106 Nuclear Instruments and Methods in Physics Research A308 (1991) 106-108

North-Holland

On the mutual coherence of spontaneous radiation from two undulators

separated by an achromatic bend

G.N. Kulipanov, V.N. Litvinenko, A.S. Sokolov and N.A. Vinokurov

Institute of Nuclear Physics, 630090, Novosibirsk, USSR

The radiation from two undulators which are separated by the magnetic system that bends the electron beam by a certain angle 1s
considered. The radiation coherence conditions are studied for the case of undulators. It is shown that the achromaticity 1s of
importance. Some types of these bends are discussed. The layout of a device intended to observe the coherence is presented.

1. Introduction

In this article we are concerned with an ultrarelativ-
istic electron beam that first goes through the first
undulator, then through a magnetic system which bends
the beam by a certain small angle #, and finally through
the second undulator (see fig. 1). Let @ be greater than
the characteristic angular undulator-radiation diver-
gence A/L (A is the wavelength of the fundamental
harmonic of the forward radiation and L is the undula-
tor length). Of interest in this case is the mutual
coherence of the radiation generated by the undulators,
i.e. the result of Young’s experiment, where the holes in
the screen were placed at the centers of the undulator
radiation perpendicular to the radiation direction.

2. Coherence definition

Let us first consider the case of zero transverse
dimensions and of zero angular and energy spreads in
the electron beam. Assuming that the flight times of
some electrons through our magnetic system are uncor-

Fig. 1. The experimental arrangement to observe the coherent

radiation from two undulators: 1 - undulators, 2 — bending

system, 3 - screen with two holes, 4 - lens, 5 — plane of
imaging of the centre of the bending system.

related, it is easy to write down an expression for the
real part of the degree of coherence [1]:

(D) ()

(1 - ﬂTq;AAtI) cos w(T—At),

= ?>|’T—At|, (1)

0, ﬁ< |7~ At],
c

where ( ) denotes time averaging, u, and u, are the
radiation fields of the first (along the beam path) and
the second undulator, respectively, g is the number of
periods in each undulator, w =2mc/A, ¢ is the velocity
of light, and At is the time lag of the radiation from the
second undulator (for a “short” bending system A=
gA/c). From eq. (1) it follows that the corresponding
fringe visibility of the interference bands is equal to

A
1- < r—Ar], |r—Ar] <2,
g c
V- . @)
O, |T—Al|>q7

3. Calculations for a real electron beam

To take the finite sizes of the electron beam and the
spreads in it into account, the expansion of Ar with
respect to the initial deviations of the particle energy, its
angles, and its coordinates from the corresponding equi-
librium values in the middle of the first undulator (in
this case, Ar occurs on the interval from the middle of
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the first to the middle of the second undulator) is
presented in the form

Ar= (D) + (;—};)O(E—EO) + (g—;)ox+ (;’—;)Oy

Now we must replace Az in eq. (1) by 2q. (3) and
average vi} over the particle distribution in the beam.
Averaging over the energy should be performed in the
same way as is done in the theory of an optical klystron
{2,3]. The only difference in the averaging arises from
the fact that the bending angle @ is zero in the case of
an optical klystron. As a result, y{) and the fringe
visibility V' are still multiplied by

1 a
EXp| — 7(0)@0’5 N
where oy is the rms energy spread. For a “short”
bending system

dAr A

3E =29

The fringe visibility at

of 1
E " 4nq
remains the same, which coincides with the condition
when there is no broadening of the undulator radiation
spectrum.

Let the bending by the angle § take place in the
horizontal plane, it 1s known for that case that [4]

9Ar _ 0As —0

ay  dy

and

0A? Ar , 1 rs:x(S)

—a—x*)C'F WX = c s, p(S)dS, (4)

where S and S, are the longitudinal coordinates of the
middles of both undulators (x(S;)=x, x'(S;)=x"),
and p(S) is the curvature radius of the equilibrium
trajectory ( f¢* dS/p(S)=0). Estimating the integral
(4) to be x,0/c (x,, 1s the electron coordinate in the
bending system) and taking into account the luminosity
preservation condition wa(Ar) <1, we obtain the re-
striction on the bending angle 6:

Here o, is the horizontal size of the electron beam. We
thus come to a quite evident result: the bending angle 8
should not be larger than the angle of spatial coherence
of a source whose size is o,. If we remember that we are

interested in the case § > ‘/m , we shall have an upper
bound on the size of the electron beam:

g < —l—\/ﬁ

X 2w ?

coupled with the evident limitation on the angular
spread (x'?) <A/L; the latter leads to the known
fundamental condition for the horizontal emittance.

To overcome the above bounds the integral (4) should
be zero, ie. the linear dependence of the trajectory
length on the horizontal angles and coordinates must be
eliminated. It is known [4] that for an arbitrary trajec-
tory the condition that the integral (4} is zero coincides
with the condition that there is no dispersion (i.e. the
achromaticity) in the magnetic bending system.

4. Achromatic bend

A great variety of nondispersive systems are known
in accelerating technology. Recall that a nondispersive
bend means that, when deflection from the equilibrium
energy occurs, the particles in the bend that have no
deflection with respect to the angle and energy leave the
bend without having the proper deflections from the
equilibrium trajectory. The simplest illustration of an
achromatic bend is a pair of short magnets, each bend-
ing the beam by an angle 6/2, with a focusing lens
between them; note that its focal length 1s equal to
one-fourth of the magnet-to-magnet distance. Since it is
desirable that the length of the bending system is not
too large (for example, no longer than the undulator
length L), the bending system proves to be difficult to
focus, which complicates the optimization of the beam
envelopes in the undulators. The situation can be 1m-
proved by applying a system which incorporates four
short magnets and a focusing lens (see fig. 2). Assuming
that the second and third magnets and the lens are
equally spaced, close to each other, between the first
and the fourth magnets, each bending the beam by an
angle « + /2 (the second and third bend the beam by
—a), we obtain that for zero dispersion the focal dis-
tance of the lens should be equal to

F=£(1+%), (5)

Fig. 2. The layout of the achromatic bend: M - bending
magnets, L — lens.
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where / is the total length of the achromatic bend. As «
increases, the longitudinal dispersion of the system also
increases:

cE%zla(a+g), (6)
which limits the increase of the focal distance (5). For
this case, the longitudinal undulator dispersion 2¢gA is a
natural scale. Equalizing expression (6) to this quantity,
we obtain an estimation for the maximum field distance
(at a > 6):

1 [gAL
Fosc =g\ "2 (7)

or for the maximum angle of divergence

1 jgAL _ g L /A
=7y 5 =3 RV T (®)

The condition 4, > a/L transforms into

q L
V2 F> L

which is easily accomplished.

Thus, the achromatic bend of the given system pro-
vides mutual coherence of the radiation generated by
two undulators. It is clear that, when designing the real
bending systems, more complex schemes may turn out
to be useful, such as MDMFMDM (M stands for a
magnet, D and F for defocusing and focusing quadru-
poles).

5. Young’s experiment

In the preceding discussion we have not touched
upon the bounds on the sizes of the diffractometer,
assuming them to be rather small. Here its scheme will
be considered in detail. Let D be the distance from the
bending system to the screen with holes, d the diameter
of the holes, and f the focal distance of a lens near the
screen. We will consider the interference pattern in the
imaging plane (see fig. 1). In this case, the centre of this
pattern is shifted from the optical axis (passing through
the centres of the undulators and the lens) by (Z8/4) X
(f/D), where Z is the distance which separates the
centres of the undulators. The space period of the
interference band is (A/8) (f/D).

If the diameter of the holes is less than the size of the
spatial coherence region, d < DA /( 7o, ), then the diam-
eter of the illuminated spot in the imaging plane is
equal to (A/d)f, while the total number of bands 1s
correspondingly D6/d. The maximum fringe visibility
will be observed at 7= Az, 1.e. at a distance (cAr/8) X
(f/D) from the centre of the interference pattern. This
is possible only at
cAt f A
& p~al

ie.,
0D
cAt -’ ®)
The quantity cA¢ 1n relation (9) can be increased by
observing the interference pattern through a filter whose
spectral width is smaller than the width of the undula-
tor radiation line. Another way of overcoming limita-
tion (9) is compensation of the time lag Az. This can be
done, for example, by placing two identical plane-paral-
lel glass plates and by bending a plate through which
the radiation generated by the first undulator passes.
With the time lag compensated and with the electron
beam of rather small transverse sizes, 0, < J/AL/2m, we
can remove the screen with holes. In this case, the
diameter of the diffraction spot becomes of the order of
VAL/2m(f/D), and the total number of interference
bands is 8,/L/2nA . Note that the number of the bands
in question is, in order of magnitude, equal to the ratio
of the bending angle # to the angular divergence of the
undulator radiation \/A/L, i.e. it characterizes the de-
gree of divergence.

d<

6. Summary

The experiment described above was performed in
April 1989 on the storage ring VEPP-3 (INP, Novosi-
birsk). Interference was observed on a wavelength of 0.6
pm with a telescope. The conditions required to observe
the interference were the achromatic nature of the bend
and the composition of the time lag by plane-parallel
glass plates (or the lengthening of the radiation packet
by means of an interference filter). The description of
the experiment is beyong the scope of the present paper
and will be presented elsewhere [5].
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