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Abstract 

Nuclear anapole moments of 133Cs, 2°3'2°5T1, 2°Tpb, 2°9Bi are treated in the single-particle 
approximation. Analytical results are obtained for the oscillator potential without spin-orbit inter- 
action. Then the anapole moments are calculated numerically in a Woods-Saxon potential which 
includes spin-orbit interaction. The results obtained demonstrate a remarkable stability of nuclear 
anapole moment calculations in the single-particle approximation. 

1. Introduction 

The existence of  parity nonconservation (PNC) in atoms is firmly established at 

present (see, e.g., Ref. [ 1 ] ) .  To be precise, only the nuclear-spin-independent PNC 

effects in heavy atoms have been observed up to now. Just these effects are enhanced 

as Z2Q. The last enhancement factor, the so-called weak nuclear charge Q which is 

numerically close to the neutron number N = A - Z, is due to the fact that in the 
nuclear-spin-independent phenomena all the nucleons act coherently. 

As to the atomic PNC effects dependent on nuclear spin, they evidently lack this 
coherent enhancement and are therefore much smaller. There are strong reasons to expect 
that these effects are dominated by contact electromagnetic interaction of  electrons with 
nuclear anapole moment (AM) [2,3].  
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Table 1 
Effective constants K for heavy nuclei 

Nucleus 

133Cs 203,205 TI 209Bi 207pb 

analytical result [3] 0.082gp 0.11gp 0.112gp -0 .08gn 
its value at gp = 4 [3] 0.33 0.44 0.45 
numerical result [3] O.062gp O.095gp 0.078gp -0.09gn 
its value at gp = 4 13] 0.25 0.38 0.31 
[6] 0.14 (0.28) - - - 
[7,8] 0.24 (0.24) (0.24) - 
this work, analytical, gp = 4.5 0.33 0.42 0.45 -0 .09gn + 0.005 
this work, numerical, gp = 4.5 0.26 0.40 0.29 -0 .10gn + 0.004 

Anapole is a new electromagnetic moment arising in a system without centre of 
inversion [4]. It exists even in such a common object as a chiral molecule in a state 
with nonvanishing angular momentum [5]. Nuclear anapole moment is induced by PNC 
nuclear forces. 

The electromagnetic PNC interaction of electrons with nuclear AM is conveniently 
characterized in the units of the Fermi weak interaction constant 4 G = 1.027 x 10-Sm -2 
by a dimensionless parameter K. (Its definition is given in the next section.) A closed 
analytical expression has been obtained for this constant [3] within the nuclear shell 
model under some extra simplifying assumptions. In particular, for 133Cs this model 
prediction is (at the numerical value of the effective PNC nuclear constant accepted in 
the paper quoted) 

K(133Cs) = 0.33. (1) 

More reliable numerical calculations with the Woods-Saxon potential including the 
spin-orbit interaction result at the same PNC nuclear constant in [3] 

K(133Cs )  ---- 0.25. (2) 

The constant K(133Cs) has been calculated also in Ref. [6]. In that paper only the 
7r-meson-exchange contribution to the P-odd nuclear forces has been included. This 
contribution constitutes roughly a half of the strength of these forces according to the 
estimates accepted in Ref. [ 3 ] (the second half is due mainly to the P-odd p-exchange). 
No wonder therefore that the number 0.14 obtained in Ref. [6] for K(Ia3Cs) constitutes 
roughly a half of the total result (2). (In Table 1, containing the summary of theoretical 
results, in the corresponding entry we indicate in brackets what to our guess would be 
the result of Ref. [6] if the p-exchange were included.) 

Later numerical calculations with the oscillator potential [7] led at the same value of 
the P-odd nuclear constant gp to 

K(133Cs) = 0.24. (3) 

4 The system of units with h = 1, c = 1 is used; m is the proton mass. 
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Less satisfactory is the agreement between the results for the AM of 2°9Bi obtained 
in Refs. [3,7]. As to the AM of 2°3'2°51"1 the disagreement between the predictions 
made in Refs. [3,8] is even stronger. (The values of K(2°3'2°ST1), K(209Bi) at the same 
magnitude of gp as accepted in Ref. [3] is not explicitly given in Refs. [7,8]. So, in the 
corresponding entries of Table 1 we present in brackets our extrapolation of K(2°3'2°ST1), 
K(209Bi), obtained in Refs. [7,8], from their values of gp to that accepted in Ref. [3] .) 

Experiments aimed at the detection of nuclear AM in cesium, thallium, lead, bismuth 
are underway in many groups. The first evidence of a nuclear-spin-dependent P-odd 
effect has been seen already in cesium [9]. The result of this experiment is 

K(133Cs) = 0.72(39) .  (4) 

Therefore, detailed theoretical investigation of various contributions to nuclear AM looks 
quite relevant. 

The present paper is organized as follows. In the next section we describe the constant- 
core-density approximation which leads to a closed analytical expression for nuclear AM, 
and introduce some necessary notions and relations. Then we consider a somewhat more 
sophisticated model which still allows for an analytical treatment. This model gives some 
idea about the corrections to the above leading approximation. But the most essential 
part of the paper is devoted to serious numerical calculations using a realistic description 
of the core density. The nucleon wave functions and Green's functions are obtained with 
a Woods-Saxon potential which includes the spin-orbit interaction. The contribution of 
the current generated by the spin-orbit interaction (omitted in Ref. [3] ) is taken into 
account. As distinct from Refs. [7,8], the spin-orbit interaction itself is treated beyond 
the perturbation theory. 

Though the deviations of the contact and spin-orbit currents from naive potential 
expressions are included, but in all other respects we restrict throughout the present 
paper to the single-particle approximation, that of a valence nucleon above a spherically- 
symmetrical core. The many-body effects are certainly of importance for nuclear anapole 
moments. We shall consider them in future publications. 

2. The leading approximation for nuclear anapole moment 

PNC interaction in a system (the atomic nucleus is now of interest to us) mixes 
opposite parity states of the same total angular momentum and creates in it a spin 
helical structure [ 1,4]. In this way such a system with nonvanishing magnetic moment 
acquires a specific configuration of magnetic field, of the type created by the toroidai 
winding. This is what is called anapole [4]. 

The AM vector can be conveniently defined as [ 1-3] 

a = - l r f  d r r2 j ( r ) ,  (5) 

where j ( r )  is the current density operator. The vector-potential produced by the AM is 
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1 
A(r) = - [ a A -  V ( a V ) ]  ~ ~ at (r ) .  (6) 

We omit in the last expression the term ~7(a V)1/4~rr, which can be obviously elimi- 
nated by a gauge transformation. 

When calculating the AM of a heavy nucleus we restrict ourselves to the shell model 
and one-particle approximation (both in what we will call the leading approximation 
and beyond it). We shall assume that the nuclear spin I coincides with the total angular 
momentum of an odd valence nucleon, while the other nucleons form a core with the 
zero angular momentum. The effective P-odd potential for an external nucleon can be 
presented as follows: 

G g tr[pp(r) +p(r )p] .  (7) W -  ~ 2 m  

Here ~r and p are respectively the spin and momentum operators of the valence nucleon, 
p(r) is the density of nucleons in the core normalized by the condition f drp(r) = A 
(the atomic number is assumed to be large, A >> 1). The numerical value of the 
dimensionless constant gp in the case of an external proton is perhaps close to 4-5 (see 
below). For an external neutron the corresponding constant gn is smaller, most probably 

gn<<l .  
The leading approximation for the AM of a heavy nucleus corresponds to the as- 

sumption that the density p(r) is constant throughout the space and coincides with the 
mean nuclear density P0. This approximation, first used in Ref. [ 10], is reasonable if 
the wave function of the external nucleon is mainly localized in the region of the core. 
The Schrtdinger equation for the external nucleon 

[l 1 -2-ram d + U(r) + W(r) ¢(r) = E~k(r) 

to first order in W for p(r) = p0 = const, has the elementary solution 

~(r) = 1 -  i - ~  gpoerr ~o(r) . 

(8) 

(9) 

Here ~P0(r) is the unperturbed wave function of the external nucleon. It might seem 
that now interaction (7),  which is equivalent to the electromagnetic interaction with 
a constant vector-potential A = - ( G / v ~ ) ( g / e ) p o t r ,  should not result in any physical 
effects at all. However, the spin part of the current density 

e/x 
jS(r) = ~m V x (~bto'~p) , (10) 

(/~ is the nucleon magnetic moment) does work due to the noncommutativity of the 
o--matrices, even in this approximation. Simple calculations using formulas (5),  (9) 
and (10) yield 

KI Ggpo 2~re/,, (r2) "/(I + 1) 
a -"'-: V ~  rn 

K=(I  + ½) (_ ) /+ l /2 - t .  (11) 
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Here l is the orbital angular momentum of the external nucleon. As to its mean square 
radius (r2), it coincides to good accuracy with the squared charge radius of the nucleus 

2 3 R 2 3 r 2 A2/3 rq = = 3 0 , ro = 1.2 fm. (12) 

It is useful to present also the effective local AM operator which, acting in the space 
of nonperturbed wave functions ~0 ( r ) ,  produces the result (11). This operator is 

gt = Ggpo 2~relt [_o.r2 + r ( t r r )  ] . (13) 
m 

Setting P0 = (47rr3/3)-1, we finally obtain from (11) 

G 9 g  elt  A2/3 K I  
a = - - ~  lo taro I ( I + 1 ) "  (14) 

The A-dependence of the AM is very natural. Indeed, since the anapole corresponds to 
the magnetic field configuration induced by a toroidal winding, the AM value should be 
proportional to the magnetic flux, i.e., to the cross-section area of the toms. This is the 
origin of (r E) in formula (11) and of A 2/3 in (14). 

Let us turn now to the PNC problem in atoms. The Hamiltonian of the interaction of 
an electron with vector-potential (6) can be presented as 

G KIot 
H~ = e a a S ( r )  = x / 2 I ( I  + l)  KS(r) (15) 

( - e  is the electron charge, ot are the Dirac matrices). The Fermi constant G serves as 
the natural unit for the AM, that arises in first order in the weak interaction, and has 
the dimension cm 2. In this unit a convenient characteristic of the nuclear AM for the 
atomic PNC problem is the dimensionless constant K. According to (14) it equals [3] 

K 9 g  Celt A2/3. (16) 
-- 10 mr 0 

The enhancement ~ A 2/3 compensates to a large degree the small fine structure constant 
Ce = 1/137. That is why the nuclear AM is perhaps the main source of the nuclear-spin- 
dependent PNC effects in heavy atoms [ 2,3 ]. The constants x for nuclei of experimental 
interest, as given by simple analytical formula (16), are presented in Table 1. Their 
numerical values for Cs, Tl, Bi correspond to gp = 4, the number assumed in Ref. [3]. 
In the next line of Table 1 the results of numerical calculations [3] are presented at 
the same gp. Those calculations were performed using a realistic description of the core 
density p ( r ) .  The wave function and the Green's function of the valence nucleon were 
calculated with a Woods-Saxon potential which included the spin-orbit interaction. The 
crude analytical calculation is obviously in reasonable agreement with that numerical 
o n e .  
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3. Analytical treatment of nuclear AM in a single particle oscillator potential. 
Contact current contribution 

We will start our analysis of various contributions to nuclear AM beyond the leading 

approximation from a more realistic model which still allows for an analytical treatment. 
The model consists in the use of the oscillator potential for the valence nucleon and in 
the neglect of  the spin-orbit interaction. 

Let us consider first the spin current contribution to the AM. Substituting expression 

(10) into formula (5) and integrating by parts, we transform the corresponding AM 
operator to the following form: 

ds = 7re/z r × o-. (17) 
m 

When using the oscillator potential 

m to 2 r 2 
U(r )  = - -  (18) 

2 

for the valence nucleon, its radius-vector transforms to 

i 
r = - - -  [H ,p ]  (19) 

moo 2 

where H is the valence nucleon Hamiltonian. Substituting this expression into the stan- 

dard second-order perturbation formula for AM 

¢re/z ~ (01[H, p x ~r]ln)(nlWlO> + (OlWIn)(nl[H,p x o']10 ) (20) 
as = - i  m2ofl ~ Eo - En ' 

n 

we reduce it by means of the completeness relation to 

7re/x 
as = - i  m---~f~2 (0[[p x o', W]I0 ) . (21) 

With the explicit form (7) for the weak interaction Hamiltonian W this formula can be 

rewritten after elementary transformations as 

Gg2crelz K !  1 l ( l +  1) 
. . . .  ~p Or 2Kr as x/2 m I ( I  + 1) m2to 2 (OIppZ 1 , p'10). (22) 

Let us note here that previously the oscillator-potential model was used in Ref. [ 11 ] 
for the investigation of other P-odd nuclear effects. Then it was applied in Ref. [ 12] 
to estimate the contribution of core excitations and to rederive formula (14) (which 
follows indeed from expression (22) at p ( r )  = P0 = const, when taking into account 
the oscillator-potential version of the virial theorem: (Olp2/m]O) = (0[mw2r2[0>). 

We pass over now to the orbital contribution to the AM. As it was demonstrated in 
Ref. [2], the AM of a charged particle in a spherically symmetrical potential can be 
presented in the following form: 

2ere K I  
a = - i -  (bt ½) Z~7onron 2 2,0 - ur(Olr j~ - r ( r j~) lO) .  (23) 

m I ( I  + 1) 
n 
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Here */on is the P-odd admixture of an intermediate state In) to the initial one 10) (this 
coefficient is purely imaginary), r0n is the matrix element of r between those states, j~ 
is the contact current operator: 

Gg e p t r .  (24) j~  = i e [W,r ]  = - - ~  m 

Therefore, to take into account within the simple-minded potential approach the orbital 
contribution for a proton we should substitute/~ - ½ for/x in formula (22) and add to 
that expression the following contact term: 

Gg 27re K I  
x /~  m I ( I  -t- 1) ½(01r2p[0)" (25) 

In the case of a valence neutron formula (22) needs obviously no modification within 
the same model. 

However, in fact the contact current contribution both for a valence proton and neutron 
looks differently. Indeed, let us start from the weak interaction Hamiltonian for the outer 
nucleon a (a = p, n) constructed from corresponding two-body operators (see, e.g., the 
book in Ref. [ 1 ] ): 

G 1 
W (2) = ~r~,(m ~ ( { ( g a b O ' a  -- gbaO'b)" (Pa -- P b ) , B ( r a  -- ro)} 

a 

! 
+ gab[O'a × ~rb] • Vt~(ra  -- rb ) ) ,  (26) 

where the notation { , } means anticommutator. After averaging this expression over 
the core nucleons we obtain formula (7) with 

Z N 
g = gap -'A @ gan ~ .  (27) 

The "best values" [ 13] of weak coupling constants in the one-meson-exchange approx- 
imation lead to the following numbers for the constants discussed [3,14,15]: 

gpp = g,,,, = 1.5,  gpn = 6.5, gnp = - 2 . 2 ,  (28) 

and correspondingly to 

g = gp = 4.5 (29) 

for the valence proton in Cs, TI, Bi, and 

g = gn << 1 (30) 

for the valence neutron in 2°7pb. Here the constants gpp, gnn, gp and gn are effective 
ones, they include already the exchange terms for identical nucleons. These constants 
include also additional suppression factors reflecting long-range and exchange nature of 
the P-odd one-meson exchange as well as the short-range nucleon-nucleon repulsion. 
Their values agree with those obtained in Refs. [16,17] and differ from those given 
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in Ref. [ 18] since we include into the p-meson exchange the suppression due to the 
short-range repulsion. 

The electromagnetic interaction can be introduced by changing p ~ p -  e A ( r ) .  

The current density operator is then a derivative of a Hamiltonian over A ( r ) .  This 
is equivalent to change one power of a momentum operator Pa ~ eaS(r  - ra) in 

Hamiltonian. This procedure leads to the following expression for the contact current 
density operator: 

) =2{E[W(2',e~ra] 6(r-ra)}=~a j:(r)6(r-r~) C ~ 

a 

(31) 

where 

G 1 
j a ( r )  = - -~  m tra E ( ea - eb)gab6(r -- ra) . 

b 

(32) 

For the valence protons ea = e and this operator reduces to 

~.p G e 2--, I'x--'~tS" r gn) (33) J c  = - ' ~ -  O'gp n - • 
V 2  m 

n 

For the outer neutron (ea = 0) we get 

~.n G e E 6 ( r  Jc = - - ~  m trgnp - rp ) .  
P 

(34) 

After averaging formulae (33), (34) over the core nucleons we get the following 

effective contact currents for the valence proton and neutron: 

G e N o ol 
JPc - v ~ m  gpn ~ p ( r ) ¢ r = J c  + Jc ,  

G e Z 
j l  c = - - ~ - ~  gpp -~ p(  r ) t r  ; (35) 

G e  Z 
J~ = ----~^m g n p T p ( r ) ~ ' V 2 ~  (36) 

They differ obviously from the naive ones, j0 for a valence proton (see (24))  and zero 
for a valence neutron. Technically it is convenient to retain previous, naive results for 
anapole moments, supplementing them with the following correction terms: 

a pl = -~'(0]r2j~ [0), (37) 

a nl = -~'(0{r2j~10) (38) 

for valence proton and neutron respectively. In this way we get the following closed 
expression for the AM of a nucleus with a valence proton: 
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Table 2 
Mean squared magnetic radii 

Nucleus (r2)exp 33 ro A2 2/3 p2(N + 3) 

699 

41Ca20 15.92(0.48) [ 19] 10.27 15.61 
45Sc21 12.67( 1.57) [20] 10.93 16.11 
51V23 12.89(0.72) [20] 11.88 16.79 
59Co27 13.99(1.05) [20] 13.09 17.62 

a =  
G 2qre KI  

v ~  m I ( I +  1) (r2) 

{ [ r2p 1 ( /(/___+ 1) ~] 
X (OIg p tZp 2p {r2) 2mo~(N+3/2)  p' Or+ Kr ]J  

g~ = gpp Z _ _  (39) ~- = 0 . 6 ,  (r2) = N + mto 3 / 2 ,  

where N is the oscillator principal quantum number. In the case of a valence neutron 
the result is 

G 2~re K I  (r2} 
a = v / ~  m I ( 1 + 1 )  

I + , (  .l+,))] 
x {OIg,~ n 2p (rZ} 2moJ(N + 3/2) Or + K-----~ 

- gl. ( 1 - 1 )  r2 plO) ; 

N 
gin =gnp "~ = - 1.3. (40) 

To get the numerical values of nuclear AMs we assume for the core density a step-like 
profile f ( r ) :  

p(r)  = po f ( r )  = poO( R -  r) . (41) 

As to the mean square radius of the valence nucleon (r2), it is natural to identify it in 
the shell model with the nuclear magnetic mean square radius (r2m). The empirical data 
on the latter (referring unfortunately to lighter nuclei only) are presented in Table 2. 
The observation is that in the 41Ca20, with a valence neutron, (r2m) is close within the 
error bars to the value predicted by the oscillator model. Meanwhile for nuclei with 
odd proton, 458c21, 51V23 , 59C027, its value is much better approximated by the naive 
formula (12). 

For further calculations it is natural to go over to the usual dimensionless oscillator 
variable [ 21 ] 

1 [  2r2p 1 ( 
-- -~ 2p (r2) 2mw(N + 3/2) p' 8r + 

-g  1 - ~  r2pl0); 
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r 2 

X = p 2 ,  
t02 ( m r . o ) - I  = 4 ( 2 ~ 1 / 3 ~ 2 a l / 3  

= ~ J -0 ~ . 

Then the expectation values entering Eqs. (39), (40) reduce to 

x 
r ( n  + l + 3/2) / 

(01f(r)10) = n!F2(l + 3/2) dx e-X xl+l/2F2 ( -n ,  I + 3/2, x) ,  

x 

p2r(n+l+3/2) f (OIrEf(r)lO) = n!1.~(l+3/2) dxe -x xl+3/2F2(-n,l + 3 / 2 , x ) ,  

0 

(42) 

(43) 

(44) 

2mw(N+3/2) (Ol f ' ( r )  at+ Kr+l)10 ) 

=2 F(n + l + 3/2) e_X/2 X(1+3)/2 
(N + 3/2)n!F2(l + 3/2) 

d l(t+ 1)~ e_X/2 Xt/2F(_n,l+3/2,X). x F ( - n , l + 3 / 2 ,  X) ~ + 2KX J 

(45) 

Here X = R2/p2= (5/4)(3/2)1/3A1/3= 1.43A 1/3, F(a, b, x) is a degenerate hypergeo- 
metric function, n = ( N -  l)/2. 

We are interested in the following nuclei: 

C s  

TI 

Bi 

207pb 

•=7/2, I=4 ,  K = 4 ,  N = 4 ,  n = 0 ,  X=7.304; 

1=  1/2, l = 0 ,  K = - I ,  N = 4 ,  n = 2 ,  X=8.423; 

•=9/2, l = 5 ,  K = 5 ,  N = 5 ,  n=0 ,  X=8.492; 

I = l / 2 , 1 = l , K = l ,  N=5 ,  n=2,  X=8.464. 

For Cs and Bi where n = 0 the integrals entering expectation values (43), (44) are 
nothing else but well-known (and tabulated, see, e.g., Ref. [22] ) incomplete gamma- 
functions, F(l + 3/2, X), F(l  + 5/2, X) respectively. In the case of T1 and Pb those 
expectation values can be also reduced to incomplete gamma-functions. 

The numerical results for nuclear AMs, obtained in this model, are presented in 
Table 1. For Cs, TI and Bi, at the same value of gp, they are about 10% smaller 
than those of the leading approximation. The correction to the spin current contribution 
constitutes about -4% in Cs and Bi, -7% in TI. The total contribution of the convection 
and contact currents is negative in cesium, thallium and bismuth. As to lead, the contact 
current contribution, though nonvanishing, is very small numerically. 
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4. Nuclear AM in Woods-Saxon potential. Spin-orbit current contribution 

701 

Though being convenient for analytical treatment, the step-like density profile and 
oscillator model for a single particle potential are however too crude. Moreover, the 
above analytical model does not take into account the spin-orbit interaction which is, 
as we will see below, quite essential for numerical results. So, in this section we will 
describe a numerical treatment of a much more realistic description of a nucleus based 
on the Woods-Saxon potential including spin-orbit interaction and on a more realistic 
description of nuclear density. 

The profiles of both density and the central part of nuclear potential are known to be 
similar and well described by a Fermi-type function 

1 
f ( r )  = 1 + e x p [ ( r -  R)/a]  " (46) 

So, the total single-particle potential U(r)  has been chosen in a standard Woods-Saxon 
form 

1 d f ( r )  
U(r)  = Uof (r )  + Uls r d-----~ (lo') + Uc(r ) ,  (47) 

where Uc(r) is the Coulomb potential of a uniformly charged sphere. In order to study 
the stability of AM calculations against variations of the single particle potentials, we 
shall use several sets of the Woods-Saxon potential parameters [21,23]. 

The solution of Eq. (8) can be presented in a form similar to (9), 

qs(r) =~bo(r) + 8qs(r) 

= ( R 0 ( r ) - , ~ 2 g p o ( o ' n ) ~ R ( r ) ) O n m ( n ) ,  (48) 

where Ohm(n) is a spherical spinor, n = r/r.  The correction 8¢ is of parity opposite to 
that of the initial state ~b0. The radial function ~SR(r) is normalized in such a way that 
without spin-orbit potential and for constant density it is (see (9)) 

8R(r)  = rRo(r) . (49) 

This correction can be expressed via the Green's function Gn, (r, r r) of the unperturbed 
radial Schr6dinger equation for the orbital angular momentum l r = 21 - l: 

8R(r)  = - ~ m  r 12 dr '  Gn,(r ,r ' )Ro(r ' )  - G n , ( r , r ' )  -~ri Ro(rl) 

) -7; Gn, (r , r ' )Ro(r  I) f ( r l ) .  (50) 

After presenting the Green's function through two linearly independent solutions of the 
radial Schr6dinger equation we get 
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4 ."".\ 

3 f' / ' ~  

' / ii 

J i// 
.. , i i i  ~i".k x, 

..,," il 
.." / I I  "%'~.. 

/ / / l  

0 2 4 6 8 10 12 14 16 18 20 
r (fin) 

Fig. 1. First order correction 6R(r) to radial wave function of lh9/2 level. Dotted line corresponds to constant 
density and no spin-orbit potential (SR = rR(r) ). Dash-dotted line refers to varying density and no spin-orbit 
potential. Dashed line refers to constant density, spin-orbit potential included. Full line corresponds to full 
potential and varying density. 

U~, ) (r) / 

8R(r )  = [ dr  t (Ulp(2) ( r  t ) u o ( r  ) _ #  , Ull'(2)# ( r  t ) u o ( r  )t 
F J \ 

r 

(2) ~ ( ( 1 )  t # # 
+ u n, (r)  dr' utt, ( r ) u o ( r  ) - u~J)'(r')uo(r ') 

r 
0 

where uo(r) = rRo(r);  u(1)(r)  and u(2)(r) are solutions regular at the origin and at 

the infinity respectively. Those last two solutions are normalized to the unit Wronskian: 
U(1)U (2)! -- U(I)tu(2) = 1. 

The results of  this calculation of  the 8R for 1 h9/2 proton state in 2°9Bi together with the 

leading approximation (49) are shown in Fig. 1. In the same picture we demonstrate 
how 8R is influenced by the spin-orbit potential, as well as by the deviation of  the 

density from a constant one. The real form of 8R differs considerably from the leading 

approximation, due mainly to the spin-orbit interaction. As to the realistic density profile, 
it makes 6R slightly smaller as compared to the constant density approximation. 

All contributions to the anapole moment can be expressed via the radial correction 
6R. The spin current term can be obtained from F-xl. ( I 1) by substituting 
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oo 

(6RIr[Ro) = f r 2 dr6R(r ) rRo(r )  (52) 

0 

for/r2).  So, this contribution to the dimensionless anapole constant equals 

Ks = 21rg at~po (6RirlRo) . (53) 
m 

To obtain the convection current contribution we substitute corresponding current 
density operator 

Jconv(r) = - t ~ m  m E { V p , 8 ( r  - rp)} (54) 
P 

into formula (5) which gives 

and 

aconv = -Cr(6Ol { P ,  rZ } l~bo) ( 5 5 )  

° z P ° ( 6 R [ r 2 ( d  K r+2)  IRo) (56) 
Xco.v = T r  + " 

When calculating the contact current contributions it is convenient again to split it 
into the "naive" part arising from a single particle potential (and vanishing for a valence 
neutron) and the part which is due to the current densities (35), (36). 

The contribution of the total contact current (35) to the AM can be expressed via 
radial matrix element as 

o 1 i " n ' ~ ° t P ° ( 1 - 2 - % ) ( r 2 f ( r )  ) , i = 0 , 1 ,  (57) K c  = K c  "1- I fc  ' I fc  = m 

where gO = gp, gO = 0, and g~,n were defined in (39), (40). 
One more term in AM originates from the momentum dependence of spin-orbit 

interaction. As it will be seen below, this is the most significant correction to the 
leading approximation. The spin-orbit term in a single particle potential (47) for a 
proton generates the electromagnetic current density 

,,.0 Jls = le[U(r ) , r ]  = eUls d f ( r )  o" x n .  ( 5 8 )  

For an outer neutron the corresponding current density vanishes. The spin-orbit contri- 
bution to the proton AM and to K is respectively: 

G 
a°ls = 2"n" ---~ e gpoUts ( 6 R I r2 f '  ( n ( orn ) - or)[Ro) 

G KI  
=2~r ~ egpoUts(6R[r2f'lRo) I ( I  + 1) ' (59) 

U:°s = 2"rragpoUts ( SR I r2 f ' lRo) . (60) 
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However, as it was the case with the contact current, this is not the complete result. 
The true spin-orbit current must be obtained from two-particle spin-orbit interaction 
which can be written as 

ab U~2) = 1 ~ U~s (Pa - - P b ) "  (O'a "4- O'b) X V S ( r a  - r b ) .  (61) 
ab 

Averaging it over nuclear core we obtain the spin-orbit part of the single-particle po- 

tential (47) with 

Uls = --~ + U~s n PO . (62) 

The spin-orbit interaction constants were fitted in Ref. [24]: 

UtPs p = U~'~ = 36.6 MeV. fm 5 , 

uP~ = U~ = 134.3 MeV. fms . (63) 

A word of caution is proper here. We will understand expression (61) as a local 
limit for an operator of a nucleon-nucleon interaction with the proper tensor structure. 
For identical nucleons the exchange interaction doubles the direct one, The values of 

Ufs p, U~ n presented in (63) are just those doubled, effective constants. 
The spin-orbit current density from the interaction (61) is 

~ls=t  ~ [ U ~ 2 ) , e a r a ]  t~(r - ra) 
(2 

= ~ U~sbeaS(r - ra) (O'a + (rb) × V S ( r  - rb) .  (64) 
ab 

This expression for the two-particle spin-orbit current density was used earlier in the 
description of magnetic properties of a nucleus in Ref. [25]. Including the spin-orbit 
current into the theoretical description of nuclear magnetic moments and magnetic 
transition amplitudes improves the agreement with experiment. 

In the current density generated by the pp part of operator (61) the exchange and 
direct contributions cancel each other, i.e., the contact spin-orbit pp interaction does not 
generate a current at all. Then, averaging expression (64) over the core nucleons and 
separating the single particle contribution (58), as in the case of the contact current, we 
get the following effective spin-orbit current for the valence proton: 

j~s = eU~  po N d f ( r____~) (r x n = fits + J~, " 
A dr 

J~s = -eU~s" PO Z d f ( r )  A d ~  ( r X n "  

The correction j~ to the "naive" 
suppressed by a factor 

zu ," 
ZUf  + NVf  

(65) 

spin-orbit proton current is relatively small being 
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as compared to the potential part. This factor constitutes -0 .16  for cesium and -0 .15  

for thallium and bismuth. 
It is noteworthy that even for a valence neutron the spin-orbit current does not vanish. 

It is generated by the neutron-proton interaction and equals 

Jlns = _eU~ p Z p(  r) ~7 × (~b t ( r)~r~b( r) ) . (66) 

This expression is similar to the spin current density (10) and renormalizes in an 
obvious way the magnetic moment of an outer neutron. 

It is convenient to single out in the sum of all contributions to the effective constant 
K 

1 o + K~ K ° + K~ + K c (67) ,< = Ks + ,(°s + '(~s + '<cony + ~:c = 

1 in fact go beyond the the "naive" potential one K °. The corrections to it K~s and K c 
single-particle approximation. The single-particle contribution can be written in a more 
compact form, analogous to (23): 

a ° = (1 - ~ )  as + ~als20-2¢r(O,r2j~_r(rj~)10/. (68) 

This expression was used to check the accuracy of our numerical calculations which 
turned out very high. 

To study the stability of AM calculations under the variations of the single-particle 
potential we performed them for two sets of the Woods-Saxon potential parameters 
(47). In both sets the radii and diffuseness parameters, R and a, are the same for the 
profiles of central and spin-orbit parts of potential. 

The first set is [21] 

R= Rts = 1.27A ]/3 fro, a = ats = 0.67 fro, 

Uo= ( - 5 1  + 3 3 - ~ ) M e V ,  Uts = -0.35Uo, (69) 

where the signs -4- and - refer to neutrons and protons respectively. 
The second set [23] has somewhat different parameters, but gives as good fit to the 

single-particle level positions. It is 

R = Rts = 1.24A 1/3 fro, a = als = 0.63 fm,  

U0 = ( - 5 3 . 3 - 4 - 3 3 . 6 - ~ )  MeV, 

U t s = - O . 2 6 3 ( X + 2 - ~ ) U o .  (70, 

In both cases we assume the same values of the density parameters [21]: 

R =  1.11A U3 fm; a = 0 . 5 4  fro, po =0.17 fm -3 .  (71) 
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Table 3 
Different 
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contributions to the effective constant K 

Nucleus ] 33 Cs 203,205 T1 2O9Bi 2o7 Pb 

Ks a 0.317 0.485 0.376 --0.099gn 
Ks b 0.301 0.463 0.349 --0.095gn 
Ks c 0.310 0.497 0.353 --O.099gn 
K 0 e --0.088 --0.120 --0.126 0 
K ~ e 0.014 0.018 0.019 --O.O06gn Is 
t~K0 a 0.003 0.019 -0.003 0 
8K~ b 0.01 0.032 0.014 0 
Kconv c -0.019 -0.055 -0.019 0 
K0 c 0.048 0.064 0.070 0 
rc 1 c --0.007 --0.008 --0.009 0.004 
K a 0.268 0.396 0.309 --0.105gn + 0.004 
K b 0.258 0.383 0.298 --0.101gn + 0.004 
K c 0.257 0.396 0.289 --0.105gn + 0.004 

a The potential parameters from Ref, [21] (see Eq. (69)). 
b The potential parameters from Ref. [23] (see Eq. (70)). 
c The consistent LS-parameters (see Eq. (72)). 

The results o f  calculations obtained for both sets are listed in Table 3. The main 

contribution to AM, as expected, comes from the spin current. The variation of  the 

parameters of  potential changes this term by 3-6%.  The next in magnitude term is due 

to the potential part of  sp in-orbi t  current, it constitutes about 30% of  the spin current 

contribution. 

In the calculations based on the sets of  parameters (69)  and (70) the LS-potential  

was not consistent with the two-particle LS-interaction (61) .  So, the potential LS- 

contribution to the A M  was calculated in two ways. First, starting from the LS-potential  

itself. Second, it was obtained from the spin-orbi t  potential constructed from the two- 

particle interaction ( 6 1 ) - ( 6 3 ) .  The difference between second and first ways of  calcu- 

lation is listed as 8K/°s in Table 3. It is only natural to perform a consistent calculation, 

choosing the ampli tude of  LS-potential  in accordance with (62) ,  (63) ,  and its radius 

and diffuseness parameters the same as those of  nuclear density. In this way we come 

to the third, LS-consistent,  version of  the potential: 

R=l.27A1/afm, a = 0 . 6 7 f m ,  U o = ( - 5 1 + 3 3 - ~ ) M e V ,  

Rls=l . l lAl /3fm,  als=O.54fm, U t s = ( 1 4 . 5 q : 8 . 3 ~ A  Z )  MeV. (72)  

We kept the central potential parameters as in (69)  because it gave smaller 6K0~. The 

calculation based on this version of  the potential give 8K0s = 0. 

It is noteworthy that the sum of  all contributions to A M  is less sensitive to a specific 

potential than each of  them taken separately. Its variation does not exceed 5% when 

going from one set of  parameters to another. 
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We believe that the results obtained with the LS-consistent potential are the most 
reliable ones. They are presented in the last line of Table 1. 

5. Discussion of  the results 

Let us discuss now why the present results differ from those obtained in Refs. [3,7,8]. 
As distinct from Ref. [ 3 ], we have included now the contribution of the spin-orbit 

current which turns out quite essential. 
On the other hand, the Woods-Saxon potential used here for numerical calculations 

is more realistic than the oscillator one used for those calculations in Refs. [7,8]. Then, 
in Refs. [7,8] the spin-orbit interaction is treated perturbatively, while in the present 
work it is treated exactly. Let us note here again that the oscillator potential without 
spin-orbit interaction allows one to get an exact analytic solution for the AM, as it has 
been done in Section 3 of the present work. 

To summarize the comparison, we wish to say that the above arguments can serve 
as serious grounds to consider the numerical results of the present work to be the most 
reliable ones for the single-particle approximation. 

However, accurate quantitative predictions for nuclear AMs cannot be made without 
proper treatment of nuclear many-body effects. As to the core excitations by the weak 
interaction Hamiltonian (26), their contribution to nuclear AM has been demonstrated 
to be small [ 12]. However, the problem of the configurations mixing caused by usual 
P-even residual nucleon-nucleon interaction is here much more serious than in the case 
of nuclear magnetic moments (or the second neutral current constant [7] ). The point is 
that in the last cases it is the specific, kinematical, nature of the operator tr which allows 
one to restrict with a reasonable accuracy to the excitations within a spin-orbit doublet 
only. As to the AM, even if the multiconfiguration problem could be reduced to the 
calculations with the effective operator (13) (which demands a special proof by itself), 
that operator is coordinate-dependent and in this sense resembles more the magnetic 
octupole operator than the magnetic dipole one. And many-body effects can renormalize 
the M3 operator much more strongly than the MI operator. A drastic example in this 
respect is 2°9Bi where the one-particle value of the magnetic octupole moment is almost 
four times smaller than the experimental one [25]. 

Let us note here that due to the theoretical uncertainties discussed, in the situation 
when the AM contribution dominates essentially atomic nuclear-spin-dependent PNC 
effects, the proposal [7] to single out in those effects the true neutral current contribution 
by combining experimental data from various heavy nuclei, does not look realistic. 

In conclusion it should be emphasized however that even with all those theoretical 
uncertainties kept in mind, the problem of experimental observation of a new physical 
phenomenon, nuclear anapole moment, is a fascinating one. Moreover, if the theoretical 
results of the one-particle approximation, which are by themselves remarkably stable by 
nuclear standards, will be supplemented by a serious treatment of many-body effects, 
those experimental investigations will give reliable quantitative information on P-odd 
nuclear forces. 
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