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Abstract

The notion of chirality for electromagnetic field is defined. The chirality
is classically conserved in gravitational interaction.. The corresponding
chiral current is however anomalous in external gravitational field. This
anomaly is analogous to the well-known fermionic triangle anomaly. The
result obtained permits to calculate radiative corrections to the fermionic
chiral anomaly in gravitational field. The relation between the number
of zero modes of antisymmetric tensor gauge field (with zero spin) and
the anomaly for vector field is considered. The possible observational

manifestations of the chiral anomaly in the gravitational field of the Kerr
black hole are discussed.

1 Introduction

It is well known that the axial current of massless fermions, which is formally
conserved because of classical equations of motions, possesses the anomaly con-
nected with the triangle diagram [1,2]
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where a# = ¥y#45¢. ¢ is the massless Dirac field with electric charge @, D, is
the covariant derivative in external gravitational field,

Dya* = Lo, Fwv _
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Dya* = v=9 a.“(V -ga"),

F,, is the electromagnetic field strength tensor, R, is the Riemann tensor,
and
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We will consider here effects connected with the external gravitational field (the
second term in eq. (1)). The existence of analogous equation for bosons can be
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understood by the following heuristic arguments. Let RR # 0 in some space
region. Then because of eq. (1) there must exist the flow of leptonic charge from
that region. Of course, gravitational interaction “kmows” nothing about leptonic
charge, but for massless Weyl fermions there exists one-to-one correspondence
between chirality and leptonic charge. So leptonic charge nonconservation (1) is
natural to interpret as chirality nonconservation connected with the interaction
of the particle spin with the gravitational field.

Gravitational interaction is known to be universal. Hence the anomaly of the
same form as (1) must exist for any spinning particle, for boson as well as for
fermion. Indeed it can be shown that the analog of eq. (1) for photon is of the
form [3]:

(DLK*) = = gz Ruwr B @)
where K# = — 71—_9 e#vrX A 0, Ay and A, is the electromagnetic vector-potential.
Using the operator identity D,K* = —% ,,.,F'*" we can rewrite eq. (2) in the
equivalent form:

(FuF) = 2 Ruvea B> 3)

In contrast to fermionic case, current K* is not conserved even on classical level.
Anomalous property of eq. (2) and (3) is that the average (F F) in curved space-
time, which proved to be nonzero, naively vanishes because of the formal photon
chirality conservation in a gravitational field. This conservation is broken by the
triangle diagram.

The notion of the photon chirality deserves a more detailed discussion. It
is well known that the Maxwell equations in a gravitational field are invariant
under duality transformation:

Fh, = Fycosa+ F,, sina. (4)

This invariance however does not permit to construct the corresponding Noether
current since transformation (4) is not expressible in terms of vector poten-
tial A,.

The corresponding conserved charge has been constructed in the first-order
formalism where it turns out non-local [4].

However, following our paper [5], we use here another approach, the light-
cone one, when photons are described by complex field A and the action is
bilinear in A and A*. In terms of these variables the photon chirality can be
defined in the same way as the electron chirality. In this framework the con-
served chiral current of photons can be determined, but only by the price of
noncovariance of the light-cone formalism. Current K# defined above generates
chiral transformations and is explicitly covariant, but nonconserved.

Egs. (2) and (3) present one-loop anomaly. We will show that using these
equations one can easily calculate two-loop corrections (of order a) to the fermion
chiral anomaly in gravitational field [5].

369

The chiral anomaly of gauge vector field leads to vanishing of the chiral
anomaly of antisymmetric tensor gauge field ¢,,. Nonzero result of ref. [5)
was obtained without unknown at the time anomaly of the vector ghosts which
exactly compensates for the contribution of the ¢-loop. This relation permits to
find the connection between the number of zero modes of ¢, and the anomaly
of vector field which has no zero modes.

Gravitational fields with RR # 0 exist around rotating massive bodies. It
is natural to expect that the nonconservation of the chiral current leads to the
particle production (both bosons and fermions) in sufficiently strong external
gravitational fields [8]. It resembles charged fermion production by the field of
dyon [9]. The problem is more complicated however because in contrast to the
dyon case the topological charge of the rotating body vanishes,

/zﬁm‘z: 0. (5)

Anomalous fermion nonconservation in the cosmological background with
RR # 0 was considered in ref. [10].

The existence of the chiral anomaly for vector fields was confirmed by differ-
ent from ours methods in ref. [11] and by S.V. Kostyuk. In another form such
anomaly was found in ref. [12] in the first-order formalism:

(F(F - da)) #0.

The existence of bosonic anomaly for nonabelian gauge fields was pointed in

ref. [13].

2 Photonic chiral current

Let consider first the case of a free electromagnetic field. It is evident that the
Maxwell equations _

OuFyu =0, OuFuy =0
are invariant under duality transformation (4). We define the eigenvectors of
this transformation,

FE =R, wil,

. as the fields of definite chirality.

The attempt to generalize the notion of chirality to quantal case encounters
difficulty because the theory is quantized in terms of potentials A, whereas
transformation (4) is defined in terms of F,,. Note that transformation (4)
can be formulated in terms of A, only for potentials satisfying the Maxwell
equations.

We will introduce the notion of chirality for photons and the corresponding
chiral current as consequences of U(1)-symmetry of the action for arbitrary po-
tential A,. This proves to be possible in the light-cone formalism. We show
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that the chiral rotation of A, results in transformation (4) only for photons
on-mass-shell.
‘We use the spinor notation and the gauge condition

Ay =0 (6)

(for details see ref. [5].

The equation of motion for A,; does not contain the time derivatives, so A;;
is not a dynamical variable in this formalism and can be expressed through two
independent quantities A,; and A,;:

Arj = 05 (A3 + 0y344) - (7)
The latter satisfy the equations:
0A4,; =0, DA,; =0, 0= 3.8 %aﬁpaﬂﬁ (8)

Action S can be written in terms of the field variables A = A,i/ V2 and
A= A;//2 as follows

S= j d'z ADA. 9)
This expression is explicitly invariant with respect to the global U(1)-trans-

formations: ) .
A— Ae'?, A — A€, (10)

Taking into account gauge condition (6) one can express field strength tensor F,
through A and A as follows:
R (”“)M-. (“”)gﬁva,

o ) . = - £
F T 5&§faﬁ, Fadﬂﬂ' = 5aﬂf0’,ﬁ:

aq

.faﬁ = %(BG&A;S& 7t aﬂ&Aad)l (11)
1 -

= 535162;4 - 8104,
1 |

fa2 = "2‘35-4, fiz=fa= 5314:

where
0=V28y;, 0=v28y;, 0 =V20y, 8=V28;,
0 = 3,0, = 5 (8 - 06).
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Quantities f,; are the complex conjugates of fos. Note that the field of the
wrong chirality A enters into the expression for f,p in the form OA i.e. it vanishes
on-mass-shell.

Expressing F,, through A in gauge (6) one can check that transforma-
tion (10) over the potentials leads to the chiral rotation (4) for the field strength
only if A,4 satisfy the equation of motion.

This trivial exercise for the free electromagnetic field permits to consider the
case of the photons interacting with gravity along the same lines. The action is
of the well-known form:

1
S = —Z]d4z V=9 9" §"*FuFyx. (12)
It is convenient to represent real symmetric matrix g in the form
g=e”

where H is also real symmetric matrix. Since /=g = exp (—Tr H/2), action (12)
depends only on the traceless part of H, i.e.on h = H — I(Tr H)/4:

S:;—]d‘l:cTr(e"FehF) (13)

This is a consequence of the conformal invariance of the theory. In the last

expression the contraction is made with the flat space metric tensor

Nuv = diag(1,—1,—1,—1). In what follows we use the perturbation theory ex-
panding the action as

g = %jd“xt[\-(F2+2hFF+ h*F? + hFhF + ... (14)

Using the spinor notations for the field strength of definite chirality we get the

following expressions for the terms of the zeroth, first and second order in h
respectively:

SO = —%/d"z (fazsf""EJ +fé,gf‘i§),

SN = % f d*z h*SPP fo5F. 4

@ = - j d'z [%(Trh’) (fapso? + F15 %) + (15)
* G%hadﬁ'éh"ﬁéaf{ﬂ—rfm} +

By i 1ol D e
+ g2 "o Figi fiay ] '
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The zero order term at first sight violates chirality conservation. But S(°)
vanishes on-mass-shell and off-mass-shell chirality is conserved as it follows from
eq. (9).

The first order term conserves chirality because in this order one can neglect
the wrong chirality contribution to f, which is proportional to DA (see eq. (11))
andso f ~ A and f ~ A.

It is explicitly seen that S(2) breaks chirality conservation, but in the second
order in h there are terms proportional to OA in f which also violate chirality
conservation and their contribution exactly cancels chirality violation due to §(2)
(see ref. [5]). This cancellation is closely connected with the transversality of the
gravitational amplitudes which permits to reconstruct the whole amplitude by
the pole terms [14]. Pole terms are absent for chirality violating amplitudes and
correspondingly the whole amplitude vanishes. The conservation of chirality in
photon interaction with gravity was also noted in ref. [15].

In the light-cone formalism one can define the operator of chiral charge

Q= ;—./dsz: A(z) 8¢ A(z) (16)

where d3z = d%z,d¢, 5=8 — §. Charge Q is the integral of the £&-component
of the conserved current

Ju= i.ﬁ(z) 5,“ A(z). (17)

This current is not of course a Lorentz-vector because the functions A and A are
not scalars. Lorentz-covariant current with £&-component coinciding with that
of j, is K, (eq. (2)). The last current however is not conserved. Nevertheless its
matrix elements in a gravitational field would vanish if there were no anomaly.
Indeed the operator

- i i

Fu F* = 3 (faﬁfa.ﬁ =] ﬂfé,é)
changes chirality by +2 and gravitational interaction conserves chirality. Thus
the nonvanishing expectation value of D, K* in a gravitational field can be called

chiral anomaly.
Evidently current K# is not gauge invariant, but the charge

Q:/HFK“

does not depend upon the gauge. Moreover, matrix elements of K* in a gravi-
tational field are also gauge independent.

Let us mention in conclusion the analogy between the current K# and the
Pauli-Lubarisky vector [16)

e A
gl 5 xalid . o5

where P, and M,) are the generators of the Lorentz translations and rotations
respectively.
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3 The triangle diagram

The calculation of anomaly (2) connected with the triangle diagram can be done
by the dispersion relation method of ref. [17]. We shall consider bosonic and
known fermionic cases in parallel. The amplitudes of production of two photons
and two gravitons by the fermionic axial current and the amplitude of production
of two gravitons by bosonic current K* are determined by a single form-factor
and can be written as follows

(291a,410) = fi(g®)auFeaF™, (17.a)
(291a,410) = f2(¢?)guRurpoa R*, (17.b)
(29|Kﬂ1|0) = f3(92)qMRm\pa§KXpav (17(:)

Such a form of the amplitudes is dictated by the gauge invariance with respect
to external fields. It is assumed that the external photons and gravitons are
on-mass-shell.

The imaginary parts of these amplitudes are determined by the unitarity
condition and at first sight are to vanish because of chirality conservation. (Note
that one has to take into account, where necessary, the contact diagrams ensuring
transversality.) The anomalies arise as a result of the infrared regularization of
the amplitudes which violates chiral symmetry and leads to nonvanishing Im f:

T vty i 7 e S e L R
Imfi(g®) = lim (~ ) (1= ) Iny=0 = 567, (18)

(1-v?)? 14v 1

2N =& 2 2
Im f2(¢°) = Jll—l?o 128mg? "T—v = 102x 5@, e
201 _ .2
Im fu(e?) = B TP et _ 1 502 (18.c)

m—0 1287q? "1T=v ™ %6r

where v = (1—4m?/¢?)!/2 is the c.m. velocity of the particles in the intermediate
states and m is their mass (m — 0) introduced for infrared regularization.

Prescribing a nonvanishing mass to photon givesrise, in contrast to fermions,
to extra degrees of freedom of the vector field. They however do not contribute
to amplitude f3. Indeed, if in addition to the mass term

2
S = -";_ ] d*z /=g g" A, A, (19)
one takes into account the gauge fixing term

AS = —%s jcr'z V=3 (D, A*)*, (20)
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one can see that the result for f3 does not depend upon gauge parameter £. The
gauge invariance of f3 means that the mass term does not introduce here any
undesirable degree of freedom.

4 Electromagnetic corrections to the fermionic
chiral anomaly in gravitational field

Taking expectation value of eq. (1) in external gravitational field and using
for (F'F) expression (3) we obtain the radiative correction to the second term in
anomaly (1):
1 2aQ? By

Dgﬂ'u = —m (1 e T) RyynAR‘“"‘ . (21)
This result corresponds to the following specific regularization of the two-loop
diagrams: it is assumed that the infrared mass of the photon is much larger than
that of the fermion,

my > my.
In this case only the two-photon intermediate state contributes into two-loop

correction for Im f, [5]. Note the relation of this result to the Adler-Bardeen
theorem [18].

5 Vanishing of the chiral anomaly for antisym-
metric tensor gauge field

The chiral current for antisymmetric tensor field ¢,, was introduced in ref. [6]
in the Feynman gauge and looks as follows

u= _DA‘IBA"‘P;W T @,.,D;up)“’ (22)
where gFY = —mghv@Pyp, 5.
This current is conserved because of the equations of motion, but as it was
stated in ref. [6] there existed the anomaly:

(Dpj“) T R#vaﬂﬁwaﬂ- (23)

4872
The discovery of this anomaly put a very interesting problem about the equiva-
lence of the description of massless field with zero spin either by scalar field, or
by antisymmetric tensor gauge field. These two ways of description are known
to be equivalent at the classical level [19]. One naturally would expect therefore
that the anomaly found through the calculation of the imaginary part of the
amplitude, as it has been done in the preceeding section. should vanish. The
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contradiction is resolved by taking into account the anomaly for vector fields
(eq. 2). Indeed the chirality of ¢, could only be connected with the nonphys-
ical degrees of freedom which appear at the quantization as a result of gauge
fixing. As is well known, several ghost fields are to be introduced in this case.
Among them in particular there are two complex vector fields 7 and 7. These
vector fields give contribution to the chiral current and their anomaly exactly
cancels out anomaly (23) [20].

The problem is a little bit more complicated however because current j, (22)
is not gauge invariant and the classical equations of motion are not self-consistent
when the interaction with this current is taken into account. Besides, prescribing
nonzero mass to the fields, which is necessary for the infrared regularization,
changes the number of the degrees of freedom and it is not evident that the
extra degrees of freedom do not survive in the limit m — 0. These problems are
considered in ref. [20].

Let ®,, be a massive antisymmetric tensor field with the Lagrangian

g ..
L= vﬁm@”a@" - %m%fw + h, K, (®). (24)
where h, is an external field interacting with chiral current K, (®):

K, (®) = —0,3,,9,,. (25)

It is known that field ®,, is equivélent to massive vector field b, described by
the Lagrangian:

1 m?2
L(b) = —bew + Tbﬁ + h, K, (b). (26)

The correspondence between the fields are given by the relations
1, ~ ~
b.ﬂ = ;3;(%,,, b‘uy = (6“by - 8.,6,,) = —m<I>,,,,. (27)
In terms of b, chiral current (25) can be written as

Ky = =bybuy = —€urxabyiby. (28)

At the classical level its divergence is:

1, = m? ~

Ky = _§b‘"’b“" = Tq)‘“’d"“" (29)

R.hs. of eq. (29) is proportional to m?, but the propagator of ®,, is singular
in m?, so the vanishing of 8,K, in the limit m? — 0 is up to now only formal.
To reveal this singularities it is convenient to make the following substitutions

1
‘p;.w — (P.uu +‘ ‘;n“apus (30)

a,, = 0ua, — dya,.
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The enlarging the number of the fields leads to the gauge freedom:

(5(,0“,, = 3,,5., s 6::{,1“

(31)
bay, = —mé,.
To fix the gauge we introduce the following term
! 5 Lan)| 4+ o 2
Lgauge = ) Orpav — ma, — hy (‘PAV ad ;ﬂ,\u) # + O( p)' (32)
It is necessary also to add the ghost Lagrangian
gt b Asles
Lghost = —§q#uﬂpv + mz’?yn# = 2h.u’?u77,uu (33)

where 7, and 7, are vector Grassman fields, n,, = 8,1, — 8,7,, and 7, = %
After straightforward calculations we obtain in the first order in A:

Ku(b) = —6,\953.;99,“, o BMOAuGpr —aydyy

= 20y Ty + %(&Wvﬁpu - 3A95Aydpu) + ma, . L
It is evident that (pa,a,) =0, so
(Ku(b)) = (Jule) + Ku(a) + Ku(n, 7)), (35)
and since (K, (b)) = (K,(a)), we get finally
(Julp) + Ku(n, 7)) = 0. (36)

So first, the total chiral current of the field ¢ and the ghosts 5,7 in gravi-
tational background vanishes in accordance with physical expectations, and so
much the more its divergence. Second, since (K,(n,7)) = —2(K,(A)), the ob-
vious relation arises between (8, K,(A)) and the number of zero modes of the
field ¢ that controls (8, 7.(¢)).

6 Macroscopic manifestation of the chiral a-
nomalies in the field of the rotating black hole

In the Kerr metric the anomalous term is of the following form

nApo

=

r? — a? cos? 8)(r? — 3a® cos? §)
(r? + a®cos28)8

RuvsrR™ o = 1202(a7) & (37)

wl;—-
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where r, is the gravitational radius of the massive rotating body, @ = M /m,
M and m are respectively its angular momentum and mass. It is noteworthy
that the space average of RR vanishes (see eq. (5)).

It is known that in the electromagnetic field of a dyon where FF #0
anomaly (1) leads to the charged fermion production. This makes one to sus-
pect that the analogous process of massless spinning particle production by the
gravitational field of a rotating black hole also takes place. We have presented
arguments in favor of this phenomenon in ref. [8], but we do not have a strict
proof of it because in contrast to a dyon with nonvanishing topological charge
the topological charge of a black hole is zero. An extra argument supporting
the idea of the anomalous particle production by a rotating black hole present
the numerical calculations of ref. [21]. It is shown there that even in the case of
the limiting value @ = r,/2 when the Hawking temperature is zero, the parti-
cle emission and the corresponding loss of the angular momentum by the black
hole does not vanish. The production of bosons could be explained by the phe-
nomenon of the superradiance, but this is known to be absent for neutrino. So
the production of the latter can only be connected with the chiral anomaly.

Except for the particle production, anomalies (1) and (2) in the field of a
rotating massive body lead to the formation of condensate (FF) even if the
body is electrically neutral. There are also to exist dipole vacuum currents
falling off at large distance as r=3. These effects though interesting from the
qualitative point of view are far from the possibility of observation.
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