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ABSTRACT
The paper considers the temporal behaviour of fast ions produced in a tokamak
plasma by the injection of a periodically pulsed neutral beam. It is shown that, il the
temporal distance between the pulses is properly chosen, then a dense bunch of fast ions
is formed near a certain resonant magnetic surface. Temporal and spatial behaviour of
these bunches is studied in some detail for the simple model of a large aspect ratio

tokamak. Possible diagnostics implications of this phenomenon are discussed.
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1. INTRODUCTION

During the past decade, the neutral beam (NB) technology has made a remarkable
progress, in particular, for diagnostics applications. The survey of recent achievements
in this field can be found, e.g., in papers /1,2/.

In the present paper, we discuss onc more possible application of neutral beam
technique: we show that injection of a periodically pulsed neutral beam into a tokamak
plasma can give rise to interesting resonance phenomena which can be of some impor-
tance for the plasma diagnostics and other purposes.

We consider only relatively weak beams which do not perturb the plasma parame-
ters, and study the evolution of the population of thus produced fast particles in the
given plasma background. Bearing in mind that, for the fast ions, the transit time is by
several orders of magnitude shorter than any of the collision times, we neglect the colli-
sions of the fast ions with plasma particles.

To gain some insight on the kind of resonances that can be expected in such a
system, let us consider the particles that are trapped near some rational flux surface,
where the ficld line gets closed after, say, m turns in a toroidal direction 6 and n turns
in a poloidal direction ¢ . Let us denote the transit time of the fast particles along the
ficld line as T, If the separation T between neutral beam pulses (Fig.1) is just equal to
T... then the successive pulses will be added to each other, with exact overlapping of
their positions in space and time. For large enough number N of the pulses in the pack,
this will result in the build-up of a large amplitude bunch of fast ions, whose density
should be considerably higher than the density of each single pulse. This bunch will
move around the tokamak, producing a pulsed periodic perturbations on all kinds of the
diagnostics monitors.

If, on the other hand, we consider surfaces separated by some distance from the
resonant one, the effect of “stacking” of the successive pulses gradually disappears with
increasing separation and, finally, at large enough separation, the density variation ac-

quires a stochastic character. The same happens also if T differs from the resonant pe-

riod T,,.



The fact that the particles trapped from the external source behave differently on
the resonant surfaces has already been observed experimentally, in the studies of pellet
injection /3/. In our problem, the periodicity of the source and the presence of well de-
fined temporal resonances arising from the fact that NB can provide the ions with a
small velocity spread (and, correspondingly, with well defined transit frequency) add a
new dimension to the whole phenomenon.

In principle, this phenomenon can be used for diagnostics purposes, providing a
more detailed information on the structure of magnetic field (from studying the locations
of the resonances) and also on the effect of plasma fluctuations on the fast ions (from
the width of the resonances). It is appropriate to mention here that the possibility of
using the neutral beams (though quasistationary ones, without employing the resonance
phenomena) for magnetic field measurements has been considered some time ago by
Jobes /4/. This interesting proposal has been already realised experimentally on the
TUMAN device /5/.

The present paper had not been intended to provide any self-consistent proposal
of a diagnostics on any of the particular devices, as this could be done only with a
thorough account of concrete experimental environment of the machines. We were
rather intending to present a general description of the phenomenon and thus to give a
necessary initial information for the possible further analysis.

The structure of the resonances can be understood particularly easily for large as-
pect ratio tokamaks, where the variation of the toroidal magnetic field over the minor
radius can be neglected (the “cylindrical model” of a tokamak, sece e.g. Ref. 6). The
corresponding analysis is presented in Sec.2 for the reference case of the beam of zero
transverse dimensions and zero angular and velocity spread. Some estimates of the pos-
sible role of the finite beam brightness are presented in Sec.3. In Sec.4, new elements that
can be brought about by finite toroidicity effects, are mentioned. Numerical estimates
related to possible diagnostics applications are presented in Sec.5. Summary of the re-

sults is given in Sec.6.



2. RESONANCES IN A CYLINDRICAL TOKAMAK

2.1 Description of the model
The model we are considering in the present paper, is illustrated by Fig.2: a

tokamak is replaced by a cylinder, with the understanding that the sections separated

by the distance
L=2=R (1)

where R denotes the major radius, should be considered as identical ones. We use the

cylindrical coordinate system (r, ¢, z); sometimes, it is more convenient to replace z by

an analogue of the toroidal angle
0 =z/R (2)

The toroidal magnetic field B, in our approximation is just uniform. To characterize

the poloidal field B, , we use a description in terms of the safety factor q(r):
B, =B, [#/Rq(r)] (3)

The equations of the magnetic field line that intersects the plane 0 =0 at some

point r = ry, ¢ = ¢y, are:
r=ry,  ¢=¢o+0/q(r) (4)

let us assume that the beam has vanishingly small transverse dimensions and is
aimed to the tokamak axis (FFig.2). Let a be the angle between the tokamak axis and
direction of the beam injection. Then, if a beam particle is trapped on a certain radius
r, a fast particle is produced whose parallel (with respect to the magnetic field) compo-

nent of velocity is determined by the expression:

w=vcosa (1 +r/g"RH) ™' (5)
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As in the cylindrical geometry the magnetic field strength does not change along
the field line, v, does not depend on time. The projections of the parallel velocity on the

unit vectors corresponding to z and ¢ co-ordinates, are:

V, = V" (l -+ rzlqzkl)_lﬁ, 'U'¢ F— b‘“ (r/qR) (I i rzlq?.RZ)—ljz (6)

We neglect the finite gyroradius effects and consider a Larmor circle just as a point.
The angular frequencies of rotation of the particle guiding centre in the toroidal and

poloidal directions are then

Q(r) = v,/R (7)

and

w(r) = vylr = Qr)/q(r), (8)

respectively.
In the cylindrical geometry, the radius r of the particle trajectory is a constant of

motion. Correspondingly, the equations that determine the positions of the ions at

t > 0 can be written as:
0=Q(nt+8, ¢= w(r)t+ by, r=n (9

Note that in the model of a large aspect ratio tokamak v, and Q are almost inde-
pendent of r. We, however, will not use this fact, in order to be able to reach some
understanding of the situation in tokamaks with finite aspect ratio where the variation
of Q over the minor radius can be considerable. On the other hand, we will exploit the
smallness of the parameter r/R in two other respects. Firstly, we neglect a small delay
in the moments of the NB particles trapping caused by their finite flight-time over the
minor radius. Secondly, we neglect some differences in the positions of particles in z -

direction in the moment of trapping (which is a result of the skew injection of the beam).
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One can show (see Appendix 1) that appropriate account for these two effects indeed

gives only small corrections to the effects discussed in our paper.

2.2 Stacking of the bunches

For the moment, we assume that the pulses have an infinitely short duration,

t =0, When the first such a pulse is just trapped, the fast ions occupy one of the device

diameters:

8=0, ¢$=0 O<r<a (10a)

and

0=0, ¢=n, O<r<a (106)

The relationships (10b) describe the ions that are trapped at the opposite (with re-
spect to injection point) side from the axis. It is clear that, if we will know the motion
of the particles trapped before the axis, then the motion of those trapped behind the axis
will be essentially the same, just with the shift of = over the variable ¢. Accordingly, we
consider now only the motion of the ions trapped before the axis.

At any instant of time, the Eqs. (9) determine the line, to which the initial straight
segment (10a) is transformed. For given dependences of (r) and w(r); one can eliminate
r from equations (9) and find the projection of this line to the (@, ¢) plane.

For definiteness, we consider the case when both Q(r) and (r) are positive, with
Q(0) < w(0) (i.e., g < 1 on the axis), and with Q and w decreasing radially in a way that,
at a certain intermediate radius, £ becomes equal to w (i.e., the condition g = 1 is satis-
fied there) while at larger radii Q exceeds w. The illustration of this kind of dependences
is given on Fig.3. They are representative for a broad class of tokamak discharges (see,
e.g., /7).

The interval of variation of @ at any instant z = const is determined by the values

Q(0)t and Q(a)t. The plot of ¢ versus 6 for subsequent instants of time is shown in
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I'ig.4a. Note that at 7 =0, the stretch (10a) is projected in the (6, ¢) plane just to the
pﬁint 8 = ¢ = 0. The diagonal ¢ = @ corresponds to the radius where ¢ = 1. The upper
and lower points of every stretch correspond to the axis (r =0) and edge (r = a), re-
spectively. As soon as maximum value of ¢ or @ exceeds 27, the corresponding section
of the line should be displaced by 2z downwards and appears again inside the square
0<¢ <2r, 0<0<2n (see, for example, curves (d) and (e) on Fig.4a). At large enough
times the picture acquires the form shown in Fig.4b.

Now we consider the same picture for the sequence of several bunches, under the
condition of an exact resonance at ¢ = 1 surface (7'= T};). When the second bunch ar-
rives, the first has the form shown by the curve (e) on Fig. 4a. In the subsequent mo-
ments, the second bunch repeats the evolution of the first, with the point of intersection
of both bunches with 6 = ¢ diagonal coinciding all the time. For illustration, the curves
for the moments ¢ = 1.5 T'and ¢ = 2.5 T (when the third bunch has already arrived), are
shown in Fig.4c and 4d. Note, that the curves from the successive bunches gradually
diverge with growing distance from the resonant point. The later bunches are directly
superimposed on the earlier ones only for the case when both Q and @ depend on r lin-
carly.

Also instructive is the counting of intersections of the stretch (10a) from the first
bunch with some minor cross-section of the tokamak, 6 = const. At (=T, the number of
intersections scales, roughly speaking, as ¢/T. After M>1 periods, the number of inter-
scctions is within the order of magnitude equal to M. The intersections from the subse-
quent pulscs also appear on the picture. Just after injection of the last (N-th) pulse, the
number of intersections roughly equals to N?/2. At longer times (1 > NT) the number of
intersections grows linearly (Nt/T).

The stacking effect occurs not only at 7'= T, but also in the cases when T/T,, is
a rational number. For instance, if T'= 2T,,, the adding of the next pulse occurs after
two (not one) revolutions of the previous pulse; if T'= T7,,/2, two groups of resonant

bunches are formed. However, the most efficient stacking occurs just at 7'= 7},
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The object that is formed by resonant stacking of the bunches has a small cross-
section (determined by the finite pulse-length and finite transverse dimensions of the
neutral beam - effects that will be discussed later) and a relatively large longitudinal ex-
tent. In order to avoid possible misunderstandings, we emphasize that it does not co-
incide with any of the field lines: from what has been said above, it is clear that it
intersects the magnetic surfaces, and if we consider its intersection point with a certain
magnetic surface its projection on this surface in the vicinity of the intersection point
forms a finite angle with the field-line passing through this point. In this - as well as in
many other - respects the object under study is very different from the “snake” phe-
nomenon /3/. We propose to call this object “tagliatella” - for the close resemblance of

its shape to that of the one of the kinds of Italian noodles.

2.3 Detection of the resonances

One of possible ways of detecting the formation of the resonant bunches is a
measurement of the line-density of the fast particles in one of the tokamak cross-
sections. In principle, this could be done by using one more neutral beam, that would
provide a charge-exchange target for fast particles, and observing the thus formed
charge-exchange neutrals escaping from the plasma along a given direction. Let the
transverse dimensions of the sampling volume be { in z - direction, and # in the direction
transverse to both z and the line of sight; let 4 be the displacement of the line of sight
with respect to the device axis (Fig. 5). For a large aspect ratio tokamak, at the compa-
rable values of £ and y , the angular width of the sampling volume in 6 (A6 ~ {/R) is
much smaller than the angular width in ¢ (A¢ ~ n/r).

We assume that the monitor counts the number of particles in the sampling vol-
ume, i.c., the total length of the stretches intersecting this volume, with a proper weight
ascribed to the every stretch (the number of particles per unit length of the line occupied
by the injected particles at a given instant of time).-Of cours, in a real experiment the

way of counting and the weighting procedure may be somewhat different but this will

not affect the essence of the analysis that follows.
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2.4 Numerical model

The numerical evalution of the signals from the sampling volume is based on the
analysis of the temporal evolution of the initial stretches (10a). The intersections of the
tagliatella with the sampling volume are numerically monitored, and the weights as-
cribed to every intersection are computed according to Eq.(A2.6) of Appendix 2. All the
simultaneos intersections are then summed up with appropriate weight to give an ex-
pected signal S from the sampling volume (from what has been stated, it is clear that
we identify the signal with the total number of fast ions simultaneously present in the
sampling volume).

As our calculations are of a model nature, we have chosen the function f{r) (that

describes the spatial distribution of the initially trapped ions, see Appendix 2) just as a

constant, with a “hole” near the axis:

const, a<r<a
A= 0, r<a

The hole simulates the attenuation of the neutral beam approaching the axis of the
device. IFor simplicity, we neglect term of order #? in the expression (A2.6). Then, for the
chosen linear model for the Q(r) dependence, the weighting factor is just constant at

r>a, and zero at r < a,. These assumptions have been used in the derivation of the

numerical results throughout the rest of the paper.

2.5 Case of exact resonance

I'or definiteness, we refer to the ¢ = 1 resonance, for which the resonant period is
T, Let us first analyze the statistics of the countings from the first bunch, at the mo-
ment 1 ~ MT,, when there are M intersections. The number of crossings with the sam-
pling volume depends on its width » : if n/a exceeds 1/M, then there are several crossings
(~Mpn/a), and the signal is relatively smooth, with the average level proportional to # and

the relative fluctuation level with respect to the average one of the order of (Mn/a) '
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If, on the contrary, x is smaller than a/M, then the signal consists of the separate spikes
of the length A¢T),/2n separated by empty periods of the order of T\,/M.

Denoting the total number of particles trapped from the single NB pulse by P, we
can say that at the time ¢ > T/2, the number of the particles per unit length of the
tagliatella roughly equals PT/Lt (Cf. Appendix 2). Accordingly, the average number of
particles in the sampling volume equals to (P77t) (A8/2rn)(Mn/a) at # > a/M; the number
of particles in a separate pulse is equal to (P7/r) (A@/2n) at n < a/M. These qualitative
conclusions are supported by the numerical results presented in Fig.6.

The same consideration allows to evaluate the linear density of the tagliatella near
the point of exact resonance after stacking M < N pulses: the linear density should be
obtained by summation over subsequent pulses. If the time ¢ is not very close to the
moment when the last (M -th) pulse had been injected, i.e., |t — MT|=T,,/2, then the

sum is approximately equal to
(P/L) In M. (1

The exact expression is presented in Appendix 2. If this resonant bunch crosses the

sampling volume, it produces the signal which has a height of
P(A8/2n) In M. (12)

Of course, to observe this big signal, one should properly position the sampling volume
(so that it would cross the line # = ¢). The duration of the signal from the resonant

bunch is then equal to
(T/27) (n/a) = T(Ad/2n), (13)

unless the line of sight is almost tangent to the ¢ = 1 surface. The latter case can also
be casily analyzed, but we will not present here the corresponding simple calculations.
Now, we are prepared to present the overall picture of the signal collected from the

sampling volume shown in Fig.5 in the case when it intersects the resonant field line
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0 = ¢. First, we see the spikes corresponding to the ¢ =1 surface; the height of these

spikes grows logarithmically with the number of pulses injected, reaching the value of
P (A0[2n) In N (14)

at t~NT,. After the last pulse has been injected, the height of the resonant spikes de-
creases due to the decreasing linear density (see Appendix 2): at T/2St— NT SNT as
In[ NT/(t — NT)], and at t22NT as 1/t.

Superimposed on these spikes, are signals from “non-resonant” particles (not be-
longing to the g = 1 surface), crossing the sampling volume. The character of this back-
ground signal changes with time: from a sporadic, consisting of well separated spikes
during the injection of the first few bunches, to a quasicontinuous at later phases.

The behaviour of the signal described above is shown in Fig.7, where it is also
compared with the given analytical estimates for the envelope of resonant pulses.

In the time interval following the injection of the last NB bunch, a considerable

continuous signal will be formed, if the sampling volume is not too narrow, i.e., for
n/a>2n/N2. (15)

This signal comes from the bunches that have been injected not too close to the obser-
vation time, N — m > (a/5)"?, where m =0 corresponds to the last pulse. The particles
from these bunches can be considered as uniformly distributed over the volume of

tokamak. Their number in the sampling volume can be evaluated as
NP (n/a)(A0]2n) (16)

[From comparison of the evaluations (14) and (16) it is clear that to have the reso-

nant spikes much higher than the background, one should choose # to be sufficiently

small

(n/a)<In N |N. (17)
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We will assume that the even more stringent inequality
(nla)s1/N (18)

is satisfied. The further reduction of # is, probably, undesirable: as we shall see below,

with the account of the finite pulse-width and velocity spread this may cause the unde-

sirable reduction of the useful signal.

2.6 Effect of the frequency mismatch and of the line-of-sight displacement
Now we consider the effect of small deviation AT of the injection period from the
resonant value 7). If the mismatch AT is smaller than TA¢/2zN, then it has virtually

no effect on the pulse-shape, as all the bunches still can be simultancously covered by

the sampling volume. At

Ap[2aN S AT|T S Ap[2n (19)

a considerable change of the pulse-shape occurs as now the resonant pulses are only

partly covered by the sampling volume. The height of the pulse diminishes. The maxi-

mum signal can be roughly evaluated as

P (A8/27) In[(Ag/27) (TIAT) ] (20)

At even larger values of mismatch,

ATIT> Adp[2n Q1)

the pulses cross the observation window scparately, and the resonant phenomenon can

hardly be detected. An example of the described behaviour is shown in Fig.8.
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A possible way of identifying the existence of resonance experimentally, could be
the sweep in the pulse period 7" from one pack of the pulses to another' and recording
dependence of the pulse amplitude on the mismatch AT. If one defines the width AT,
of thus obtained resonant curve as a mismatch at which the signal becomes two times

smaller than its maximum value, then, from Eqs.(14) and (20) one f{inds the following

cxpression for AT,,,
ATre.T/T o Afb/zn\/ﬁ s (22)

To find the dependence of the signals on the position of the sampling volume (in
case when it is displaced in a way that it does not any more intersect the resonant field
line ¢ = 0, see I'ig.4c,d) we consider dependences ¢ versus 0 for different injection pulses
near the point ¢ = 6 = 0,. Since the vicinity of this point corresponds to small deviations
of radius r from the resonant value r = r, (r = r, + £, with £<r), to obtain a curve corre-

sponding to the last injected pulse, we can use the expansions

0— 0y = QT+ Q'
: 23)
¢ — 0= w'éi+— w" EF

with 0, = Q,f, where 7 is the time elapsed since injection of this last pulse. Simple calcu-

lations show that, up to the terms quadratic in 6 — 6,, the following relation holds

2
e s (0 —6,) W'’ w'Q'"’

d’ 90 = Q' (8 80) £s 27 ( sz’z T Q':; ) (24)
For the carlier pulses, one should replace 7 by 7+k7, with k=1,.., N— l; and
k = N — 1 corresponding to the first injected pulse (we assume that 7 is not too small,

i=T}/2).

' The other option would be to keep T constant but rather sweep the particle energy (of course, keeping it

constant within one pack). This is identical to sweeping in T, .
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Let us denote the separation between the line-of-sight and the resonant line by ¢..
Then, assuming that ©'/Q’ ~ 1, and @' [Q?T ~ Q" [Q"*T ~ 1, we conclude that in order

all the pulses to be simultaneously covered by the sampling volume, the condition

¢, < (Ap)'"? (25)
should be satisfied. If, on the contrary, the condition

;> ()" (26)

is satisfied, the last few injected pulses manifest themselves separately, and only the
pulses with numbers less than N — k, with k ~ #./A¢, can be covered by the sampling
volume simultaneously. The appearance of pre- (or post-) pulses can be taken as the
criterion of the spatial resolution. This means that the localisation of the resonant field

line can be made with the spatial accuracy of a(A¢)'2.

2.7 Detection of signals by means of a gate technique

The periodicity of the relevant signals makes it convenient to perform the analysis
by means of well-known temporal integration techniques, which allow a sharper deter-
mination of the resonances. We consider here the use of a temporal gate technique, in
which the monitoring system is open at given intervals of time and the detected signals
are summed up. In this case, a pulsed target beam with characteristics similar to those
of the injection beam can be used (see. Sec. 6). Electronics means are also possible. For
a given sampling volume, as defined in Sec. 2.3, the temporal gate is characterized by the
following parameters: the time Ty of the first opening of the gate, the period 15 , the
opening interval in each period 7 , and the number N¢ of the temporal windows of the

gate. Thus, the signal is integrated over the following time intervals

(27)

7

’I})G“‘k?‘(}'stg1‘0(‘:4“’(7};'{"7(;, k:(), l,---,N(‘
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To detect the resonances we take 7 equal to the injection period 7, and sweep T
as mentioned in Sec. 2.4. The time interval 7, is assumed to be a given fraction of 7. The
general pattern of the signal is shown in Fig.9 as a function of 7. This refers to a sam-
pling volume located at the same toroidal position of the injection, i.e., in 6 = 0, and with
Toe = 0. From the figure different rational resonances can be identified. A toroidal dis-
placement of the sampling volume allows the investigation of particular sets of reso-
nances. The resonance pattern relevant to @ = = is shown in Fig.10, which refers to the
same conditions of Fig.9, with Tys = 0.5 T. It is apparent the disappearence of the peak
corresponding to the ¢ = 2 resonance. It is clear that, by changing the delay time T ,
the appearence of resonance peaks can be also analyzed. As an example, the signal
around the ¢ =1 resonance is shown in Fig.11, which refers to 8 = =, for the cases

Tvs = 0.5 T, (exact resonance) and Ty = 0.

3. ROLE OF THE FINITE BRIGHTNESS OF THE BEAM
3.1 Effect of a finite pulse-length
FFor the conditions of exact resonance (AT = 0), the finite pulse-length will have no

effect on the amplitude of the resonant pulse, as soon as the condition

1< TAP[2n (28)

is satisfied. At larger pulse-lengths, the azimuthal length of the resonant bunch becomes
larger than A¢, so that the sampling volume can simultaneously contain only a part of
the pulse. Correspondingly, the pulse-length increases from TA¢/2n to t and the am-
plitude of the pulse decreases: expression (14) should be multiplied by TA¢/2nt. At the
same time, increase of t to the values exceeding TA¢/2= will have no considerable effect
on the background signal (16) caused by nonresonant particles. So, we come to the
conclusion that, in order to provide good conditions for observing the resonant pulses,
one should keep t within the limits determined by Eq.(28). The modifications introduced
by the finite pulse length in the resonance pattern obtained by a gate technique are

shown in Fig.12, which refers to the ¢ = 1 peak. The case of instant pulses and three
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different pulse lengths T have been considered. No appreciable variation with respect to

the case T = 0 can be observed when the condition (28) is satisfied.

3.2 Effect of the beam velocity spread

The rotation frequencies { and w of the fast particles scale as v. This means that
scatter in v is roughly equivalent to the introduction of the frequency mismatch discussed
in Sec.2.6. We have found that the characteristic width of the resonance AT, is deter-
mined by the Eq.(22). So, for a rough estimate of the tolerable level of velocity spread

that would not yet broaden the resonance, we should use the inequality

Avlv < AT,/ T (29)

The effect of velocity spread of fast ions on the signals is illustrated in Fig.13, (re-
ferring as Fig.12 to the g = 1 resonance), where the signals corresponding to different
values of Av/v are compared. It is apparent that velocity spreads satisfying the condition
(29) produce only a sligth decrease of the signal (with respect to the Av =0 case), which

mantains its full detectability, while large velocity spreads lead to the disappearence of

the resonant peak.

3.3 Effect of the finite beam width

We assume that the initial pulsed beam has a squarc cross-section of the size
b x b, with b much smaller than the plasma radius a. In a large aspect ratio tokamak, the
angular width of the imprint of such a beam on plasma surface is much larger in a
poloidal direction (b/r) than in a toroidal one (b/R). From our previous considerations
(see Sec.2.3) it is clear that the effect of the final poloidal angular width will play no role

in the detection of the signals, if it is smaller than the poloidal angular width of the ob-

servation volume (5/r), i.e., if the condition

h<n (30)
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is satisfied. At larger b, the signal from the observation volume will decrease as #/b.

At finite transverse dimensions of the neutral beam, the volume density of the
trapped ions becomes also finite (for the needle-like neutral beam it was infinite, though
the number of particles per unit length, that determines the amplitude of the observed
signals remained finite). At the moment just after the injection of the neutral beam, the
trapped particles occupy a volume of order of ab? and have a volume density of order
P/ab. Since the Jacobian D(r, 8, ¢)/ D(ro, 8o, ¢o) of the transform (9) is equal to unity, the
volume density of the trapped particles will remain constant at any time. The size of the
beam imprint on every magnetic surface also remains constant, as is clearly seen from
the transform (9). Then, as the length of the initial stretch (10a) occupied by the fast
ions grows with time, this means that the size of the bunch across the magnetic surface
decreases with time (approximately, as 1/ at not-too-small ¢'s). So, every bunch of fast
particles acquires (with time) a belt-like shape, with the “height” of order of b, and
thickness »’ of order of abT/Lt. Clearly, at not very small ¢ 's, ' is much smaller than &
which, in turn is much smaller than the length of the bunch. This is the reason for our
choice of the word “tagliatella” for the name of the resonant bunch.

The spatial structure of the stack of the bunches of the fast particles obtained in
the conditions of the exact resonance, can be described as follows. The transverse
cross-section of the stack just in the point of resonance (r = ry, § = ¢ = Q1) consists of
the overlapping rectangles of identical height » and the width »’ (the smaller the earlier
the pulse has been injected). The density is maximum in the centre (where, after the in-
jection of the N -th pulse it is approximately N times higher than for the single pulse)
and decreases in the direction across the magnetic surface. It becomes two times less
than in the maximum at the distance of approximately 2ab/NL from the centre. In the
direction along the tagliatella the maximum density decrcases because the “belts” origi-
nating from different pulses gradually diverge with a growing distance from the resonant
point. Note that the direction along the belt does not coincide with that along any of the
magnetic field lines (Cf. IFig.4a). According to Eq.(24), after the injection of the last

pulse, i.c., at t — NT~T]2, at the angular distance ¢ from the point 8 = ¢, the separation
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of the "belts” corresponding to different pulses from the belt produced by the first pulse
is approximately equal to a¢?/(k + 1), where k corresponds to the (N — k)-th pulse. The
density per unit length of the “stack” of the belts decreases for this reason when moving
along the stack. The maximum density per unit length scales as In N, and decreases by
a factor of two with respect to this level when only N — /N pulses are stacked together
(i.e., k=./N). Then, from the equation b = a¢?/.,/N , we find the angular distance on
which the density per unit length decreases by a factor of two: ¢ ~ (b/a)'? N'*, There-
fore, the resonant bunch has a rather large size in the longitudinal direction.

If the pulse-length 7 exceeds h/y, then the initial length of the bunch of fast parti-
cles along the field-line is & 4+ 7. Accordingly, the volume density of the fast particles is
reduced: it equals roughly P/ab (b + v7).

One more effect that should be taken into account for the neutral beam of finite
transverse dimensions is a possible dependence of the frequencies Q and w on the an-
gular co-ordinates ¢ and 6 of the trapping point. This dependence appears due to the
fact that the parallel (with respect to the magnetic field, Cf. Sec.2.1) velocity of the ions
depends on the azimuthal angle of the trapping point. For a large aspect ratio case this
dependence is weak and can be neglected. For a small aspect ratio the presence of this
dependence causes an effect analogous to the velocity spread of the beam. The corre-
sponding constraint on the beam transverse dimension # can be obtained by replacing
Av/v in the L.h.s. of inequality (29) by (b/a) (dw/dd)|w.

The minimum dimension of the tagliatella can be affected also by the effects of fi-
nite L.armor radius. As soon as &', formally evaluated as baT/Lt, becomes less than p,,
the further compression ceases, and the minimum dimension remains on the level of p..

In this latter case the particle density in the tagliatella decreases correspondingly.

4. TOROIDAL EFFECTS
In the model of a cylindrical tokamak that we have discussed in the previous
sections, the magnetic field does not vary along the field line, so that at even very small

values of vy, the ions can encircle the magnetic axis. In the toroidal geometry, in order to
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avoid the toroidal trapping, one should inject the neutrals at an angle that is not too
close to 90° with respect to the magnetic field. This imposes some constraints on geom-
ctry of the conceivable experiment.

On the other hand, the effect of the toroidal trapping can be used to deliberately
create a population of ions bouncing between their turning points in some region of a
tokamak and to employ the resonance between the bouncing frequency and the fre-
quency of the neutral beam pulses to produce a high density bunch of ions on a certain
field-line. The spatial structure of this object will be quite similar to that of the
“tagliatella” described above, with relativelv large length, medium width and small
thickness.

What will be considerably different in this case, is a reaction of the resonance to
the drift motion of the fast ions, in particular, to the one caused by the radial electric
field. Indecd, in the case of the transit ions, unless they are very close to the trapping
boundary, the electric field would cause just some minor change in the rotation fre-
quency of the ions around the magnetic axis, with a corresponding minor change in the
resonant frequency. On the contrary, in the case of the trapped ions, the drifts would
move the ions out from the field line onto which they have been injected, and the time
of stacking would be shortened. Detailed considerations of this effect which has clear

diagnostics implications will be published elsewhere.

5. PARAMETERS OF A CONCEIVABLE EXPERIMENT

In order to better understand whether the experimental detection of the effects
discussed in our paper is really possible, we consider a numerical example related to the
conceivable experiment on a medium-size tokamak.

[et’s assume that the neutral beam with a pulse-length of 0.3 us is composed of
deuterons, has a current of 100 4 and an energy of 80 keV. For a plasma with density
of 5x10" em? and temperature of a few kel this would correspond to a penetration
length of approximately 1 m. The distance between bunches of 10 ps would correspond

to the length of the magnetic field line of 10 — 20 m, depending on the injection angle.
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For the total number of pulses in the pack equal to 20, the pack duration would be 200
us . Even for the continuous beam with the aforementioned parameters the energy con-
tent in the pack would not exceed 1.6 kJ. The desirable energy spread of approximately
2% is rather demanding but could, probably, be assured for the beam of a relatively
short pulse-length, just by cutting it out from much longer quasicontinuous beam.

For the pulse-length of 0.3 us , the length of the initially formed bunch of fast ions
along the ficld lines is approximately 30-50 cm. This means that the size of the beam in
this direction can be relatively large, up to a few tens of cm, without any negative effect
on the overall performance of the system. We take a value of 30 ¢m for it.

For the beam size across the field lines, we assume a value of 10 ¢cm. With the
choice of parameters given above, the beam current density would not exceed
0.3 AJem?, well within the presently achieved values.

As it has been already pointed out, the just trapped single bunch of the fast ions
will occupy a region with the dimensions approximately equal to 60 cm along the field
lines, 100 em along the radius, and 10 cm across the two other dimensions. As the total
number of particles in 0.3 us , 100 4 pulse is 2 x 10, the number density in the bunch
will be approximately 3 x 10? ¢m-*. The maximum density in the point of exact resonance
will be 20 times larger (as far as the minimum dimension of the tagliatella exceeds the
gyroradius p; of the fast ions; if the formally evaluated &’ is less than p; , then the volume
of the tagliatella should be evaluated as Lvtp;, with the corresponding reduction of the
particle density). As the energy of the ions constituting the tagliatella is an order of
magnitude higher than the ion temperature, the relative pressure perturbation is 10 times
larger than the relative density perturbation, and may reach 10%. In this respect, the
tagliatella may be of some interest as a tool that can be used to affect the plasma
behaviour near the resonant surfaces.

As it has been already mentioned, to detect the resonant bunch, one can use a
special “target” beam, crossing the plasma in the desired cross-section. We assume the
target beam to have parameters similar to the ones of the initial beam, in particular, the

cross-section of approximately 250 cm?; in the case of the target beam we, however, as-
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sume that the target beam has a square cross-section (16 x 16 ¢cm?), i.e., n = 16 cm. With
the current density of 0.4 A/cm?, the density n, of the neutral atoms in the beam is ap-
proximately 10" cmi3,

According to the results of Section 2.5, for the pulse-length of 0.3 us , the duration
of the signal on the monitor will be also approximately 0.3 us . The number of fast ions
that are simultancously present in the sampling volume, when it is covered by the central

part of the resonant tagliatella, is (see Sec.3.1)

non
In order to find the number of charge-exchange neutrals produced per unit time,
this number should be multiplied by n.o..v, where o.. is the charge-exchange cross-
section. Multiplying this product by the pulse-length 7, we find the total number of
charge-exchange neutrals p’ produced during the single traverse of the central part of the

tagliatella through the target beam:
] /Y
P = Pln NTV—H NN 40 ox. (32)

The secondary charge-exchange and the ionization of the thus produced fast atoms
reduces their number approximately by a factor of 2. Substituting all the numerical val-
ues given above, we find that the number of fast atoms that is produced during one pulse
is p’ ~ 10°, Their detection on the background of other charge exchange particles should
be facilitated by the fact that they have a well defined energy and escape from every
point of the plasma along the conical surface determined by their pitch-angle (which is
also well defined).

Some additional advantages can be gained in the case when the aforementioned
technique is applied for the studies of the magnetic field structure and/or fluctuating
fields near the separatrix of tokamaks with divertor. Here the pulsed beam can be in-

jected tangentially, near the upper point of the poloidal cross-section (sec Iig.14), while
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the detection can be made near the X-point, where the density of trapped ions should
increase because of their long residence time near this point. As the plasma temperature
in the periphery of the tokamak is relatively low, one can use the injection of NB of
heavier atoms (like lithium), which will not be completely stripped, so that the optical
monitoring would become possible /8/. This would allow to increase the overall sensi-

tivity of the diagnostic.

6. CONCLUSIONS

We have shown that, by the pulse-periodic injection of the neutral beam into a
tokamak plasma, resonant bunches of fast ions can be formed near the rational magnetic
surfaces. To create such a bunch, one should adjust the time-distance between two suc-
cessive pulses of the neutral beam and the rotation period of fast ion along the closed
magnetic field line.

The spatial structure of the resonant bunch is characterized by a rather large lon-
gitudinal extent, and a strong difference in the two other dimensions. Because of this
very characteristic form of the bunch we propose to call it “tagliatella”.

With existing or slightly developed neutral beam technique, one can produce
tagliatelle with maximum density of fast ions of order of a few percent of plasma density,
and the pressure up to 10% of plasma pressure. Detection of resonant tagliatelle can be
used for the investigation of the magnetic field structure (in particular the magnetic is-
lands), and of the collective interaction of fast ions with fluctuations. The diagnostics
based on the pulse-periodic injection of the neutral beams can be used also for the
studics of the regions ncar the separatrix in tokamaks with divertors.

The resonance phenomena described in our paper should exist also in other types

of the toroidal devices, like reversed field pinches and stellarators.
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APPENDIX 1
Injection of infinitely short neutral beam pulses into a cylindrical tokamak

We consider the injection of a neutral beam pulse in the equatorial plane of the
tokamak. If time and the toroidal angle are counted respectively from the moment and
the place at which the bunch crosses the tokamak boundary (at r = a), then the crossing
of the magnetic surface of a radius r occurs at the moment (a — r)/v sin o at the toroidal
angle 6, = (a — r)/R cota. The ions trapped at this surface have rotation [requencies £)(r)

and w(r) determined by Eqgs. (7), and (8). They move along the field line according to

Iigs.(9):

R cota+Q(r)(t— a:r sin a)
(A1.1)

¢ =w((1 -5

a—F

0=

' A
m Sin OE)

At the moment ¢ = a/vsin « when the neutral beam bunch crosses the magnetic

axis, the ions occupy the line that is defined by the equations:

(41.2)

For a large aspect ratio tokamak, R>a, all the ions have small values of ¢ and es-
sentially the same values of . Note that, numerically, even for a relatively small aspect
ratio of two, the stretch that is being initially occupied by the ions differs only very little
from the straight segment determined by Eq. (10a). The subsequent bunches occupy

initially the same line so that no accumulated phase shifts arise from the finite flight time

and oblique injection.
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APPENDIX 2

Stretching of the bunch of fast ions

Let /[r) be the function that describes the line-density of the ions just trapped after

injection of the NB pulse:

dP = Pf{r)dr (42.1)

with P being the total number of particles trapped at the stretch 0 <r <a, dP the num-

ber of particles trapped within the interval (r, r + dr). It is implied that fis normalized

to unit:

f “qndr=1 (422)
0

The initial interval of the length dr is being stretched in the course of the particle

motion along the field lines. At time ¢, the points r and r + dr will move to their new

angular positions,

b=w(r)r, 0=90(L, (42.3)

and
¢ +dp = (w(r) + ' (r)dr) 1, 0 +d0= (Q(r) + Q'(r)dr) t, (A2.4)
respectively. The distance between the ends of the interval is, obviously,

dr[l + (w’r)zt2 + (Q’R)zrz]m, (A42.5)

so that the initial line density at radius r is transformed to:
2.3 R
PAN[1+ @n +(QR)t i (A42.6)

At not-too small ¢,
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1> (r[R)T (A42.7)

it evolves as 1/t.

At the resonant surface, the pulses are added to each other with the time-shift 7.
If the time after injection of the last (N — th) pulse satisfies the condition (A2.7), the

linear density in the resonant point is, clearly, the following:

P fir) 1
: (42.8)
[+ @R ;

(note that here ¢ is larger than (N — 1)7). If N is large and the time f=¢t—(N-1)T
clapsed since injection of the last pulse is large enough, ¢ > T/2, then a simple

asymptotic expression is valid:

S 1 N
D — e T111(—57--). (42.9)

This asymptotics breaks down at 7 ~ NT; at even larger 7, the sum is approximately

equal to NJ/t.
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FIGURE CAPTIONS

Fig. 1 Periodically pulsed neutral beam; Iys is an equivalent current, N is the total

number of pulses in the pack, t is the pulse length, and T the pulse period.

Fig. 2 Cylindrical model of a tokamak. The neutral beam is injected in the (xz) plane,

and aimed to the device axis.

Fig. 3 Plot of the model dependences of g, Q , and w vs r (curves a, b, c respectively).
The safety factor g is lower than 1 on the axis and larger than | at the plasma
periphery. The intersection point of curves b and c¢ corresponds to the g =1

surface.

Fig. 4 Evolution of the system in the (6, ¢) plane. (A) Shape of the stretch (10a) at
different times. Curves a, b, ¢, d, e refer to /T =0.2, 0.4, 0.6, 0.8, and 1, re-
spectively. The dashed curves correspond to 6 = g(0)¢, and 6 = g(a)¢$, and the
dotted curve to @ = ¢ (i.e., to g = 1). (B) Shape of the stretch (10a) at large time
t =25T. (C) Superposition of two bunches (injected at t=0 and t=T,,) at
t = 1.57. The dashed curve corresponds to the first bunch, and the dotted curve
to the second bunch. The two squares correspond to two different sampling
volumes: one is centered at @ = ¢ = n, while the other is shifted both in 6 and
¢ . (D) Superposition of three bunches (injected at 1 =0, t=T),, and 1 =2T)))
at t = 2.5T. The first bunch is represented by the continuos line, the second by

the dashed curve, and the third by the dotted curve.

Fig. 5 Geometry of the sampling volume situated near the plane z = z,.
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Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig.10

Fig.11

Fig.12

Fig.13

Time evolution of the signal for the case of N = 1 pulse at exact resonace for two
different sizes of the sampling volume. Case A refers to # = 0.1, and case B to

n = 0.01. The other parameters are d =0, and a, = 0.15a (see Secs.2.3 and 2.4).

Time evolution of the signal S for N = 20 pulses at exact resonace. The param-

eters are d =0, n = 0.05, and a;, = 0.15 a.

Time evolution of the signal S for N = 20 pulses at AT/T;, = 0.1. The other pa-

rameters are the same as in Fig.7.

Integrated signal (obtained by the gate technique) versus the injection period T
normalized over Tj. The chosen parameters of the gate are Tos=0, To=T,
1,=0.04 T, and N;=21. N =20 pulses have been considered. The sampling
volume is located at 8 = 2=. For the considered profiles of ¢ and Q the period

of the ¢ = 2 resonance is Ty ~ 3.067T),.

Same as in Fig.9 at 0 = =n, for Toe =0.5T.

Same as in Fig.10 for different values of the first opening of the gate. The con-
tinuous line refers to Ty = 0.5 T, and the dotted line to Ti; = 0. Note the change

of the horizontal scale.

Behavior of the integrated signal for different pulse lengths. Curves a, b, ¢ refer

to T =0.01, 0.05, and 0.1. The other parameters are the same as in Fig.10.

Behavior of the integrated signal for different velocity spread of the beam.
Curves a, b, c, d refer to Av/v =0, 0.01, 0.05, and 0.1. The other parameters are

the same as in IFig.10.
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Fig.14 Schematic of the experiment on the injection of a pulsed periodic beam to the
peripherical plasma of the divertor tokamak. The pheripherical plasma occupies
the region between the separatrix and the dashed curves. The arrow sf]ows the
projection of the beam velocity on the plane of the figure. There exists also a

velocity component parallel to the magnetic axis (perpendicular to the plane of

the figure). The detection system could be situated in the vicinity of the X-point.
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