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Abstract: Focusing solenoids incorporated i II 
the storage ring lattice may be especially useful in 
colliding beam machines at intermediate energies (5 0.5 
Ge\/!. An example to this can be the Novosibirsk 0-f ac-. 
tory pro jet-. which envisages for a new generaticn cnl- 
iidtir with ultra-high luninosity at the $-meson reso- 
nance energy [l]. Here strong superconducting solenoids 
perform a combined service to provide for round cc,lli- 
ding beams: i) focusing to obtain equal #3-functions of 
very low value at the collision point ( px= (3=-: 1 cm): 
ii) equalizing transverse emit tances of the colliding 
bunches due t.o coupling of the betatron modes which are 

al ternate!y excited by radiative diffusion i n tilt- two 
arcs of $-factory. 

sxdt~ver‘ these advantages of solenoids are paid 
for with major nonlinear perturbations in transverse 
mot ion due t o their end-fields This results i 11 t i:,,<: 
shifts (and spreads), excitation of nonlinear resonan- 
ccs and lim’.tation of dynamic apertur-e. 

‘The paper presents analytic estimates of the 
end-field nonlirwnr ity effect ard simulation res:ll t:; I:, 
determine the dynamic apert urt ir one of the $-factor’y 
lattice versions. 

Equations of motion -- 

Using the cylindric coordinates r, 0, s and the 
kinetic momenta p,, pg, p s’ we put down the equations 

of motion for a particle of momentum p in the axially 
symmetric magnetic field Nr, H with the vector poten- 

s 
tial Ag [:!I: 

Pr -epe= +Hs; (1) 

+?r-A Fo c 0 = CA = r; e 0 ; (2) 

while r 
@ 

rA q 2;= e I 
Hs r’dr’ , (2’ 1 

0 
where @ stands for the magnetic flux; 

p, = - E I e Hr , (31 

Taking for the ultra-relativistic particle p B amr and 
substituting (2’) to (2), we obtain in place of (1) and 
(21: 

r-re(O+;Hsl=O, 14) 

i, = Qp r2 - 5 0 
2P GZ 

(51 

Introducing the pat-axial field description by its on- 
axi :; longi tlldina.1 component W(s) and by the relevant 
dcr.ivativcs Ii’ = d.ri(s)/ris. 

f{ = ,{ - 1 H” r2 + !Gl 
s 4 

‘de obtain the radial motion equation to the fir-st ;a;:- 
proximation: 

;’ + [[g!T)’ - (,r~,r,)2]. = ;[;]*HH4 (7) 

for any trajectory.including non-meridianal ones: 0otO. 

In the cartesian coordinates x, z, s the non- 
linltar “centrifugal” for-x in the left.-hand side of eq. 

(7) will naturally disappear. Then changing, to the nor- 
malized variables X = x/e. Z = z/e, @. ( Px= PL, &= 
@T for the round beams) we obtain instead of eq (7) 

i 

where R’=X’+Z? These cquat ions al’? uni~ou~~lt~tl in t ht> f’r :i- 
me, rotating at the Larmor frequenr:y taken on the ax: ciI 
while the r.onlinear contribut ion to 6 in is1 wi 11 k 
negligible for sufficient 1~ short rzirigr:; of‘ nur.1 i:irir 
field ( r % car&l. Thus the problem is reduced to the 
l-dimensional motion, and the main nonlinear term fi-:m 
the solenoid end-field is just a cubic nonlinearity, ac- 
t ing radially. 

End-field non1 inaari t.y ~__.._ 

The micro-[3 rcx~c!i t ion at the tx:lisicn pclint ,4&v 
parr:r.t.ly gives large p-values in the focusing solencids 
( p = 15 m at the nearest solenoid entrance in the $- 
factory lattice).If the betatron phase advance over t”z 
end region is small enough: AlC, =(coil radius)/fl -2.10 , 
we can account for this lumped perturbation as a thin 
octupole lens: 

i + X = -a R’X 6((11), (91 

2 + Z = -a. R”Z SC@), (9’ ! 

with the integral strength u : 
+m 

H H” 6’ ds (10) 

If the P-function varies slowly over the end 
range, we can give a very simple estimate: 

‘X = [k]’ $+j (H’)2 ds , (11) 

-02 

which comes to -100 cm -I for the worst of our ends. He- 
re the contribution of the Sth-order terms, omitted in 
(8), is within 1 per cent for our maximal amplitude&. 

From eqs. (lo), (11) one can see an important 
general property of the axi-symmetric field: its contri- 
bution to the cubic nonlinearity is Positively definite 
for sufficiently short end range. Hence we are not able 
to compensate for this perturbation by means of an axi- 
symmetric corrector. To minimize this effect one can 
only reduce P-values at the ends, or shape the solenoid 
coil so as the end range be longer. 

Fig. 1. The schematic layout cf the focusing 
solenoids in the $-factory straight sertion. 
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Fig 1 shows the relative strength of the sole- 
noid end perturbations in the G-factory lattice and the 
phase rt?l.atisns between them. The special feature of our 
lat.t.ice is that the phase advance between the strongest 
two pert~ur ht ions is T[, hence in an analytical approach 
below we can merge all the end-f’icld perturbations in 
one octupole lens with the total str-cngth. Besides, the> 
arcs have the transport matrices TX= Tz, that enables a 
one-~limensional treatment. of moticn all round the turn, 
t~cause the meridianal tr,r,iec:t or-ins arc thus pr-eservod. 

Analytic estimates 

Let JS describe the motion in the $-factory lat- 
tice in term; of the phase space map 1 after each pas-- 
sage of 10 revolution:first the par,ticles pass through 
the thin octupole lens, and from (91: AR’ = -a.R3; then 
they pass through the linear optics of the arc and gain 
the betatron phase advance p = %n{v/Z}, here l.’ i s tile 
t Lrl<’ llenc:c? the transport mat r ix in the normalized VR- 
rinbles wi 1 I correspond to a simple rotation: 

T = 
I 

COSP sinp 
-sinp I cosp . 

The fixed points of the map Mn are the periodic 
t.ra,:ertorie:; c~loscd over n turns, they are easy to find 
analytically. We will use their positions for a rea:;c,- 
nable estimzl t ion of the dynamic aperture limits. Keep- 

ing in mind the positive cubic nonlinearity, we will 
see that the study of the fixed points only f.or 2 c n 
56 wi 11 be sufficient 

It can be obtained from the previous study if we place 
in Fig. 2 an additional octupole lens in the nodes of 
the resonance trajectory or, in other words, if WC re- 
place p/2 by p (see curve 1 in Fig. 3al. The 2nd fixed 
point corresponds to the trajectory ? in Fig. 3a. It t-=sn 
be found from the set of equations: 

X!= a sinpi = b cosp/2 = X , 1 
X’ - X’ = -c( ;f , 

1 2 
0 1’ : ii oor;p/;? - b s i rip/i’’ = u ‘*a i,ili3]LQ , 

hence a I cosp .- ( 13) 4r a sin3 p/2 cosp/:! 

Now the linearization yields SpM4= -%cosp, arid we CJ!~ 

see that this ‘good” fixed point can only e>:i~z+ ;iriil tw 

stable for n/3 < p < n/2 

- ----_-- .---a 
s \ 

XC 

Fig. 2. The Znd-order periodic trajectories 

Let us consider the simplest case n=2 in detai:. 

For both periodic trajectories closed over two turns, 
the displacement X and the angle X’ are readily found: 

x = ii sinlp/2-q3), X’ = - a cos(p/z-cp:, 

1p=0 at the position of the oct.upnle, whose action gives: 

AX’ = - 2 a cosp/Z = - a X3. 

Hence, we find for the stationary amplitude a 2r: 

a =- 2 cosp/2 (121 2r a sin3p/2 

I.inc?arizing the mot ion in the vic:ir.i ty of this resonan 

ce: x3- x: = 3 X>X, we obtain for the optical strength 

of the emerging linear lens: l/F = 3 a Xc, and t.he sta- 

bility of tho fixed point is easily judged from the ma- 

trix ML of the relevant symplcctic map: 

M= 2 t -:p:,:: :::;I. (-ljF ‘: ] ) 
Sp Ma = -( 1 + 4cos*p/21 < - 1 , 

t bus the 2nd order fixed points are always unstable 

Now consider the fixed points for n=4: here we 
have twc couples of points, the “bad” one is unstable. 

Fig. 3. The 4th- and the hth-order periodic 
trajectories. 

The case n = G is studied similarly and yields 
for- the triplet of “good” fixed points, vtr;>sc trajrct $3~ 
ries resemble curve 2 in Fig. 3b : 

a = COS3@2 ..-..-.. . . --._ 
dr a sinp cos3p/7. 

; hbr= --- cos3p/2 ---~ ; (141 
a sin’ p cosp/Z 

SP Mg = 2(2cosp - II” - 1 ) 

with the stability range of 0 <p< n/3 just coinciding 
with the existance range (mind that the nonlinearity is 
positive! 1. The other triplet of fixed point of M6is un 
stable as it should be in general [31. 

The fixed points of .M” and A5 izre obtair.cd 
in the same manner, but the emerging transcedental equ- 
ations do not allow for the same simple form of the re- 
sults as for n = 2,4 and 6. The n,~meric:ai solution re- 
vea Is a simple general relation for 2 5175 5 : in the 
range of its existance p f [ 0, Zn/r;j the “good fSixed 
point” is unstable for p f LO, =n/(n-111, that is just 
in the interesting range! And only beginning from the 
6th order the resonances acquire the “good fixed point” 
that is stable throughout the resonance existance range. 

This conclusion enables a simple estimation of’ 
dynamic aperture based on eq. (14) for the 6th order 
fixed points ( in the case p R 1 and (3’= 0 1 : 
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x6= J& , x; = 1 / J-a , (15) 

which restrict the phase space domain, circumscribed 
by the last resonance yet having the stable fixed point 
Somewhat more rigorous definition of dynamic aperture 
might be: the domain which is circumscribed by the lar- 
gest invar iant trajectory which is separated from the 
reSonance by the width of its manifold 131 (i.e. its 
stochastic layer). For our parameters the width appeu- 
red tc be smal 1 as one could see from the sii-7ulat.iori 

results ( see Fig. 5) F‘or the $-factory lnt tize in quc- 
stion eq.!151 gives = 4 cm or about 150 for estimated 
dynamic aperture. 

Note that in the case of small deviation from 
merjdianal motion which is practically interesting for 
us the two-dimensional problem is reduced to radial bc- 
sting and some additional slow precession of the 1D tra- 
jectories analyzed above. These phenomena (see 1:‘i.g. 7 ) 
manifest. tb.e energy exchange bet WCC!IL thp two modes. 

Simulation 

The numerical simulat.ion was based on the ~ca- 
LiStic $-factory lattice with 8 ends of the focusing 
solenoids, actual betatron phase relations and fl-values 

(see Fig. 1). To raise the efficiency of the code we used 
the normalized variables defined above:X, X’, Z, Z’ for 
iterations so as the aciY>ilrlt. of the 1 inear opt i c!i t,e 
1.1.ivial , ard thin octupole lenses at each solenoid end 
acted radially, with the integral strength (10) accura- 
tely calculated once before tracking with the atcount 

- of R f UJ~LC~ over the end range 

The cl “es to understandirrg of’ t.he simulation 
results are given in the previous section, and the agre- 
ement was good between the simulation and the analyti- 
cal approach both in qualitative insight and in quan- 
titative estimates. Typical patterns are shown in Fig. 5. 

___-. _.--_-__. ---I L--L-..-- . .._.. -... . --..- -.. ..-.-I 

Fig. 5 Par axial (ii) and non-paraxial (hi map 
for the $-factory lat.tice with solenoids. 

The simulation included non-paraxial effects 
due to large angular- spread of particle traJe,ztor ies in 
the ccllisron st.raight, resulting from low (!I* and t i gti 
P’ Thjs results in modulation of longitudinal velocity 
for the subsequent passages through solenoids. We pro- 
ferred to :.rack these passages in terms of time rat her, 
than az imulh according to eq. (31. This effect. caused 
the dynamic aperture reduction by =15%, however it.s be- 
haviour resembled the main effect of end-fields when 
the latter were switched off. The similarity is shown 
in Figs. 5a,b and also can be seen in Fig. 6 wher-e the 
tune shifts are plotted vs. the amp1 itudc squared 

The effect of non-meridianal trajectories was 
simulated for various angular momenta It caused SO”? 

insignificant (=15%1 decrease in dynamic aperture:Fig.‘7 

Though apparently useless, the “normal octupcle’ 
lens was tried in simulation to compensate for the tune 
growing with amplitudes. It did not work because of prc- 

cession which averaged out its action. Of course more 
elaborate schemes using /3x- (3~ differences at the oc- 
tupoles of opposite signs are not forbidden however 
they do not seem to be practical in a very tightly- 
bound lattice like that of the $-factory. 

Coni-lesions _-_-__-__a__ 

The an-flyti(~~l r:;t imat<,.; and the; simulation i’+ 
suits agree in an opt.imist iq- con,-Iusinn- aI thorrgh thr 
nonlinear end-fields 0: the st r-on*: I;;~WI comi~~i~l irig s;17- 
lenoids placed in the @-factor-y co1 I ision straight for 
micro-/l focusing and for round colliding beam!.; for “ii% - 

tion do severely restrict the dynamic aperture of the 
machine, we still can hope for about 15~. This could be 
enough unless some other- effect.!; isay, sextupo1es1 

would not do worse. 

Better- situation <‘iin be striven for- by: 
j1 shaping the coil ends to expand the effcrti>its 

length of the end-field; 
ii) keeping the betatron tune closer to the integer; 

iii) choosing reasonably low p-values in solenoids; 
iv) partial compensation in a lattice with opposite R’ 

and f3’ signs at the ends ; 
v) “normal” octupoles in an elaborate lattice provi- 

ding for lar-ge OX- pz differences in the octupo- 
les of opposite polarity, e. t.c. .? 

Neither of these means is simple, and t.hoy muri 
r-e;ic.h a compromise with t.he 1uminosi ?y 

The authors are indebted to Prof. A.N.Skrinsky 
f-o:- th? enlightening discussion. 
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Fig. 6. Tune shifts depondenre on amplitudes in 
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