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Abstract: The elastic scattering of longitudinally polarized protons on “He at energy E,<15MeV is
considered. The difference of cross sections for protons of positive and negative helicities which
is due to the weak interaction is calculated. The magnitude of the effect reaches 2-3 x107".

Experimental and theoretical investigations of parity nonconservation (PNC)
effects can be divided into two groups. The first is the study of few-nucleon systems
or one-particle transitions in heavy nuclei. The second group comprises investiga-
tions of PNC effects in the compound nucleus. A relatively complete set of references
may be found in a recent review article '). Usually the PNC effects in the second
group are significantly larger than in the first one. Nevertheless we find, however,
that now the first group of studies could become more important because only here
can one quantitatively interpret the effect in terms of the weak nucleon-nucleon
interaction.

PNC in pa scattering at proton energy E,=46 MeV has been studied experi-
mentally ?). According to a recent report >°) the experimental value of the effect is
in agreement with the theoretical one. Calculations of the parity-odd (P-odd)
asymmetry for proton energies 15 and 40 MeV have been performed in refs. **). A
somewhat more rough calculation was published in ref.’). In these papers the
internal excitations of the a-particle were not taken into account (potential approxi-
mation). But now it is well known that the contribution of such excitations to the
PNC effects can be enhanced significantly [see e.g. ref. ')]. The threshold of a-particle
excitation is 20 MeV and apparently at an energy of 46 MeV in pa scattering this
contribution cannot be neglected. The agreement of the experimental value with
the result of calculations using the potential approximation could be fortuitous. We
think that for the calculation of the PNC effect this approximation is applicable
only at energies essentially less than the threshold of a-particle excitation, i.e. at
E,=<10-15 MeV. The present paper is devoted to a consideration of this region.

* Permanent address: The Institute of Nuclear Physics, 630090 Novosibirsk 90, USSR.
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The method is similar to that used previously in ref. ®) for the calculation of the
neutron spin rotation in *He. We stress once again that the investigation of P-odd
asymmetry at a proton energy E,=<10-15 MeV is predominantly important from an
experimental point of view because apparently only at these energies is the quantita-
tive interpretation in terms of the NN interaction possible.

Without PNC, the amplitude of pa scattering in the centre-of-mass system is of
the form [see e.g. ref.”)]

f=A+Bv-o. (1)

Here o is the proton Pauli matrix, v=[n Xn']/|[n Xn']|, n is the initial direction of
the proton motion and n’ is the final one. The amplitudes A and B are as follows:

A =L,Z [(I+1)(e*®—1)+1(e**—1)]P(cos ),
2lk 1

1 . .
B=—7Y (e’ —e’)P{"(cos 9) . (2)
2k 7

Here k= \/Z,ch_m_, and u = m,m,/(m,+ m,) is the reduced mass. If E  is the proton
energy in the laboratory system (a-particle rest system) then k=+v2u(u/m,)E,.
The phases 6, and &_ correspond to scattering with total angular momentum
j=1+s=1x3 Itis convenient to separate from & the Coulomb part o,

5=6—+a', (3)

where o is independent of j and is of the form

oy=arg I'(l+1+i/kac)=0,t ¢,

g = Zl arctg (1/ nkac) . (4)

n=

Here ac=1/(2uea) is the Coulomb radius (we set # = c=1). The scattering phases
5 are due to the strong interaction. The values of & for pa scattering are presented,
for example, in ref. ®). The scattering amplitude can be presented in the form ’)

A=fot— % e[ (1+1)(e™ — 1)+ (™ — 1)] Py(cos 0) ,

2ik 7
1 ; . .
B=5r T e (e ™) P{(cos 6), (s)
where
1 —(2i/ka )Insinle _2io
fC = ¢ o 2% @41% |

2k’acsin® 36
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Fig. 1. Differential cross section of the pa reaction. E, is given in units of MeV.

The differential cross section summed over the polarizations of the final proton is ’)

do do
E:<@>(1+Rv-§), (6)

where

do 2 Re AB*
——— :A2+ B2 Rzi

and & is the initial polarization of the proton. The quantities (do/d{2) and R have
been measured in experiments and from these data the scattering phases have been
determined [see references cited in ref. *)]. Nevertheless we give in the present
paper, for the sake of completeness, the plots of (do/dQ2) (fig. 1) and R(9) (fig. 2).

The part of the scattering amplitude which is due to the parity-violating weak
interaction H,, is given by

fone = —ﬁwﬂmtws*» . (7)

Here | " is the initial function which besides a plane wave contains the outgoing
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Fig. 2. Right-left asymmetry R(6) for pa scattering. E,, is given in units of MeV.

spherical one:

i(+):eikl-r+feikr’ r—>00. (8)
r
The final function ¢{~’ contains the ingoing spherical wave:
%
(,/l( )—e'kr’+f 71kr F>00. (9)

The decompositions of ¢{* and y{~ into partial waves are as follows:

= k Zl el%Rl]kZ Im(N)'lem(n)Xi’

g :k_Zl e ISIJRIij jim (N) 2 () X (10)
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The radial functions Ry (r) are normalized in such a way that at r— o0

R -sin (kr—i—Lln 2kr—%l+ 6,-) ,
kac i
x; and x are the initial and final spin wave functions, and 2, is a spherical spinor.
The unit vectors are as follows: N=r/r, n=k;/k, n'=k¢/k.

The hamiltonian of the parity-violating NN weak interaction in the standard
parametrization is of the form %)

H,= 2§"—g; LT R R

— gp
2m,

x{(o,—0,) - {(p -P2), Fp}+ i(1+ ) (o, Xa5) - [(p1—p2), Fp]}

(h07y - 1yt hAM(T, + 1), + WERR(Brins =7y - 1)}

—fﬁ{h%hi&(mmz}

p

x{(o,—0,) - {(p1—p2), F,}+i(1+ us)(o, X@a;) - [(p1—P2), F.1

—2m (gwh}u _gphz)%(’rl -1,).(0,+ ;) - {(p -Pp2), Fp}

P

m hllz[Tlez]z(01+02) -[(pr—p>), F,1,

—-m_r

e
E,= s r=|r—ry. (11)
dqrr

Here o and 7 are spin and isotopic spin Pauli matrices, and p is the momentum
operator. Indices 1, 2 correspond to the first and second nucleon. The nucleon mass
is denoted by m,, and m,, m,, m,, are the m-, p- and w-meson masses. The brackets
[ , ] mean commutator, and { , } anticommutator; us=—0.12, wy=3.7 are the
isoscalar and isovector anomalous magnetic moments of the nucleon. The strong
nucleon-meson constants are g, =13.45, g,=2.79, g, =8.37. Finally f, and R}
are the weak nucleon-meson constants; estimates for them are presented in ref. ?).

In the matrix element of H,, in eq. (7) both direct and exchange terms contribute
as shown in fig. 3. The line N corresponds to one of the a-particle nucleons, jl and
jl (I=2j—1) correspond to the external nucleon in the |jl) and |jI} states. The
isospin of the a-particle is equal to zero; thus, the exchange by w-meson only is
possible in the direct graph. The exchange graph is more important since the
m-exchange term has a relatively small denominator ~1/ m?2, and the p-exchange
term is enhanced by the factor (1+ uv).



616 V.V. Flambaum et al. / Parity nonconservation

Fig. 3. Contributions to the parity-violating amplitude.

A simple calculation of the matrix element with the functions (10) gives

k
<‘1[/t("‘)|Hw|d/§+)> :;<Xf|0' -(n+n')|x)

p

XY 3(2j+1) e" i {—2g, (KO +hlT.) ],
J
i fogom e+ g,(3RO+ L) (14 py) I,

+g,(ho+h,r.)(1+ us) I, + g h, .1}
" P,(cos 6)+ Pji(cos 6)

1+cos 6. ’ =
where [=j—3 I=j j+3, and J/ and I’ are direct and exchange integrals:
;2= 2
Jo==3 P drydrydcos 0, F, (r12)|¢(r12)| | R, (72)]
dRi(ry) dR (r ) 2j+
X{ d[ : Rilr) =R jin)—— L B Ri(r)R(ry) ¢,
r ¥
; 41
Iy=— k3 drydryd cos 01, Pi(cos 015) Fu(r)|e(r, |
1
(rz)R(rz){ [R.(r)R; (rl)]+ Ra(rl)Rr(h)}- (13)
1

Here R, is the radial wave function of the a-particle nucleon. The Jastrow function
¢(r) is introduced in the direct and exchange integrals to take into account the
short-range repulsion of the nucleons:

o(r)=1—aexp(—dr).

The parameters of this function for the system N+ a are given in refs. '>'"): a =0.6,
d =3 fm > The matrices T and o in eq. (12) correspond to the external nucleon.
For forward neutron scattering in the definite helicity state, eq. (12) coincides with
the corresponding formula from ref. ®). From egs. (7) and (12) we have

fene=Co - (n+n'), (14)
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where

k . .
C=—om T 3(2j+1) o)
my 2w j

X {28, (S +hY)J, ~ V3 fog ot g,(3hS+ R (1+ ) I,

. 1,4 Pi(cos 8)+ Pi(cos 6)
+ (14 p) (o +h) L+ g D} ————. (1)

Similar to the basic part of the scattering amplitude (1), fpne in (14) is presented
as an operator in spin space. This means that the matrix element of eq. (14) between
the initial and final spin states needs to be calculated.

We will here put I, =1, because the w- and p-meson masses are very close. We
calculated the proton wave functions in the continuum spectrum using the Woods-
Saxon potential presented in ref. *). This potential gives a good fit of the scattering
phases. The wave function of the bound nucleon we found as R, =x/477p(r)r2,
where p(r) is the experimental charge density of the a-particle '*):

p(r)=Q(+w(r/c)’)/(e"*+1),
w=0.445, ¢=1.01fm, z=0.327fm . (16)

Q is the normalization constant ([ p d*r=1). Of course it is possible to use the
function R, calculated in the Woods-Saxon potential. The integrals J and I are
practically the same. The calculated integrals I, are presented in fig. 4. The calcula-
tion shows that the ratios of integrals I,/ I’, and J/,/ I, are practically independent
of the proton energy at E,<15MeV and equal’

I,/ I, =0.082, J,/ I ~=—0.10 .

Therefore the quantity C (eq. (15)) can be rewritten in the following form:
k o X
C(0)= 0.82—— x1.73y Y 3(2j+1) I, ¢+l
g J

s P,(cos )+ Pi(cos 0)
1+cos 6

;]

y="5.5f,—1.80h%—0.60h} —1.20(h%+h.)—0.13h!" . (17)

We use in eq. (17) the values of the integral ratios and of the constants g, ,, . The
quantity y is separated in such a way that it practically coincides with the constant
X% introduced in refs. '*?). We use another symbol to stress that there is still some
difference, but really this difference is within the accuracy of calculation. From the

¥ Of course we calculate the integrals with the Jastrow correction. Without this correction the integrals
I’, are larger by =33%, and the integrals I{,, JI are larger by a factor 2.
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Fig. 4. Values of the pion-exchange integrals —I'/?, —I%/? and —I°/? in units of fm?

analysis of the experimental data presented in refs. '>°)
y=XR=4x10"°. (18)
Thus due to egs. (1) and (14)
Fmd B+ Gors Lok ), (19)

Let us consider the relative difference of the cross sections for the positive- and
negative-helicity protons due to the parity violation
~do,/d2—do_/dN

do,/dQ+do_/dO°

p(6) (20)

Using eq. (19) one can easily verify that

2Re[(1+cos §)AC* +isin 6BC*]
|AP”+|B?

p(6)= (21)
This function calculated with y from eq. (18) is plotted in fig. 5. The contribution
of j =3 (ds,,—fs,, mixing) does not exceed a few percent even at E, =15 MeV. The
j=3 contribution (d3/»—ps/, mixing) is also not very important.

The calculation of the P-odd asymmetry in the angular distribution for E,=15
and 40 MeV has been performed in ref.?). All calculations (including ours) are
carried out in a potential approximation. As we mentioned in the introduction this
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Fig. 5. The P-odd asymmetry p(6) for pa scattering. E,, is given in units of MeV.

approach is unjustified for energies higher than 20 MeV. This is the reason why we
limited ourselves to an energy of 15 MeV. In ref.*) only averaged values of p(6)
for two intervals of laboratory angles are presented: { p)s-_jg0- = —0.038 X}, { P)25°_70- =
—0.044 X% at E, =15 MeV. Our calculation gives: (p)se_150-= —0.025XR,, {P)2se-70-=
—0.028 X%, (One should remember that in the figures we present the angle in the
c.m. system.) Thus, our calculation gives values smaller by a factor 1.5 than those
in ref. *). We cannot point out the reason for the disagreement because no details
of the calculations are presented in ref. *). But it should be mentioned that if one
does not take into account the Jastrow correction then the asymmetry would increase
by a factor 1.3-1.5.

In ref.*) Coulomb effects were neglected and only the P-odd asymmetry in the
total cross section was calculated. Our parametrisation of the short-range part of
the PNC interaction differs from that expected in ref. ). Therefore we can compare



620 V.V. Flambaum et al. /| Parity nonconservation

only the 77-meson contribution with this work. The result of ref. ?) for an energy of
15 MeV is (P)iora = —0.09f,. Our calculation gives {p)so_130-= —0.14f,. The value
from ref. *) is (p)s-_150- = —0.20f ..

In conclusion we want to stress once more that experimental investigations of
the P-odd asymmetry for low proton energies (E,=<10-15 MeV) is, very important.
Here the contribution of internal a-particle excitations to the effect is small and a
quantitative interpretation in terms of the nucleon-nucleon interaction is possible.

The authors are grateful to V. Dmitriev and C. Gaarde for valuable discussions.
Part of the present work was performed during the stay of one of us (O.P.S.) at the
Niels Bohr Institute. He acknowledges the Danish National Science Research
Council for financial support.
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