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The analytical performance of different X-ray emission elemental analysis techniques is compared for two applications .
Synchrotron radiation X-ray fluorescence [SRXRF] with tunable monochromated excitation gives a lower detection linut than PIXE
for dried biological samples. The superiority of SRXRF is most pronounced for elements with Z> 30 . Experimental indications are
given that SRXRF can be more sensitive than electron-probe X-ray microanalysis for small-volume or individual-particle analysis of
environmental samples for elements with Z> 40

1. Introduction

	

tion modes applied to trace analysis of biological and
environmental samples in a sense of sensitivity and
lower limit of detection .Since EDS detection of X-rays is possible with suffi-

cient resolution, various X-ray emission analytical
methods became popular in the field of environmental
and biological applications. Due to the attractive aspects
of X-ray fluorescence, i.e . relative simplicity, low cost,
nondestructive and multielemental nature as well as
quasi-uniform sensitivity, a great number of sample
types could be conveniently analysed with reasonable
sensitivity and accuracy .

The limitations of the method when low concentra-
tions or small amounts have to be analysed became
obvious. The physical reason lies in the low count-rate
capability of Si(Li) detectors (1-5 kcounts/s) in the
interesting energy region (6-40 keV), the low ionization
cross sections and, for elements with atomic number
Z < 20, the low fluorescence yield and detection ef-
ficiency . By photon excitation the photoelectric cross
section is small compared to charged-particle excitation,
and to find an optimal X-ray source in the required
energy region is not always simple .

Since the pioneering work of Sparks [1], the using of
the advantages of synchrotron radiation - high brilli-
ance, low beam divergence, high polarization - resulted
in a revolutionary improvement of sensitivity . Soon
several stations for SRXRF trace-element analysis were
constructed in the USA [2,3], Asia [4,5] and Europe
[6,7], using "white" or monochromatic excitation with
narrower or wider bandpass .

Comparison of bulk analysis with other modes of
excitation [8] and the effect of experimental conditions
[9] were already given. The purpose of this paper is to
compare the analytical performance of different excita-
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2. Experimental

Radioisotope-induced X-ray fluorescence was mea-
sured using a 300 MBq i°9Cd annular source ; the
radiation was detected by a Canberra Si(Li) detector of
3 mm thickness and 30 mm2 sensitive area . Proton
beam of 3 MeV energy was generated with the 5 MeV
Van de Graaff accelerator of the Central Research
Institute for Physics in Budapest, Hungary. The details
of the PIXE setup were published elsewhere [10] . The
final beam spot on the target had a diameter of about 2
mm; beam currents were only a few nA to avoid
deadtime difficulties and also to prevent samples from
radiation damages. Scanning electron microscope ex-
periments were done on a JEOL JSM-840 scanning
electron microscope equipped with an EG&G Ortec
5000 energy-dispersive X-ray spectrometer system . At
25 and 35 kV acceleration voltages, 0.3-1 nA electron
current was used for fly-ash samples.

Synchrotron radiation experiments were carried out
in Novosibirsk, using the VEPP-3 machine of 2 GeV
energy, equipped with a wiggler of 2 T maximum mag-
netic field . The experimental station was 9 m away from
a tangent point of the storage ring (see ref. 1111). The
synchrotron radiation produced was pathing through a
pyrolitic graphite monochromator with 1 ° (FWHM)
mosaic spread . A 5 mm thick Ortec Si(Li) detector of 30
mm2 was alligned 90' to the exciting beam ; a 15 mm
long alkonite collimator of 2 mm diameter shielded the
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peripheral region of the detector. The coefficient of
linear polarization was 0.95 . Monochromator and detec-
tion angles were changed by computer control; the solid
angle of the sample viewed by the detector was 1.3 X
10 -9 sr . With the above setup the excitation energy
could be tuned from 10 to 40 keV. Off-line spectral
deconvolution was earned out on an IBM AT compati-
ble PC [12] .
A dried animal blood standard of the IAEA was

mixed with 20% high-purity carbon and pressed into 10
mg/cm2 thick pellets of 13 mm diameter . Pd and Se
internal standards were also added to the sample .

Thin homogeneous fly-ash samples were prepared by
suspending 100 mg of the sample in inert liquid and
filtering through a Nuclepore filter with 0.4 l m pore
size. The resulting sample thickness was 5-10 mg/cmz.

Fly-ash particles were sieved and the fraction having
a diameter of 200-300 gm, coated by 5 rim carbon, was
taken for individual particle analysis .

3. Results and discussion

Dried blood samples that are typical biological sam-
ples have a high organic content. The strongly scattering
part of the low-Z elements are heavily loading the
detector at conventional X-ray excitation . Among X-ray
emission techniques, PINE is considered to be best
suited for such samples. Fig. la-c shows X-ray emission
spectra of certified reference freeze-dried animal blood
A-13 . In fig . 1 a typical thick-target PIXE spectrum can
be seen where the Pd Ka lines at 21 keV are hardly
observable . Detection limits for 1000 s counting time
are shown in fig . 2, calculated as concentrations giving
the same K,, intensity as three times the square root of
the background under the peak .

Detection limits obtained by synchrotron radiation
excitation are lower for elements with Z > 25, but the
superiority in analytical performance of SRXRF is more
obvious for elements having absorption edges closer to
the excitation energy . Best sensitivity can be achieved
for transition metals, for which both the fluorescence
yield and the photoelectric cross sections are high . At
higher excitation energies the appearance of a double
Compton scatter peak (the 30-32 keV energy region in
fig . lc) hampers the full exploration of the energy band .

In environmental chemical research there is a de-
mand for spectroscopic methods that are efficient in
trace analysis, but very often only analysis from a small
sample volume is necessary. The ability to perform
chemical analysis of individual particles became re-
cently of great importance for recognizing emission
sources of particulate air or water pollution. Electron-
probe X-ray microanalysis (EPXMA) is most frequently
applied in this context. However, trace concentrations
are hardly possible to determine; for higher Z ( > 25)
the limit of determination is above 0.1 wt.% .
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Fig. 1 X-ray emission spectra of freeze-dried animal blood: (a)
PIXE by 3 MeV proton energy, counting time 900 s ; (b)
SRXRF at 18 keV excitation, counting time 100 s ; (c) SRXRF

at 39 keV excitation, counting time 300 s .

Using a synchrotron radiation (X-ray) beam, photo-
electric cross sections are higher compared to electron
beam excitation and energy deposition is far inferior
compared to any charged-particle excitation. A synchro-
tron causes less radiation damage, and migration of
elements in the excited volume can be avoided as well .
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Fig. 2. The lower limit of detectionm animal blood by various
excitation modes for 1000 s counting time .

A NBS standard reference fly-ash sample was mea-
sured by SRXRF in order to determine the sensitivity of

several elements for a 5 mg/cmz homogeneous thick-

ness sample placed in a 2 mm diameter synchrotron

radiation beam.
Sensitivity values for EPXMA analysis of 200 1.tm

diameter fly-ash particles were roughly estimated in a

similar way. Approximate concentration values were

determined by standardless ZAF method and the ex-

cited volume was supposed to be 10 gm3on the average

[131 with a 2.6 g/cm3 density. The current was adjusted

to obtain about 2000 imp/s for each measurement.
Table 1 shows the sensitivities of elements in fly ash

in terms of cps/ng for SRXRF and EPXMA using
different incident beam energies . Since individual fly-ash

Table 1
Sensitivity [cps/ng] of EPXMA and SRXRF for elements of a
fly-ash sample

particles are very inhomogeneous, values obtained for

EPXMA are informational. It can be concluded from

the table that, using proper collimation of the exciting

beam [14], SRXRF could be an ideal analytical method
for individual-particle or microvolume trace analysis of
environmental samples such as silicates, rocks, ashes,
coal, etc., for elements with Z> 40 . EPXMA measure-
ments were carried out at 35 kV accelerating voltage as
well, but elements heavier than Y were not detected in
the ash for 1000 s counting times.
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