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On Mutual Coherency of Spontaneous Radiation from 
Two Undulators Separated by Achromatic Bend 

G. N. Kulipanov, V. N. Litvinenko, A. S .  Sokolov, and N.  A. Vinokurov 

Abstract-The radiation from two undulators separated by 
the magnetic system bending the electron beam by a certain 
angle is considered. The radiation coherency conditions are 
studied for the case of undulators. It has been revealed that the, 
achromaticity is of significance and some types of such bends 
are discussed. The layout of a device intended to observe the 
coherency is presented. 

I. INTRODUCTION 
E deal here with an ultrarelativistic electron beam w passing sequentially through the first undulator, a 

magnetic system which bends the beam by a certain small 
angle a ,  and the second undulator (see Fig. 1). Let t9 be 
larger than the characteristic angular undulator-radiation 
divergence W L .  h is the wavelength of the fundamental 
harmonic of modulator radiation and L is the undulator 
length. In this paper we present the question of mutual 
coherency of the radiation generated by the undulators, 
i.e., the result of Young’s experiment, where the holes on 
a screen were placed within the central core of the angular 
distribution of the undulator radiation. 

Let us first consider the case of zero transverse dimen- 
sions and of zero angular and energy spreads of electrons. 
Assuming that the come-in times of electrons into our 
magnetic system are uncorrelated, it is easy to write down 
an expression for the real part of the coherency degree 
til: 

COS 4 7  - At) ,  

where ( ) denotes the time averaging, uI and u2 are the 
radiation fields of the first (along the beam path) and sec- 
ond undulators, q is the number of periods in each undu- 
lator, w = 2nc/h,  c is the velocity of light, and At is the 
time lag of the radiation from the second undulator (for a 
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Fig. 1. The experimental agreement to observe the coherent radiation from 
two undulators: I-undulators, 2-bending system, 3-screen with two holes, 
4-lens, 5-plane of imaging of the centre of the bending system. 

“short” bending system At = qh/c).  It follows from (1) 
that the corresponding fringe visibility of the interference 
bands are equal to 

I .  -- 1 -  

11. COHERENCY CONDITIONS 

One can use a Taylor expansion of the transit time At: 

At = (At), + (s) 0 ( E  - E,) + (e) x 
ax  0 

+ (e) y + (5)d + (5)Yf + - 
ay 0 

where (At) ,  is the equilibrium electron transit time from 
the middle of the first undulator to the middle of the sec- 
ond undulator to take into account the electron beam en- 
ergy, angular, and transverse position spread. Now we 
have to substitute (3) into (1) and to average yf/ over the 
particle distribution in the beam. Averaging over the en- 
ergy should be performed similarly to that which is done 
in the theory of an optical klystron [ 2 ] ,  [3]. This averag- 
ing is different from our case only in the fact that the 
bending angle t9 is zero. As a result, -# and the fringe 
visibility V are multiplied by 

aat  = 
exp [ -; ( U  

0.) 1 
where oE is the rms energy spread. For a “short” bending 
system 
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the fringe visibility at xout(E0 + 6E) = xout(&) xAut(E0 + W = x&(&). 

The simplest illustration of an achromatic bend is a pair 
of short magnets, each bending the beam by an angle 8/2, 
with a focusing lens between them; note that its focal 
length is equal to the one-fourth of the magnet-to-magnet 
distance. Since it is desirable that the length of the bend- 
ing system be not too large (for example, no longer than 
the undulator length L )  the bending system proves to be 
hard focusing, which complicates the optimization of the 
beam envelopes in undulators. The situation can be im- 
proved by applying a system which incorporates four short 
magnets and a focusing lens (see Fig. 2). Assuming that 
the second and third magnets and the lens are equally 
spaced, closely to each other, between the first and fourth 
magnets, each bending the beam by an angle a + 0 / 2  
(the second and third bend is by -a), we obtain that for 
the zero-dispersivity the focal length of the lens should be 
equal to 

uE - < -  
E 4x9 

remains the same, which coincides with the condition 
when there is no broadening of the undulator radiation 
spectrum. 

Let a bending by the angle 0 take place in the horizontal 
plane, it is then known that [4] 

aAt aAt 

ay ay1 
- = o  

and 

a a t  a a t  1 x(s) 
- x  ax + -7 ax x' = - c L pods (4) 

where s1 and s2 are the longitudinal coordinates of the 
middles of both undulators (x(s,) = x ,  x' (sI )  = XI), p(s) 
is the curvature radius of the equilibrium trajectory 
(jz ds/p(s) = 6). Estimating the integral (4) as x,O/c 
(x, is the electron coordinate in the bending system) and 
taking into account the luminosity preservation condition 
wa(At) < 1, we obtain the restriction on the bending an- 
gle 8: 

X e < -  
2xu, 

where a, is the horizontal size of the electron beam. We 
thus come to a quite evident result: the bending angle 0 
should not be larger than the angle of spatial coherency 
of a source whose size is a,. If we remember that we are 
interested in the case 0 > a, we shall have an upper 
bound on the size of the electron beam: 

1 
2T 

U,<-* 

coupled with the evident limitation on the angular spread 
( x12 ) < X / L  the latter leads to the known fundamental 
condition for the horizontal emittance: ex < X / 2 x .  

To avoid the above limitations the integral (4) should 
be matched to zero, i.e., the linear dependence of the tra- 
jectory length on the horizontal angles and coordinates 
must be eliminated. It is known [4] that for an arbitrary 
trajectory x (s) the matching-to-zero condition of the in- 
tegral (4) coincides with the zero-dispersivity condition 
(i.e., the achromaticity) of the magnetic bending system. 

111. ACHROMATIC BEND 

A great variety of zero-dispersive (achromatic) systems 

In achromatic bend particles with the same initial trans- 
are known in accelerating technique. 

verse position and angle 

x = Xi" XI  = x:, 

but with small energy deviations from equilibrium one (E 
= Eo + &E)  are turned for the same angle without any 
displacement in transverse direction: 

F = ' ( I  4 +$) 
where 1 is the total length of the achromatic bend. As a 
increases, the longitudinal dispersion of the system also 
increases: 

a a t  
aE 

c E -  i+ la(a + i) 
which limits an increase of the focal distance ( 5 ) .  For this 
case, the longitudinal undulator dispersion 2qX is a nat- 
ural scale. Equalizing the expression (6) to this quantity, 
we obtain an estimation for the maximum focal length (at 

>> e):  
I 

or for the maximum angle of divergence 

The condition e,,, > @transforms into ( L / F )  
> 1, which is easily accomplished. 

Thus, the achromatic bend of the given system provides 
the mutual coherency of the radiation generated by two 
undulators. It is clear that when designing the real bend- 
ing systems the more complex schemes may turn out to 
be useful, such as MDMFMDM (M stands for a magnet, 
D and F are for defocusing and focusing quadrupoles). 

IV. SPATIAL COHERENCY 

In the above discussion we haven't touched upon the 
bounds on the hole of the diffractometer, assuming them 
rather small. Here its scheme will be considered in detail. 
Let D be the distance from the bending system to the holed 
screen, d the diameter of the holes, and f be the focal 
distance of a lens near the screen. We will consider the 
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V. CONCLUSION 
M ! M  

M L M  

The experiment described above was performed in April 
1989 on the storage ring VEPP-3 (INP, Novosibirsk). In- 
terference was observed on a wavelength of 0.6 pm. The 
conditions required to observe the interference were the 

Fig. 2. The layout of the achromatic bend: M-bending magnets and L-lens. 

interference picture in the imaging plane (see Fig. 1). In 
this case, the center of this picture is shifted from the op- 
tical axis (passing through the centers of the undulators 
and the lens) by (ZO/4) ( f / D ) ,  where Z is the distance 
which separates the centers of the undulators. The space 
period of the interference band is ( A / @  ( f / D ) .  

If the diameter of the holes is less than the size of the 
spatial coherency region, d < (DX/aa,), then the diam- 
eter of the illuminated spot in the imaging plane is equal 
to ( h / d ) f ,  while the total number of the bands is corre- 

achromatic nature of the bend, the compensation of the 
time lag by plane-parallel glass plates (or the lengthening 
of the radiation packet by means of an interference filter). 
The description of the experiment is beyond the scope of 
the present paper and will be presented elsewhere. 
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spondingly DO/d. The maximum fringe visibility will be 
observed at T = At, i.e., at the distance ( c A t / O ) ( f / D )  
from the Center of the interference picture. This is POSSi- 
ble only if ( c A t / O > ( f / D )  II (X/d)f, i.e., 
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