagonal elements of the operators
v A" (see eq. (3.8h) and (3.16) between the ground states of nuclei differing
by two nucleons, 4.e.

(4.11) (N|A|IN+2), (N+2|4'|N).

If states |w> considered in the Hartree-Fock method have a strictly deter-
mined number of nucleons, then the quantities (4.11) should be neglected, if
only the diagonal averaged values are considered. However one may deviate
from the strict conservation of nucleon number and assume that |w) is the
superposition of states with a different number of particles. Then we can
admit the nonvanishing diagonal elements (w|4[w). The states |w) now can
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be characterized by the average nucleon number which can be controlled by
the additional term in the Hamilfonian —AN with the Lagrangian factor A
(chemical potential).

Formally the case of rotational states is similar. In this ease the quadrupole
moment has large nondiagonal elements (of the order of diagonal) between
the states of the same rotational band (J|@|J'). We can include them in our
considerations if we permit the violation of angular momentum conservation,
and assume [w) to be a superposition of the states with different /. The average
quantity o is restricted by the additional term — £J in the Hamiltonian, where
the Lagrangian factor £ now has the meaning of the rotational angular veloeity.

One can summarize the technical essence of the methods (which are known
as Hartree-Fock-Bogoliubov in the case of pairing and cranking model in the
case of rotation) described above as follows.

Instead of looking for the eigenstates of the original Hamiltonian H which
have definite values N or J:

(4.12)

[ H|N)=W(N)|N),

one looks for the ground state of a modified Hamiltonian

(H—AN)[A) = W(A)|4) (pairing) ,
(4.13)

(H—QJ)|2) =W ()2 (rotation) .

The parameters 4 or £ have to be chosen in order to ensure the correct
average values of N or J:

(AN |A) =N (pairing) ,
(4.14)

(AT A) =T (rotation) .

The methods considered permit an approximate deseription of pairing and
rotation but suffer from a violation of the conservation laws. The methods
themselves are rather simple and give satisfactory results in many cases but
the accuracy of the approximations is rather difficult to estimate and numerous
suggestions for improvement of the methods (mostly by some projection pro-
cedure) are very complicated and not very consistent.

5. — Density matrix in collective space.
To describe pairing and rotations more accurately (without violation of

the conservation laws) one must consider simultaneously the whole band of
states with fixed N or J. In the space of these states we define a generalized
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density matrix (ef. (4.4')). In the case of pairing
(5.1) (N]?P“(_v)?’:,{v')L”) = (N, va|R|N', v'a') .

In the case of rotations the matrix is defined in the space of the rotational
band |J M) or more generally in the group of states |KJ M), i.e.

(5.2) (KT MW, (0P [T M) = (KT M, v RIE'T M, vl

The generalization in eqs. (5.1) and (5.2) as compared with (4.4") consists
in the following. R is now the matrix not only in the «inner» (single-particle)
space but in the «outer» (collective) one as well. The expressions on the
right-hand sides of (5.1) and (5.2) emphasize the formal equivalence of these
spaces.

From (3.13) we obtain an equation for R restrieting ourselves only to
the states which belong to the singled out «collective » space

(5.3) [k, H] =[S, R],
where all the quantities are matrices in the combined space, for example

SR> 3 (Nva|S|Nwo){Nw o RNV .
Nyvyoy
The matrix elements of the Hamiltonian H depend naturally only on the
collective quantum numbers

(Nva| HINWa'> = 8,8, (N H|N'> = 8,8 O H(N)
(5.4)
(KT Mya|H|K'J M0 =8, 8,0 0,0 Sy (KT |H|K' Ty

o the quantity H in (5.3) plays the role of a collective Hamiltonian which
deseribes the collective band in the usual sense (the eigenstates |w) and eigen-
energies of H are the states and energies of the band under consideration).
The eq. (5.3) can be rewritten

(5.3) (S +H,RB=0,

where the sum 8--H has the meaning of a complete Hamiltonian containing
an «intrinsic » part 8 and a collective part H. The fact that the intrinsic and
collective «degrees of freedom » are coupled manifests itself in the dependence
of the intrinsic part S on the collective variables.

In addition to (5.3) we shall assume that the condition (4.7) remains valid

(5.5) R*=R

but in the combined space.
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The eqs. (5.3) and (5.15) formally almost coincide with the equations for
the usual density matrix. The generalization consists only in the broadening
of the space. However this «only » leads to large complications.

Below we discuss one of the possible ways for the simplification of the
problem.

Operators in collective space. — The collective space—a set of strongly con-
nected states of the system—corresponds usually to a small number of de-
grees of freedom, and the appropriate variables and operators can be introduced
explicitly. To make the presentation clearer we consider below the cases of
pairing and rotations simultaneously. For pairing the operator of the number
of particles N and its conjugate phase ¢ can be chosen as collective variables.
For rotation we choose Eulerian angles 6, and usual angular-momentum oper-
ators in the laboratory J, and body-fixed I, = n,-J frames.

Pairing Rotation
, 0
(5.6) ¢;1\T:—%§B, 6;: f_u, Ii'

Note. — These operators are formally introduced in the outer «collective »
space and have the meaning only as matrix elements between the states (N|...|N')
and (KJM|...|K'J'M'). In particular, one must not mix N, J, with the corre-
sponding single-particle operators (3.8).

The single-particle Hamiltonian 8 (which contains A and @,) is not diagonal
in the collective space, i.e. it does not commute with N and J,. However,
there is an operator in the combined (single-particle 4-collective) space kom-
muting with 8.

In our cases

(5.7) [8, N+ =0, [8; I+ =0.

For rotations this results is evident: the simultaneous rotation both of
the «inner» (single-particle) space and of the «outer » one cannot change S.
For pairing (5.7) can be checked directly. From (3.17) we find

(N'|[S, N]IN) =(N—N")(N'|S|N)> =
£y 0,0 — g A N— 2].'1]3"])
—0

N+2)4° V> —&,0

NYN'N

D —d
2l I

— (N—N’)(

N’.N+2<
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On the other hand
0o —4
[’Sa Ta]-— =—2 ’
At 0

whence (5.7) follows.
Let D be such a unitary operator in the inner space that

(5.8) DN+ )D =N, DU, +j)Dr1=J,.

1t is evident that (5.8) is possible only when D depends on the collective
variables. One can easily check the existence of these operators, namely

(5.9) D(@)=expligr],  D(B) D, (0,

(D(6,) in |jm) representation coincides with the Wigner’s D-function.)
After the unitary transformation (5.9) eqs. (5.3) and (5.5) take the form

(5.10) [s+h, r]=0, yr=r,

r—=DRD-',  h=DHD s — DSD-1

’
Note that due to eqs. (5.7) and (5.8) we have
(5.]]) [‘?1 N] =0 b ['?! J_u] =0 !

which means that s does not depend on phase ¢ (in the pairing case) and may
depend only on the «intrinsic » angular momenta I; = n,(0,)J (the only combi-
nation of J, and 0, commuting with J,) in the rotational case.

On the other hand, the «collective Hamiltonian » H (which by definition
depends only on the collective variables N or I) becomes after transformation
dependent on intrinsie variables:

h=DH(N)D*=H(DND)=H(N—1%),
5.12
: : h=DH(I,)D* = H(DI,D') = H(I,—j,) .

In the rotational case we have used the relation

(5.13) DI, D' =I,—j,,

which can be proved by explicit ealculation using the definitions of Wig-
ner’s D-function and I,.
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For the case of pairing the dependence of h on intrinsic variables (repre-
gented in eq. (5.12) by the operator %) is in fact very simple. Due to the pro-
perties of Pauli matrices one has for any function H(N)

(5.14) h=H(N—1®) = hy(N)—1°A(N),
where
ho(N) = MH(N +1) + H(N—1)},

(5.14")
AN) =HH(N +1)—HXN—-1)},
which indicates that A(N) is just by definition the chemical potential.

The transformed eqgs. (5.10) are considerably simpler than the initialeqs. (5.3),
(5.5) due to elimination of ¢- and f,-dependence from » and s. But still col-
lective and intrinsic variables are mixed. This is not only due to remaining
N- and I,-dependence of s, r but also in addition, due to some complication
of the collective Hamiltonian k as compared to H. To proceed further it is
convenient to consider the pairing and rotational cases separately.

6. — Pairing problem (treatment with fixed particle number).

For the pairing case eqs. (5.10) contain only one collective operator, N.
Therefore it can be considered as a e-number parameter. This fortunate fact
simplifies the problem to a great extent and allows one to find an exact solution
of eqs. (5.10) (in contrast to the rotational case, where eqs. (5.10) contain
three noncommuting collective operators I i)

To get an idea of the structure of the Hamiltonian s-+h lets perform the
transformation (5.9) explicitly. From (5.9) and (3.10) we easily obtain

& —A4 & —A
6.1 s = exp [ipT?] ) exp[—igri]= _
(6.1) I A —s pl=igrl=| o~ _.J
where we have introduced
(6.2) A = exp [ig] A exp[id], At = exp[—ig] At exp[—id].
The quantities 4 and At are in fact independent of the phase ¢ (and cor-
respondingly are diagonal in the N-representation) which follows directly from

the evident selection rule

(6.3) (N

exp [1p]| N> = 0y yi1 s (N'| exp[—ig]| N> = O v
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In what follows we assume the quantities A(N) and AT(N) are real and
hence equal (A4 = A*'). Then it follows from (6.1) that

(6.4) s =gt —A7!

The first term hy(N) in eq. (5.14) is independent of intrinsic variables and
hence commutes with ». The second term — v*A(N) has the same structure
as the «kinetic energy » term in (6.4). Therefore, eq. (5.10) is reduced to the
form

(6.5) [, r]=0,

where in ¢' (in contrast to s) the single-particle energies are measured from
the chemical potential A:

e—A —4 )

(6.6) s’—s—r3l=( _
—A —e+ 4
The eq. (6.5) formally coineides with the corresponding equation in the
HFB approach. Its solution with the additional eondition 72= 7 is well known,
namely

11—y} —uw,
(6.7) Pl = ,
—u, 7, q);

where » denotes the single-particle eigenstates of & and the quantities u,, v,
are defined from

. w O &,— A A
(6.8) v=q (1 — —) i 2u,v,= T
4y v

e

E,= \/(év"‘A)T"f:jz y

(time-conjugate states », # are degenerate, g, = &).
In our case the quantities 4, A in eq. (6.8) depend on N as on the parameter.
The density matrix B can be obtained by the inverse D-transformation

(6.9) R, —=D'r,D=

1—o)(N +1) —exp[—ig]lu,(N)v,(N) exp[— igﬁ])
(ﬂ'xl} [igs]u,(N)o,(N) exp [ig}] (N —1) '

where the displacement of the argument in o} is due to the equalities

exp [—ig] 0 (N) exp [ig] = v*(N +1),

explig] v*(N) exp [—ig] = v*(N —1).
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So far we have considered the quantity A as a free parameter. Now we
have to choose it in order to fulfil the self-consistency condition. From
eqs. (3.16) and (6.9) we find

(6.10) A= exp[—ip]dexp[—ip]=—GTr (T1 AL, R) —

9
&

= exp [—i¢] D u,v, exp [—id]

and after using eq. (6.8) we obtain the equation for A (which also coincides
with that of the HFB approach)

1
; 1= ;
(6.11) ¢33,

The chemical potential A(N) (and consequently the energies H(N)) still
remains to be found. For this purpose we shall use the consistency condition
for the collective variable N, namely

« N must be equal to the total number of particles given by eq. (3.8d) ».

Ag a result one gets
N=1Tr(1)—3} Tr (" R),
or after using eq. (6.9)

(6.12) N=3}3{e}N +1) +o(N—1)}.

Equation (6.12) differs from its counterpart of the HFB theory by displaced
arguments in »*(N). Hence in principle one cannot solve the problem sepa-
rately for one nucleous but one h 18 to consider the recurrent eq. (6.12) for the
whole chain of nuclei with . —2, N, N+2... nucleons.

But in fact the .mgumunt dl.‘ipl;b(.é‘lﬂ(‘l]t in eq. (6.12) modifies the HFB
results for A(N) and A(N) only in small terms of the order of (1/N®). These
terms are of no importance in caleulating the energies of the ground states
H(N), or rather the consequent differences

H(N +1)— H(N—1) = 24(N),
H(N +2) + HN—2)—2H(N) = 2{M(N +1)— AN —1)} ~ 4(24/0N).

7. — Rotational problem (scheme of solution).

Before going into details we repeat in a schematic instructional way the
sequence of operations needed to approach the final result.
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I) We start with equations
(7.1) [S+H, R]=0, R*=R,

where 8§ and R are matrices in the combined intrinsic 4 collective space
(KJM, va|...|K'J' M, v'a'> and H, the collective Hamiltonian, is a matrix in
the collective space (KJ|H|K'J).

1I) We than perform a unitary transformation DRD™*=vr,..., and ob-
tain the transformed equations

(7.2) [s+h,#]=0, =y,
where the dependence on collective variables may be as indicated
s(1;) , r(L;) , h=H(I;—j,) .
III) Solve equations for the matrix » with h as given.
IV) Perform an inverse transformation, obtaining
R=DwD, H=D"hD .
V) To find H we use the consistency condition

(7.3) J, =—4%Tr (j,R(I,))

»

A few additional comments.
a) Physical meaning of D-transformation. The formal manipulation with
Wigner’s D-functions gives, e.g.

(7.4) Dj, D =D%0)j,, DgD*=D50)q;.

If we compare these formulae to those which relate the angular momentum
operators J, and I,, namely

(7.5) J, = D301,

then it becomes evident, that the D-transformation corresponds to a rotation
from the laboratory frame of reference to the intrinsic (« body-fixed ») frame.

Consider, for example, the usual unified model expression for the quadru-
pole moment

Q,(0) =3 D6, ,

A

6 — Rendiconti S.I.F. - LIIL
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where

—=feosy, a=o_,=(1V2)fsiny, oy=a,=0.

Then the single-particle quadrupole interaction transforms as follows:
+ -
qu.u 0)D7 = ZD%D 'Q,0,) Zqiy& zD“A Di( Z‘h“;t :
“

i.e. transforms into the quadrupole interaction in the body-fixed frames which
is (as it should be) independent of 0.

b) The consistency condition (1.3) can be written in the form

(7.6) I,=D,J, f—-gﬂia(oi)T1-(jl‘D“(Gi)r(I)D(Bi)) .
which shows that all dependence on the angles 0, in the right-hand side must
disappear in the correct solution.

¢) The D-transformation helps us to simplify the initial equations. The
new «total Hamiltonian » s -k does not contain the angles 0,. But the problem
is still complicated and one has to look for some approximation.

8. — Adiabatic approximation.

The rotational energy, as a rule, is considerably smaller than the single-
particle one. Therefore we can use an adizbatic approximation.

In zeroth order we can neglect in eq. (7.2) the term containing h (which gives
the rotational splitting). Then eq. (7.2) is reduced to the usual equation for
the mngle-p.u‘t!(]c density matrix [s, 7] =0 and one can look for a solution
which is independent of the collective variables.

In the next orders there appears a dependence also on the collective varia-
bles I,. Therefore it is reasonable to look for the solution of eq. (7.2) in the
form of a series of terms with inereasing powers of I,, (or I,—7;):

p=F 04 =7 (L —i) +.e,y
(8.1) " i o
s=8+sV4 ... =8485 ,—7) +....
In the first order in I, one has to solve the linear equation

(8.2) [8, 7] 4 [0, #] + [, #] =0,

where for AV one needs o quadratic term. When I, = K is a good guantum
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number the rotational energy H(I) is a function of I* and therefore
; A 1 P
(8.3) Wo(L) = HO(I—j) = 5= (I—j)*

This results in the linear term after commutation in eq. (8.2). When we
put (8.1) and (8.3) in eq. (8.2) two kinds of terms appear, namely, those linear
in I, and those independent of I,. One obtains, therefore, two equations.
Equating the coefficients in front of I, we obtain

1] 1] 1 (1]
(8.4) ['977’1]'1‘[317?:'_?[.7.;7?]:0'

This equation defines the first order correction to the density matrix which
is linear in I,. (The second equation gives a correction to the I;-independent
term and is therefore less important.) An additional equation for r,, originated
from r? =7, has the form

[ 0
(8.47) rr, T =1;.

The moment of inertia % as introduced in eq. (8.3) as a free parameter, has
to be obtained from the consistency condition (7.3). Making use of (8.1) one
proceeds in the following way:

J,=— 3 Tr (ij-er(Il—j,.)D) =—1Tr (j#D—erDD-I(IZ—jl)D)
(then using the relation D~\(I,—j,) D =1,),

= T} ’l‘r (j,u:D_l TJ.D) Iﬂ.
(after rearrangement inside the trace),

=—} Tr (Dj,Dr,)1,
(and due to (7.4)),

J, =—31Tr(j; A.rj)l)}:';vlr;1 ;

This equation is equivalent to

(8.5) I, =—3Tr (jur) I,

which results in the following equation for the moment of inertia #:

(8.6) 3 Tr(j,r) =—204 .
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Equations (8.4) and (8.6) coincide with the corresponding equations of the
cranking model which in fact proves the equivalence of two approaches in the
approximation considered. Nevertheless, it is worth-while to obtain an explicit
expression for the moment of inertia using eqs. (8.4) and (8.6).

Consider eq. (8.4) in the representation when § and # are diagonal

(8.7) valp'a’y = 0,0 0,0 8(ve0) alfy'ay = 0,0 0,0 1(var) .
Then, from eq. (8.4) we have

1 r(vee) —r(v'e)
F s(var) —s(v'at’)

(8.8) Cvalralv oy = ((voc\jﬂv’a’} — Flvalsaly'a')) ,

which, being combined with eq. (8.6), gives

(8.9) F o= . r(ve) —r(v'e’)

y T - -t (P L |
o' |fa|vocy ((valja|v'e’y — F {varsalp'e’)) .
3 2 s — sirar) < % 1Al > (valjaly'a’y — F valsiyal))
The term containing s, deseribes the variations of the self-consistent single-
particle Hamiltonian due to the rotation. It depends on the details of the
nucleon-nucleon interaction and is in fact not very important (*) [7].
So we restrict ourselves to the main term in %

1 rlva) —r(v'a’) y 4
. Fihyr i AV — 0 &k et "o’y
(8.10) O 5 WZM s p——— v | |va) ver|fave Y

The representation (8.7) (3: er® — A7t is din.gonnl) is connected with the
original one (when ez® is diagonal) by the well-known Bogolyubov transfor-
mation (**)

ruv A
(8.11) v, ( )

where u,, v, are given in eq. (8.8). The simple exercise with U, leads, to the
following explicit expression for the quantities contained in eq. (8.10):

s(ver) = B, 5, ,

(8.12) riva) = F(1 + 7),,,

<vo:|j:{}v’oc’> = (u,v, —v,u,) 075, <v|j1}-v'> .

*) For the pairing and quadrupole interaction the last term in eq. (8.9) vanishes.

In what follows we consider the ground state rotational band with I;= K =0.

")
(!
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From eqs. (8.12) and (8.10) for the moment of inertia we obtain

(8.13) F= z'-é’-’“;"’; "ty 1 — o102

which is just the cranking-model value [8].

9. — A few general remarks in conclusion.

The idea to generalize the HF approximation by simultaneous consideration
of the whole rotational band has been utilized by KErRMAN and KLEIN [9]. They
considered equations of motion for the matrix elements of Fermi operators

(9.1) Yd M) = Gla,TM>,  @wIM)={JMla,i) .

The quantities ¥,(vJ M) and @,(»J M) have been considered as wave func-
tions of two (unfortunately different) Hamiltonians in the combined space
[vJ M ». Two not orthogonal sets of functions ¥, and @, are tangled by the anti-
commutation relation which has been used in [9] for normalization of ¥, and @,.
Unfortunately the whole scheme turns out to be too complicated to be used
ontside the simplest approximations (adiabatic or RPA).

The relative simplicity of our method is due to the use of the normalization
condition

R—R=—0,

which allows to consider a closed set of equations for the density matrix E.
Certainly, the relation R*= R is an approximation. But the equation of
motion in contracted collective space is already an approximation. These two
approximations are compatible since the equations of motion (7.1) result in
the relation (°)

(9.2) [R*—R, H+8]=0.

On the other hand the relation k* = R seems to be a reasonable approx-
imation from the physical point of view (™).

(*) By the way, eq. (8.2) means that the quantity B?— R if not zero has to be a
constant of motion in combined space.

(**) The relation R?*= R holds for the Slater-type state, 1.e. independent quasiparticle
gtructure. The collective excitation produces a variation of the selfconsistent field and
consequently of the quasiparticle wave functions but not of their occupation numbers.
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Due to the simplicity of the method suggested (*) it opens a series of possi-
bilities for different approximations. The first one is an asymptotic expansion
(I'>1) for the higher part of a rotational band, where one can use the small
values of the commutators among the operators I,. The second possibility
is to include into the scheme phonon operators in addition to I,. Dr. ZELE-
viNsky and myself are investigating these and other possibilities.

(*) The first result, though obtained in a slightly different scheme, can be found in the
paper by 8. T. BELYAEV and V. G. ZELEvVINSKY: Jadernaje Fizika, 11, 741 (1970)
(English translation in Sov. Journ. Nuel. Phys.).

REFERENCES

[1] 8. M. Harris: Phys. Rev., 138 B, 509 (1965).
[2] M. A. J. Mariscorri, G. SomARrF-Gorpmaser and B. Buck: Phys. Eev., 178,
1864 (1969).

(3] S. T. BeLyarv: Phys. Lett., 28 B, 365 (1969).

[4] S. T. Beryvaev and B. A. RUMIANTSEV: Phys. Lett., 30 B, 444 (1969).

[5] R. A. BroGLIA and B. SORENSEN: Nuel., Phys., 110 A, 241 (1968).

6] G. G. DusseL, E. MaQuepa and R. P. J. PErAzzO: Nuel. Phys., 153 A, 469 (1970).

[7] 8. T. BerLyarv: Nuel. Phys., 24, 322 (1961); in Selected Topics in Nuclear Theory
(Vienna, 1963), p. 321.

[8] §. T. BuLyaev: Mal. Fys. Medd. Dan. Vid. Selsk., 31, No. 11 (1959).

9] A. K. Kurmax and A, KrieiN: Phys. Letl., 1, 185 (1962); Phys. Rev., 132, 1326

(1963).




