BEAM-BEAM EFFECTS FOR THE ELLIPTICAL BEAM WITH THE LARGE RATIO OF THE TRANSVERSE DIMENSIONS

A. L. Gerasimov, F.M.Izrailev, I.B.Vasserman

Institute of Nuclear Physics, Novosibirsk, USSR
J.L.Tennyson

Institute for Fuaion Studies, the University of
Texas at Austin, Austin, Texas 78712, USA

Achieving a maximal current together with a minimal beam size is one of the most important problems in colliding beam accelerator phyaics. As it is known, the main reason for an increase in the transverse alzes of the beams is the stochastic instability of the particles imposed by many interactions with nonlinear field of the colliding beam. Although the basic mechantsm of this phenomenon is quite well understood, no satisfactory theory concerning its application to the colliding beam problem is available to date. The particular case of 'one--dimensional' models, in which only one degree of transyerse particle motion is considered, has been quite thoroughly analysed, both analytically and numericaliy (see, e.g., Ref. 1). These models (in there aimplest form) deacribe the interaction of a single particle with a beam whose cross section is round or flat.

However, in most existing facilities the beams have an elliptical crose section. Despite the fact that parameter $x=\sigma_{x} / \sigma_{z}$ is often large ($x \approx 10+40$), it is questionable whether a one-dimensional approximation accounts for the specific features of the motion in beams with high ellipticity. Moreover, recent numerical experiments with more realistic models (Refs. 2-4) do not olarify the functional dependence of the critical values on the parameter $æ$. It is known, for example, that the round beam with equal betatron frequencies ($V_{x} \approx V_{z}$) possesses some advantages (Ref. 5). On the other hand, some numerical resulta (Ref.6) seem to indicate that the critical parameter $\xi_{c r}$ for flat beam is larger than that of a round one. This is related with the peculiarities of the resonance structure in the phase plane. Therefore, the role of the beam ellipticity for the achievement of max ximum ξ must be clarified.

In the present paper the structure of nonlinear resonances in the model of a etrongly elliptical beam is analysed, and some characteristic features of this structure (which are directly related to the experimental data on the VEPP-2M facility) are investigated.

The $e^{+} e^{-}$-model is described by a four--dimensional mapping including:

1) betatron oscillations between the collision points;
2) interaction with the gtrong beam in the usual thin-lens approximation;
3) madulation of the radial motion by日ynchrotron oscillations (with the Ψ-function not equal to zero at the collision pointa);
4) synchrotron radiation and quantum fluctuations related to this radiation (noise);
5) linear coupling to simulate the effect of quadrupole lenses turned by 45°.

All the parameter values have been chosen close to those of the VEPP-2M. The forces f_{x} and f_{z} from the strong beam with elliptical crose section (due to Gaussian distribution $\rho=\rho_{0} \exp \left(-x^{2} / 26_{x}^{2}-z^{2} / 2 \sigma_{z}^{2}\right) ; \quad x=20$) have been calculated according to exact formulae (Ref. 7) for discrete values (x_{i}, z_{j}) with linear interpolation between them.

An analytical study of similar systems with two degrees of freedom and with an external periodic perturbation turns out to be much more difficult than the 'one-dimensional' syatems mainly because the potential of the elliptical beam is very complicated function of variables X and Z. As a result, some important characteristics of nonlinear syatems, such as the frequency dependence of the amplitude (or nonlinear tunes $\Delta V_{x,}, \Delta V_{z}$) and the amplitude of resonance hamonics are difficult to deacribe analytically. In the case of numerical simulation some additional problems arise. They are associated with the fact that the phase space of the syotem is four-dimensional and therefore (unlike the "one-dimensional" models) the resonant structure is hard to visualize.

For this reason, in our research we have used the method suggested in Ref. 8. The main idea is to atudy the location of the most aignificant resonances in the amplitude space (A_{x}, A_{z}) of transverse motion rather than the resonance structure in the plane of the betatron frequencies. To do this, it is necessary, first of all, to find the tune shifts $\Delta V_{x,} \Delta V_{z}$ as a functions of the amplitudes A_{x}, and A_{z}. This dependence; obtained by numerical integration, is plotted in FIg. 1 for $\xi_{x}=\xi_{z}=1$. The variation range of the amplitudes A_{x} and A_{z}, normalized over σ_{x}, σ_{z}, corresponds to the aperture of the VEPP-2M to $106 x$ in the x-direction and to $806 z$ in the z-direction, respectively. The real picture (for $\xi_{x} \xi_{z} \neq 1$) is obtained by a suitable coordinate scaling. Regions in which ΔV_{x} is only slightly dependent on A_{x} (vertical lines $\Delta V_{x} \approx$ const), appear only for large x, and the motion in these regions is close to one-dimensional.

Fig. 1 gives the frequency-amplitude correspondence which makes it possible to map any resonant line from the frequency space into the amplitude space. In this way one can locate in the amplitude space (A_{x}, A_{z}) any given resonance $n_{x} v_{x}+n_{z} v_{z}+$ $+n_{2} v_{5}=k$ (here k, n_{x}, n_{z}, n_{s} are integers and ν_{s} is the synchrotron frequency).

Uaing the computer we investigated the resonance structure in amplitude space for various values ξ_{x} and ξ_{z}. A tipicel example is illustrated in Fig. 2, where, the two scales are used in the z-direction.

Fig. 1. Nonlinear tume shifts of elliptical beam for different values of the amplitudes A_{x}, A_{z} (for $\xi_{x}=\xi_{z}=1$, $x=20$).

For the sake of clarity, only the main resonances are represented, while we have neglected the multiplet aplitting of every resonance caused by synchrotron oscillations ($V_{S} \neq 0$). The dotted lines correspond to the degenerated resonances which arise when the potential symmetry is broken (for example, in the case of constant displacement on x-direction, see, for example, Refs. 1 , 6). However, as it has been shown in Refs. $5,1,9$ and 10 , the effect of gynchro-betatron resonances can actually be significant, since the presence of these resonances can substantially decrease the stochasticity limit $\xi_{c r}$ 。

It is seen from the picture of resonance lines in the amplitude space that they are not uniformly spaced. We remark that it is not a consequence of having truncated the order of resonances ($N=\left|n_{x}\right|+\left|n_{z}\right| \leqslant 16$ but rather related to the specific properties of the coordinate change $A_{x, z} \longleftrightarrow V_{x, z}$ and the choice of the operating point V_{x}^{0}, V_{z}^{0}.

Usually the operating point is chosen near the strong lower-order resonance (in our case $V_{x}^{o} \approx V_{z}^{o}$). As seen in Fig. 2, the higher -order resonance lines are regrouped into families having common intersection points which lie on the coupling resonance line $V_{x}=V_{z}$. The "empty" regions in the amplitude plane close to these points can be of great importance, since here the motion is expected to be much more stable.

The most tipical peculiarity of the resonance structure is that the resonance li-

Fig. 2. A resonant net in the amplitude apace (A_{x}, A_{z}) for elliptical beam. Two different scales in the Z-direction are used: for $10 \leqslant A_{z} \leqslant 80$ the scale is 7 times larger than for $0 \leqslant A_{z} \leqslant 10$ ($V_{x}^{0}=3.06$, $V_{z}^{o}=3.08, \xi_{x}=0.07, \xi_{z}=0.14 \cdot$ Maximum resonance ordex $N=16$).
nes are considerably streched along z-direction. Therefore, whenever overlap occurs on x-direction the formation of a stochastic region which extents itself along Z --direction is created.

The important problems in numerical aimulation to be clarified are both the choice of an optimal ratio F_{x} / ξ_{z} and the study of the influence of the aperture aizes on the limiting value of the current. It is usually assumed that only the z-direction is of significance for the aperture limitation. HoweVer, the experiments performed at the VBPP-M (Ref. 11) have shown that for the conditions of thit atorage ring (where the radial aperture is approximately 8 times larger than the vertical one) the limitation to the lifetime stems from the particle departure out of the radial aperture rather than the vertical one.

Numerical simulation has been carried
out with the following parameters, close to the parameters of the VEPP-2M: $V_{x}^{\circ}=3.06$, $V_{z}^{o}=3.08$ and $x=6 x / 6_{z}=20$; the number of colliaion points is $m=2$, the damping time is $\tau_{0} \approx 10^{5}$ iterations, the modulational amplitude (connected with the radial dispersion function) $A_{s}=0.56 x$ and the modulational frequency is $V_{s}=0.01$.

The resulta of numerical simulation haVe been represented as the histograms of motion in the amplitude plane A_{x}, A_{z}. In a detailed numerical study of the beheviour of individual particles for various initial data, the general features of the motion was found to be accounted for by the resonance structure (Fig. 2). For example, a rapid growth of the amplitude in the z - direction was observed: $z_{\text {max }} \approx 55$ for $\xi_{x} \approx 0.055$ and $\xi_{7}=0.11$. At the same time numerical simulation shows that the width of stochastic region in the x-direction not too small and increases up to the 105_{x} at large times. This fact can explain above mentioned experimental data (Ref. 11). It should be noted also that on the edge of stochastic region only the highest-order resonances are present and, therefore, their effect in restricting the lifetime of the beam is likely to be significant. The typical example of such motion is given in Fig. 3.

Conclusions

1) For elliptical beams with large ratio $\sigma_{x} / \sigma_{z} \gg 1$, the resonances in the amplitude space are stretched in the z-direction while their overlap occurs, mainly, in the X-direction. As a result a large stochastic region, elongated along z, appears. The numerical simulation confirms this conclusion.
2) Although the increase in the amplitude of betatron oscillations is most significant in the z-direction, in the case of insufficiently large radial aperture it is the radial X-direction which is responsible for the limitation of the maximal currenta in colliding beame.
3) Numerical simulation shows the presence of a weak diffurion in the x and z. -directions for large time scales ($t \geqslant 10 \tau_{0}$) which in turn causes a small increase of the stochastic area. This fact may explain some experimental data on VEPP-2M, where lifetime of the beams even for large $z \gg G_{z}$ is slightly dependent on the aperture limitation.

References

1. F.M.Izrailev, Nearly linear mappinge and their applications. Physica 1D (1980) 243; Preprint INP 80-149, Novosibirek, 1980.
2. S.Myers, Beam-beam simulation for LEP, IEEE Trans. Nucl. Sci. NS-28 (1981) 2503; CERN-ISR/RF/82-06.
3. S. Peggs and R.Talman, Proceedings of the 11 th International Conference on

High Energy Accelerators, Geneva, 1980, p. Th4.
4. E.Keil, Evaluation of the beam-beam effect in PEP, CERN-LEP-TH/83-19.
5. F.M.Izrailev, G.M.Tumaikin and I.B.Vasserman, Preprint INP 79-74, Novosibirak, 1979.
6. F.M.Izrailev, S.I.Mishnev and G.M.Tumaikin, Preprint INP 77-43, Novosibirak, 1977; Proc. Xth Int. Conf. on High Energy Acc., Serpukhov (1977), V. II, p. 302.
7. V.V.Vecheslavov, Preprint INP 80-72, Novoaibirsk, 1980.
8. J.J.Tennyson, Resonance streaming in electron-positron colliding beam systems, in book "Long time prediction in dynamics", (Nonequilibrium problems in the physical sclences and biology, v. II) 1983, p. 427.
9. F.M.Izrailev, I.B.Vasserman, Preprint INP 81-60, Novosíbirsk, 1981.
10.A. Piwinski, IEEE Trans. NS-24 (1977) 1408; DESY-77/18 (1977); IEEE Trans. NS-28 (1981) 2440.
11. F.M.Izrailev, I.A.Koop, A.N.Skrinaky, G.M.Tumaikin and I.B.Vasserman, Preprint

Fig. 3. Typical distribution of the trajectory in the A_{x}, A_{z}-space for $t=90 \tau_{0}$ (The same parameters as for Fig. 2).

