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INTRODUCTION

One of the most powerful experimental techniques for studies of the
deepest laws of nature related to the world of elementary particles is the
so-called colliding beam devices, or storage rings, which provide the
highest center-of-mass energy for a pair of accelerated particles. An
important characteristic of such devices is the so-called luminosity,

i.e. the rate of collisions between particles of the two beams which
determines the efficiency (the rate) as well as the range of experiments
available. The luminosity depends, in turn, on the intensity (the cur-
rent) of the colliding beams. Besides some technical difficulties in the
storage of a large number of particles, especially heavy ones, e.g. anti-
protons, the principal limitations of beam intensity is due to the beam-
beam interaction via their collective electromagnetic fields. This inter-
action is known to disrupt the beam completely above a certain critical
beam current (see, e.g. Ref. 1 and papers in these Proceedings). Even
much below this critical intensity the transverse dimensions of the beams
are generally enlarged appreciably which results in a troublesome drop of
luminosity. For the new generation of heavy particle colliding beam ma-
chines, now under design or even construction, the beam-beam interaction

is expected to be an even more crucial phenomenon since there is no radia-
tion damping in this case to stop the beam vlow-up, and also in view of the
enormously long life time of heavy particles in a storage ring which is re-
quired (of the order of a few days, or ~ 101l interactions, a truly cosmic
time scale!) Thus extensive studies of the beam-beam phenomena seem to be
highly in order, and even somewhat urgent we would say.

Generally, the collision of two intense bunches of particles is a
very complicated dynamical process with an infinite number of degrees of
freedom. There seems to be not much hope in any near future to study it
either analytically or numerically. Thus, the importance of experimental
work on existing, smaller storage rings must be emphasized, including
model experiments with electrons to simulate the heavy particle behavior
in future storage rings as, for example, recent experiments with low-en-
ergy electrons on SPEAR. 2

A common analytical, as well as numerical, approach to the problem
under consideration is the so-called weak-strong approximation of the 1
beam-beam interaction. What is actually hidden behind this terminology I
is a dramatic simplification of the original problem by a cut in the num-
ber of degrees of freedom from infinity down to at most three. Namely,
the influence of the weaker beam on the stronger one is completely ig-
nored, and the motion of a single particle in a given field of the strong
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beam is studied. Within the framework of such a weak-strong approximatior
a number of studies has been done (with some further simplifications) at-
tempting to understand this simplified beam-beam interaction and to obtair
some estimates for the critical intensity of the beam (the strong one in
this approximation) (see these Proceedings and also Ref. 3 for example).
The importance of those studies is related to the fact that the weak-stror
stability of particle motion is certainly a necessary, even though obvi-
ously not sufficient, condition for the performance of colliding beam
machines.

To the best of our knowledge all earlier studies were concerned with
a strong instability of motion related to the so-called overlap of non-
linear resonances (see, e.g. review papera4s5). Meanwhile, a much weak-
er instability - the so-called Arnold diffusion - is knows to occur in
such dynamical systems (see, e.g. the review paper 5 and references
therein). This latter instability turns out to be a universal one in
the sense that there is no critical perturbation strength for this in-
stability. The perturbation influences the rate of instability only.
This particular feature of the Arnold diffusion makes it especially dan-
gerous for colliding beams of heavy particles where a very long particle
life time is required. The phenomenon of Arnold diffusion has already
been studied on simple models both numerically and snalytically.6'7 The
theories developed in these works seem to agree with numerical results
within a factor of two, provided the perturbation is not too weak. The
latter condition is essential because for a relatively strong perturba-
tion, but of course still below the resonance overlap, only a few (min-
imum 3) resonances (perturbation terms) determine the diffusion rate, and
those can be explicitly taken into account when evaluating the diffusion
rate analytically (see Ref. 5 for details). For a weaker perturbation
many resonances are involved, and analytical evaluation becomes much more
complicated. We call this latter region of parameters the Nekhoroshev
region (after the name of a Soviet mathematician who first has given
rigorous upper estimates for the diffusion rate in this regiona). Un=-
fortunately due to obvious technical difficulties, his estimates seem
to be much above the actual values of the diffusion rate (see Section 6).

The present paper is a brief report on our mainly numerical studies
of the Arnold diffusion on a simple model developed in Ref. 6 (see Sec-
tion 2). This model has no immediate relation to the beam-beam interac-
tion because of the different types of nonlinearity and perturbation
chosen, yet the phenomenon of the Arnold diffusion remains the same in
both cases due to essentially the same phase space structure of both
dynamical systems. Our main objective in these studies is an attempt
to find a simple, semi-empirical relation for the diffusion rate in the
Nekhoroshev regions. We seem to have found one (Section 5 Eq. 20) and
we hope that these results will help other physicists in this interesting
and important field of research.

2, DESCRIPTION OF MODEL

The model we have studied in this work had been developed and ap-
plied in Refs. 6,5. We have made only minor improvements to facilitate
computation. The model is described by four dynamical variables: two
coordinates (xl, xz) and two canonically conjugated momenta (pl, pz).
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We specify the equations of motion in the form of a mapping:
(%45 Py) = (X3, Py), i =1, 2 where,

W xi +px, + ef (t)

e e xg S o

oy i W -
T EX) NS

Here 4 and € are small perturbation parameters, and f(t) is some driving
force, typically periodic in integer time t which is actually the serial
number of interactions for the Mapping (1).

To simplify understanding the model, we observe that for a sufficintly
small difference ]Ei - piT p et o) Iki = %y| << 1, which was actually the
case in our studies, the Difference Equations (1) can be changed into the
differential equations related to the Hamiltonain:

pf + P; x? L x4
H(xi’Pi) - 2 + % - BX X, - sxlf(t) i (2)

Alternatively, one may consider the Mapping (l) as a particular numerical
procedure to solve the equations of motion for the System (2). The impor-
tant feature of this procedure is that Mapping (1) conserves phase space
volume and, moreover, is a cononical mapping. This prevents a fast accu-
mulation of computational errors. The latter result only in some bounded
oscillations, or background, as we call it, which proves to be fairly low
(Section 4).

The Hamiltonian (2) describes two nonlinear oscillators with a weak
linear coupling (small parameter W) and a driving force acting upon one
of them (small parameter €). It is interesting to mention that, in spite
of a strong (quartic) nonlinearity, the anharmonicity, i.e. the amplitude
of higher harmonics in the free uncoupled oscillations (4 = € = 0) is less
than 4%. The frequency of free oscillations, however, grows in proportion
to the oscillation amplitude a;. In particular,

wisﬁai s ivdo e 24
where (3)

B = 0.8472.

Two types of the driving force were used:

fl(t) = cos(ﬂlt) + cos(ﬂzt) (4) :
and |
_ _cos(Cit) |

f2(t) l-Acos(Qit) ° ©)
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For (1 - A) << 1, the latter force possesses a rich spectrum:

Ze-Om
fz(r.) o E Tcos(mm:), (6)
where
N 2
o~ V1l = A .
The main coupling resonance W; = W, (a; = az) has been chosen as the

guiding resonance for Arnold diffusion. The term guiding resonance’ re-
fers to the fact that the diffusion is going on just along this resonance,
or to be more precise, along a stochastic layer around the separatrix of
this resonance (see Ref. 5). The stochastic layer is formed due to driv-
ing resonances, or driving perturbation terms in Hamiltonian (2). The
disposition of basic (first order) resonances is outlined in Fig. 1 for
the driving force (5). 1In case of Force (4) only two nearest driving
resonances remain,

w2
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Fig. 1. A set of the first order resonances for the System (2) with
driving Force (5): circle indicates location of the initial condi=-
tions; arrows show direction of the Arnold diffusion.

The initial conditions were chosen about the midpoint between two
driving resonances. Typically the diffusion rate was so slow that the
diffusion range, or an average shift of a trajectory was much smaller
than the spacing between driving resonances, so the initial disposition
of trajectories persisted during a computational run. To provide the in-
itial location of a trajectory within the stochastic layer it was suffi-
cient to set xl(O) = = xZ(O) (pl(O) = p2(0) = 0). Under opposite condi-
tions: xl(O) = xZ(O) the trajectory started near the center of the cou-
pling resonance (see Ref. 5). Both conditions are independent of the
perturbation strength which greatly simplified the computation,

The diffusion rate in energy (2) was computed. Since typically the
perturbation was very small, it sufficed to take account of the unper-
turbed energy (L = € = 0) only.
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3. COMPUTATIONAL TECHNIQUES

The iteration of Mapping (1) for various values of parameters i, €,
and Q (or Q;, () and various initial conditions was performed on the
CRAY-1 computer. The code has been written in FORTRAN language in such
a way as to have the innermost loop vectorized which provides a much
higher computation speed. To achieve this, we ran 64 trajectories si-
multaniously. The computation speed was around 85 MFLOPS (millions of
floating point operations per second) that is about half the maximal
speed (160 MFLOPS). The computation time for one iteration and one
trajectory was about 0,34 ps, or 27 clock periods which corresponded to
approximately 3.7 minutes of CPU time for a typical run of 107 itera-
tions or to 18.5 minutes for a few of the longest runs of 5.107 itera-
tions.

The sixty-four trajectories were distributed in eight groups re-
lated to eight different values of the perturbation parameter W. Typi-
cal values of this parameter corresponded to:

“-1/2 = 50, 100, 150, 200, 250, 300, 350, 400;

and have covered a fairly wide range of the perturbation strength:

¥ o 6.3.% 1070

=4 x 10
For a stronger perturbation the region of resonance overlap would be en-
tered (see Section 4). The driving force small parameter € was changed
in proportion to U so that the ratio €/4 was constant for a particular
run., Typically, e€/u = 0.1 to 0.001.

The eight trajectories of each group were chosen with slightly dif-
ferent initial conditions to supress big fluctuations in Arnold diffu-
sion by averaging the diffusion rate over all trajectories of each
group. Due to the exponential local instability inside a stochastic
layer, a very small variation in inétial cogditions was sufficient for
this purpose, typically |@x l ~ 1077 ro 107°,

In the computation of %he diffusion rate, we followed the procedure
developed in Ref. 16 and described in detail in Ref. 5, namely:

= 2
2 T (HmEn)

kTN ONCD) g (BE), (men) (7)

D

To compute this quantity the total motion time t was subdivided into

N, time intervals of length (At), each. The current value of energy H(t)
was then averaged over each of tgese intervals to give quantities H_.

The diffusion rate for a gigen pair H, H, separated by the time interval
(At)k(m-n) would be (ﬁﬁ-ﬁn) /(At)kTm-nI. This rate was averaged then over
all combination m # n to give Eq. (7). Two diffusion rates were computed
in each run related to two different subinterval (At)k, namely:

(4t); = Jgo 3 N = 100,
t
_ _max . :
(ﬁt)z R 10 E) NZ 10.
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For a true diffusion process both rates must be close (to the accu-
racy of statistical fluctuations). If, on the other hand, there are only
bounded oscillations one would expect

3

D (At)

(2) A=t -w?, ®
17 <dbics (At)2

since each of the differences (ﬁﬁ-ﬁn) would decrease in proportion to
(At)I/(At)z. For the same reason the computational value of each D in
the case of bounded oscillations rapidly decreases with the motion time:

PRt s
Dosc tmax 2 &

Comparing the two values of Dy and D,, one can get a rough idea as to the
possible portion of side (non-diffus%on) processes. It is clear also that
the D, rate is the much more reliable of the two, and so all the data be-
low correspond just to this diffusion rate Dy

4. NUMERICAL RESULTS

An example of the dependence of the diffusion rate (decimal logarithr
of D,) on the perturbation (1//it) is plotted in Fig. 2 for the following
set of parameters: |x(0)| = 0.225; 0 = 0.03466; A = 0.995 [force (5)];
€/d = 0,01 with 4 in the range: 1LAI = 6 to 400, and the motion time
Lne = 103 to 5.107 depending on perturbation. Dependence on 1//{I has
been_taken merely in analogy with a simple theory of the Arnold dissu-
sions’a, where the quantity 1//{I enters the exponent and, thus, essen-
tially determines the dependence D(lt) (see below, Sectiomn 5).

For the chosen amplitude a = x(O)l = 0,225 the oscillation frequency
w(0) = 0.19, and the ratio W/ = 5.5, that is, the system is located be-
tween resonances of 5th and 6th harmonics of the driving force. This
frequency value is sufficiently small to provide a low background. A
rough estimate of the background can be gotten from the 'diffusion
rate' near the center of resonance where the motion is perfectly stable
for a sufficiently weak perturbation. As is seen from Fig. (triangles),
the background level Dy & 10-25 for the motion time thnax = 107. The rate
D1 in thig case is ~ 1 '22, as one would expect from Estimate (8). If
tnax = 107 the background (Dy) grows by about 2 to 4 orders of magnitude,
again in rough accordance with Estimate (9). On the contrary, for initial
conditions inside the stochastic layers the diffusion rate does not depenc
on the motion time t within a factor of 2. This difference seems to be
mainly due to still appreciable fluctuations in spite of averaging over 8
trajectories. As explained at length in Ref. 5, the fluctuations are re-
lated to the complicated structure of a stochastic layer, especially its
peripheral part near the layer edge. A trajectory may 'stick' here for a
relatively long period of time which results in a big deviation from the
average diffusion rate. This is apparently also the main cause for an
always present slight difference between the two rates Dy and Dy. Typi-
cally, inside the stochastic layer D2/D1 ~ 0.8.
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Fig. 2. Diffusion rate D vs. perturbation 1//4: 0-inside the stochastic
layer; x-same with a lower accurately reduced by a factor of 500; A-at

the center of resonance, t; .. = 10°; +-same for tj, . = 106,

Another estimate for the background can be obtained from runs with a
single driving resonance [for the force (4)]. As is explained in detail
in Ref. 5, no long-range diffusion is possible in this case. The point
is that a single driving resonance would provide the diffusion only in
a certain particular direction in the action or frequency plane of the
system (Fig. 1). This direction does not generally, and particularly
for the model under consideration, coincide with the direction of guiding
resonance (and its stochastic layer). Since the width of stochastic
layer is typically very small for weak perturbation the resulting motion
would be of the type of bounded oscillations. In Table 1 we compare the
diffusion rates for a single and two driving resonances as well as for
trajectories near the resonance center with parameters given below the
Table. We see that the background as determined near the resonance cen-
ter and inside the stochastic layer with a single driving resonance is
practically the same and much lower than the rate of Arnold diffusion.
The ratio D,/D; ~ 5.10"3 for two background runs is somewhat larger than
expected from Eq. (8) but much lower than for the Arnold diffusion (first
run, D2/D1’a 0.8). A low background value for a single driving resonance
shows that the Arnold diffusion in the first run is really a long-term
one, that is, its range during the motion time B * 107 is much larger
that the width of stochastic layer.




Table 1. Background.

Average

1//B 150 200 300 350 400 background

2 15.31 | 16.23 | 18.71 | 19.80 | 20.54 - - logD2
driving
resonances 15,23 16,15 18.66 | 19.65 20.39 - - logD]

1 24.20 | 24.29 | 24.25 | 24.40 | 24.26 | 24.28 - 1ogD2
driving
resonance 21.92 22,06 22.02 22.02 22,01 22.01 - logD]
resonance 23.86 24,03 24,27 24.29 24.34 | 24,16 - 1ogD;
center 21.66 21.84 | 21.99 21.99 22,03 21,90 - logD]

hax = 1075 e/ = 0.1 a = 0.27; Q, = 0.2513; O, = 0.2167

It is also confirmed by a special measurement of that width using
a procedure described in Refs. 5, 6. Namely, for a faxed perturbation
the initial conditions were chosen according to the expression
(p,(0) = p,(0) = 0):

xl(O) = a + di; x2(0) =8 - di 3 (10)

where i stands for the serial number of a trajectory group. If d =0
the trajectory starts at the resonance center and reveals only a back-
ground 'diffusion' as we have seen above. Yet as d increases, a tra-
jectory eventually crosses the stochastic layer that is immediately ob-
vious from numerical data by a 'jump-up' of the diffusion rate. An
example of the dependence of diffusion rate on the shift d is plotted
in Fig. 3. The stochastic layer is clearly seen at d ~ 4.5 x 1073, in
reasonable agreement with the theoretical prediction5d1= JB = 5.10=3
The layer width Ad a8 4,104 is also close to the expected value

Ad & 4,3 X 10”4 according to the expression derived in Ref. 5. Note
that the diffusion rate drops by about 8 orders of magnitude (1) at
both edges of the layer. According to Ref. 5, the layer width in en-
ergy is related to (Ad) by a simple expression:

AH = a2.d-Ad (11)

Whence the time interval required for the diffusion to reach across the
layer is

(HY | 103, (12)

Numerical estimate is given for the parameters used ip Fig. 3. Time in-
terval Ty is much less then the motion time t_ .. = 10’, so that the dif-
fusion is spreading along the stochastic layer at a distance 100 times
as much as the layer width. However for this run the relative change

in energy is only ~ 1%, and even 4 times less in amplitude and in fre-
quency w(a). This results in only ~ 1% relative change in detuning

bw = Ql - W W - 02.
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Fig. 3. Diffusion rate vs. initial conditions: d = [xl(O) - x,(0)]/2;
p1(0) = py(0) = 0; LWVH = 200; &/ = 0.1; a = 0.2; t "= 107; fogp) - x;
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Coming back to Fig. 2 we see that even for theweakest perturbation
with 1//f = 400, the background is more than 5 orders of magnitude lower
as compared to the rate of Arnold diffusion inside stochastic layer (Fig.
2). However, for a sufficiently strong perturbation (l//ff & 80) the dif-
fusion rate near the resonance center 'jump up' by almost 10 orders of
magnitude (!) and attains that level inside the stochastic layer. This
simply means that the resonance center has become completely destroyed by
a strong resonance overlap whose border is marked in Fig. 2 by the dashed
vertical line as evaluated according to Ref. 5 (there, see Section 4.1).
This line, thus, divides the whole perturbation range into two regions-
the resonance overlap, or a strong stochasticity, and the Arnold diffu-
sion, or a weak but universal instability. Note, that there is no ob=-
vious change in the dependence D(4) between these two regions in spite
of a quite different mechanism of the diffusion. This allows us to
describe diffusion in both regions by a single expression except, per-
haps, under the very strong perturbation at the leftmost part of the
plot in Fig. 2 (see Section 5).

Another set of data is plotted in Fig. 4. It corresponds to 10 runs
with parameters given in Table 2. The quantity & is the detune between
the oscillation frequency w(0) and that of the nearest driving resonance.
In all runs of Table 2 but the first the two detunes, which are related
to the two nearest driving resonances, are equal. If they are not equal,
the bigger of the two values should be taken. The point is that, as was
explained above in this section (for more detail see Refs. 5, 6), a long-
range diffusion can be provided only by at least two driving resonances.
Hence, if the influence of two resonances is different (due to a different
detune, for example), the diffusion will be determined by the weaker one
(with a larger detune).
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Fig. 4. Diffusion rate D vs. perturbation 1//{, parameters of trajectorie

are given in Table 2.

A large dispersion of points between runs in Fig. 4 is obviously due
to the variation of the model parameters for these different runs. Since
our model has no immediate relation to the problem of the beam-beam in-
teraction in which we are interested, the 'raw' data presented in Fig. &4
are only of a minor importance. We need thus to trace some regularities
in this raw material to get rid of the peculiarities of the particular
model under consideration.

5. SCALING

We may start with an explicit expression for the rate of Arnold dif-
fussion in our model as derived in Ref. 5:

(nawefm)2 ’ n[&wl
DRST{T * 8 RH- 5 (13)

where f_is the Fourier amplitude for the nearest harmonic of the driving
force f?t), Q“ ~ 0.85/H the frequency of small phase oscillations on the
guiding resonance’, and L is some logarithmic factor which for our.rough
estimates may be considered as a constant. The physical meaning of the
first factor if very simple and transparent. Indeed, the quantity
avef  ~ Efmi gives the order of magnitude of the driving force power re-
sponsible for the diffusion in energy. Further, since an elementary
change AH happens each halfperiod of the phase oscillations (see Ref. 5),
that is on time scale Tl_1 ~ 1/ 4, one would expect AﬁﬂsfmaW-qA, or for the
diffusion rate

2
h (AH)Z“ (efmaw)

T ’
W L

(14)

D
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Table 2.

Parameters of trajectories related to Fig. 4.

Range, Range, Backgrd¥*, " w DH m%ﬂon

Nog 1//4 - lowp o 380 “max m a A Q mw _oe_ Fig. 4| Comments
1| 154-434( 17.6-24,7 | 26.3 u.Hou 0.01 | 0.27 - - | 29/25| 0.0226 0 Force (4)
2| 50-400| 11.4-18.4 | 24.9 Hou 0.01 | 0.225] 0.995( 6.5 - 0.0147 A Force (5)
3| 50-400| 10.8-20.3 | 24.9 HOQ 0.01 | 0.225( 0.995| 4.5 - 0.0212 + y

4| 50-400( 12.0-20.7 | 24.9 How 0.01 [0:295] ©.995}.325 - 0.0272 X w

5| 50-400( 12,7-21.6 | 24.9 Hoq 0.9% |.'0.295] 0.98.].5:5 - 0.0173 ¢ 3

6| 164-444| 17.7-23.2 | 27.0 u.Ho.N 0.001| 0.225( 0.995| 5.5 - 0.0173 ) I

7| 24-304| 11.3-20.7 | 24.8 Hou 0.001| 0.225| 0.995| 5.5 - 0.0173 b4 "

8| 154-434| 17.3-22.3 | 24.8 aou 0.001| 0.265| 0.995| 5.5 - 0.0177 -4 "

9| 50-400| 10.9-19.5 | 27.0 m.HOu 0.01 | 0.225| 0.995| 5.5 - 0.0173 X p
10! 104-384| 13,8-18.9 | 27.0 m.aoq 0.01 | 0.2251 0.995] 5.5 = 0.0173 X "

*For 1//iI > 150, see Fig. 2
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in accordance with explicit Relation (13). Note, that the symbol = here
means proportionality rather than order of magnitude (symbol ~), since
obviously an exponential factor is present. Nevertheless, this estimate
for the factor is part of the exponential term seems to be fairly gener-
al, and we may try to rescale the numerical data making use of the de-
pendence in Relationship (14). Namely, let us introduce the reduced
diffusion rate D* according to the relation

- ShAT M 2.2 4 3/2 (8)\2
D* = = D/e"f . 15
GZf;afi m® ¥ (u) A

The latter expression takes into account the fact that in a single run
€/u = constant, and so besides a constant factor only dependence on [ is
to be introduced in rescaling.

As was observed in Refs. 5, 6, relation (13) does not hold for a
sufficiently weak perturbation (see Fig. 5 below), so the exponent in

0.00
_ -5.00
*
=]
S
(4]
o
=
-10.00
2 ! L y
005 3.00 6.00 9.00 12.00
M

Fig. 5. Dimensionless diffusion rate D* vs. rescaled perturbation
M= l&wl/J_- Dashed line shows dependence given in Eq. (13), and the
solid line is the least square fit of the data to the Relation (16),
using Q = 1,

Eq. (13) has to be changed somehow. At this point we may try to make
use of some rough estimates derived in Ref. 5 (see also Ref. 9 for a sim-
plified version) which may be represented in our case as follows:

D* = A * exp |:- B -(hf—)”Q] (16)
o

where A, B. f and Q are some constants independent of the perturbation.
Since D* is a rescaled diffusion rate, the factor A is dimensionless and
would be expected to be of the order unity. Parameter F may be chosen
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to have the dimensions of frequency in order to make factor B dimension-
less. Note that the analytical estimate (13) is also of the type of
Eq. (16) with

2

A=%£!r-==0.56;B-1'r;F=lGUJl;Q=1,

where L~ 5 is assumed for 1//if ~ 100, and relations W = Ba and 0, = g
are taken into account.5 Relation of the type (16) follows also E;om
Nekboroskev's estimates in Ref. 8. Since the Relation (13) describes the
Arnold diffusion fairly well for a relatively large perturbations?,6, it
seems plausible to assume F = ]GWI also for a weaker perturbation. In
other words, we may rescale the perturbation as well by introducing in-
to Eq. (16) a dimensionless quantity:

=

Now we may rescale numerical data to the variables D¥* and M and try to
fit them to Eq. (16). An example of rescaled data for the 10 runs
listed in Table 2 is given in Fig. 5 using coordinates logD¥ and M for

Q = 1. The dashed line represents Relation (13) which is valid only for
M= 3.

From comparison of Fig. & with Fig. 5, it is clearly seen that the
dispersion of numerical points has been considerably reduced by rescaling.
Thus, Eq. (16) at least represents some partial dependence of the diffusion
rate on the model parameters. (Note the difference in scale of the verti-
cal axis on the two Figs.). To find the optinal values of the parameters
A, B and Q in Relation (16), a least squares fit of the numerical data was
done in the 5ollowing way. For a given value of Q the pairs of quantities
logD#* and ML/Q for all the 10 runs in Table 2 have been fitted to a
straight line corresponding to the Relation (16), each fit giving two
parameters A and B in dependence on Q value. The quality of a fit is
characterized by the root-mean-square deviation

s = V<(logd* - logn})™> , (18)

*
where D* are computational data and where is related to Eq. (16). It

is convenient to introduce another characteristic of dispersion

D*
_ f<(1 )§>
R =10° = 10 *o}

which represent a certain average ratio <D*/D#> (or vice versa <D*/D%*>,
of course). The results of the fit are Summagized in Table 3.

(19)
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The ratio R characterizing the dispersion of numerical points (see
Fig. 5) is not very sensitive to the value of Q, especially for a large
Q, but factor changes drastically with Q. Since A ~ 1 is expected,  as
mentioned above, we have only to choose between Q = 1 and Q = 2. The
value Q = 2 seems to be better in regard to a lower dispersion R and a
reasonable value of A. Thus, we would suggest the following estimate
for the rate of Arnold diffusion

D*me 26 * exp (- 7.9 x /M) . (20)

In Fig. 6 numerical data are plotted in coordinates logD* and /M, the
straight line representing Relation (20). Surprisingly, this relation
describes satisfactorily also the region M < 3 where more accurate esti-
mate (13) is applicable (comp. Fig. 5), and even the resonance overlap
region. The latter would correspond roughly to /M < 1.3 except trajec-
tories No. 3 and 4 (see Table 2 and Fig. 2).
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Fig. 6. Same as in Fig. 5 for Q = 2.

For another set of 10 runs with different values of the parameters
the least dispersion was obtained also for Q = 2 with A = 42.1 and
B = 8.2 which is rather close to the rough estimate given by Eq. (20).
The minimal dispersion R = 3.21 was still less in the latter case (comp.
Table 3). If one should try to fit original numerical data (in coordi-
nates logD and 1//i1) as plotted in Fig. 4, one would obtain the minimal
R a~~ 30 for both sets of runs. On the other hand, the minimal dispersion
for a single run fit would be R~ 1.13 only. So, the above mentioned
dispersion R m 3 characterizes the accuracy of a simplified Estimate (20).

6. DISCUSSION
The main question to be discussed is whether Estimate (20) describes

Arnold diffusion only for the model under consideration, and moreover,
only in the restricted range of parameters actually studied numerically,
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or can one hope to apply Eq. (20) in a more general situation. This
question may be answered partly via a comparison of the empirical para-
meters in Eq. (20) with the analytical consideration of Ref. 5 (see al-
so Ref. 9). Let us consider first the most important parameter Q. Ac-
cording to Ref. 5, it is equal to the number N of basic frequencies of
the unperturbed system whose combinations give rise to a dense set of
driving resonances. It is precisely these higher order resonances which
increase the diffusion rate as compared to the simple Estimate (13) (see
Fig. 5). Even though their amplitudes are muich smaller than for the
first order resonances (Fig. 1) on which Eq. (13) is based, they are

much closer so that the corresponding detune f&w{ is much smaller. Even-
tually, as the perturbation decreases, just those high order resonances
determine the diffusion rate (for more details see Refs. 5, 9). Since

in the model under consideration there are 3 basic frequencies [wl, Wy,
{1, Force (5)], Relation (20) with Q = 2 seems to contradict at the first
glance with the conclusion in Ref. 5, 9. However, the two frequencies in
our computation are very close, especially for a weak perturbation

W, W, ~ W,. Hence, the high order resonances are essentially related
to the considerations of only two frequencies: W, and (), and the general
relation

Q=N (21)

needs not to be changed but should be only interpreted in a proper way.

Consider now the factor B on the exponent of Eq. (16). Again, ac-
cording to a simplified estimate in Ref. 5 [Eq. (7.46)], B 27 for a
low harmonic guiding resonance (W, = W, in our case). The latter value
is, indeed, fairly close to the empirical B =~ 7.9 (20). Finally, to the
best of our knowledge there are no analytical estimates for the factor
A in Eq. (16). So we are simply left thus far with an empirical value
A~ 26, and we have to be satisfied that its order is, indeed, not much
different from 1 as expected (see above).

As was mentioned in the Introduction to this paper, Nekhoroshev ob-
tained® some rigorous upper estimates of the Type (16). The main
peculiarity of his estimates is a rather high value of Q. This best
result reads:

2
A=§.Ij__N_+_8= 4.5 (22)
4
where numerical value is given for N = 2, This value seems to contradict
with our numerical results since the corresponding factor A would be in-
comprehensibly big (see Table 3).

Summarizing, we have reason to believe that Estimate (20) may have a
wider application than to just the simple immediate model from which it
has been obtained.

Let us try to apply our estimate to a rather different system, namel
a particle in a magnetic trap. The alleged Arnold diffusion of electrons
in two different experiments was analysed in Ref. 9 using a rough estimat

Tvz ~ exp(b/Qi/B), (23)
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where T is electron lifetime; v dimensionless strength of driving reso-
nances due to the azimuthal variation of the magnetic field; Q = N =3
since there is no special relation between the basic frequencies, Larmor
frequency W = 1, and the frequency of phase oscillations on a guiding
resonance

Qy ~ exp(1/26), (24)

with some small adiabaticity parameter €. Now we may rescale the per-
turbation as was done in Section 5 for our simple model, namely:

Q-0 /l&ﬂf, where mean detune (6W) is determined now by the lowest
dfift frequency of an electron (), ~ (p/&)2 with p equal to the electron
Larmor radius, and 4 the scale o% the magnetic field, whence:

1
Tv2 ~ exp [- B % 2/3e2€] 4 (25)

A new factgi B may be calculated from the data in Ref. 9 using relation:
B =b/p) 3 with factor b from the Estimate (23). The results are
shown in Table 4. One can see that B values are much closer than those
of b. The ratio of mean b values for thel two experiments is 2.33, where-
as that for B values is 1.35. So the scaling used in Eq. (20) seems to
work in this case as well. On the other hand, the mean value < B > = 12.9
is a great deal larger than for our numerical model (B = 7.9). 1Is it a
real contradiction? Not necessarily at all!

The point is that Eq. (20) describes the rate of Arnold diffusion
in relatively very narrow stochastic layers (see Fig. 3), whereas for
most initial conditions the motion is perfectly stable. If it would be
so in a real dynamical system, the Arnold diffusion would be of no
practical importance. However, there is always some additional 'ex-
ternal' (in regard to a dynamical system) diffusion, or noise, which
brings system into all of stochastic layers. In the case of electrons
in a magnetic trap it is the gas scattering. But then the average
diffusion inside a stochastic layer, since the sojourn time inside a
layer amounts to only a small fraction of the motion time. The corre-
sponding reduction of the diffusion rate may be very roughly estimated
as follows. From a simple theory of the Arnold diffusion resulting in
a relation like Eq. (13), it is known® that the width of a stochastic
layer (w_) is proportional to an exponential factor similar to one in
the diffusion rate.

m|dw
w <= exp (ﬁ ) .
s ZQH

The exponent in the latter expression differs from that in the diffusion
rate by a factor of (1/2) only. One can draw from this comparison a
very rough conclusion that the reduction of the diffusion rate due to
some external noise, being proportional to the layer width, would re-
sult in an increase of the factor B in Eq. (16) by a factor 1.5. 1In
other words the reduced diffusion rate would be roughly a product of

the rate inside a layer and the layer width. The actual ratio of B
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values for a electron in magnetic traps (Table 4) and for our purely
dynamical model [Eq. (20)] is 1.63, Since estimate (25) is very rough
and is based upon only a few experimental points (see Table 4), any
recomendation of this estimate seems premature. Instead, additional
studies of the Arnold diffusion in more realistic conditions are very
much in order.

Table 4. Arnold diffusion in magnetic traps.

1 14
= et b
€ pp
7489 8.96 3.66 15,

1st. experiment 6.68 6.61 4,38 15.4
8.25 6.61 3.37 11;9
13.6 17.6 1:75 11.8
2nd. experiment 14. 15.5 1.51 9.4
Mean Value 12,9
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