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We obtain a simple integral representation for the classical Green's function of the Dirac 
equation in an arbitrary centrally symmetric decreasing field. The approach uses semiclassical 
radial wave functions and the contribution of large orbital angular momenta. The derived 
Green's function is used to calculate the amplitude of Delbriick scattering in a screened Coulomb 
field. O 1995 American Institute of Physics. 

1. INTRODUCTION 

A convenient way to allow for the effect of an external 
electromagnetic field on QED processes is to use the Furry 
representation. This requires knowing the Green's function 
G ( r , r r  J E )  of the Dirac equation in this field. Unfortunately, 
explicit expressions for the Green's function are known for 
only a very limited number of potentials. Hence, one is 
forced to use numerical methods to find the Green's function. 
In this connection obtaining new analytic representations for 
Green's functions is a problem of unquestionable interest. In 
many high-energy processes the orbital angular momenta 
providing the main contribution to cross sections are large. 
Hence we can use the semiclassical approximation. In this 
paper we find an explicit expression for the semiclassical 
Green's function for the Dirac equation in an arbitrary cen- 
trally symmetric decreasing potential. 

The semiclassical Green's function for a Coulomb field 
was found in Refs. 1 and 2 by summing the integral repre- 
sentation of the exact Green's function of the Dirac equation 
over the orbital angular m~men ta .~  We demonstrate that 
knowing the exact Green's function is not obligatory for 
finding the semiclassical Green's function and that it is suf- 
ficient to use semiclassical wave functions of the radial equa- 
tion for large orbital angular momenta. The semiclassical 
method was used by Olsen et to obtain wave functions in 
the Sommerfeld-Maue approximationS in investigating 
bremsstrahlung and pair production in a screened Coulomb 
potential at high energies. 

The integral representation of the Green's function de- 
rived here proves useful in conducting analytic calculations 
of amplitudes of various QED processes in an arbitrary cen- 
trally symmetric field at high energies. We demonstrate this 
by calculating the amplitude of Delbriick scattering6 (coher- 
ent photon scattering via virtual electron-positron pairs) in a 
screened Coulomb potential. Delbriick scattering is one of 
the few nonlinear QED processes observed in experiments 
(see the recent review article by Milstein and schumacher7). 
Thus far, the Delbriick scattering amplitude has been studied 
in detail for a Coulomb field exactly in the parameter Z a  at 
high photon energies w + m ,  where m is the electron mass, 
~ l e l  is the charge of the nucleus, a = e2 = 1 / 137 is the fine- 
structure constant, e is the electron charge, and ti = c = 1. The 

approaches used depend strongly on the value of momentum 
transfer A  = 1 k2 - k ,  1, where k ,  is the initial photon momen- 
tum, and k2 is the final photon momentum. For A 9  w the 
amplitudes were found in Refs. 8-10 by summing, in a cer- 
tain approximation, the perturbation theory diagrams in the 
interaction with the Coulomb field, and in Refs. 1 and 2 via 
the semiclassical Green's function. For m 9 A  - w the ampli- 
tudes were found in Refs. 11-13 via the exact Green's func- 
tion of an electron in a Coulomb field3 in the limit m=O. 
Calculations for arbitrary photon energies but in the lowest 
perturbation-theory order in the parameter Z a  have also been 
done (a review of the numerous investigations done in this 
approximation can be found in Ref. 14). It was found, how- 
ever, that for warn the result that is exact in Z a  differs 
considerably from the one obtained in the lowest perturba- 
tion order. 

The effect of screening on the Delbriick scattering am- 
plitudes is considerable for low momentum transfer, 
A  - 1 l r c e  m ,  where r ,  is the screening radius. This is the 
momentum transfer range considered in this paper. 

2. THE GREEN'S FUNCTION 

We examine the Green's function of the Dirac equation 
in an external centrally symmetric potential V ( r ) :  

where the yp are the Dirac matrices, and p= - iV. We are 
interested in the Green's function at I ~ l + m .  We write the 
function G in the form 

where 

with a= As is known (see Ref. 5), at high energies 
e + m  we can ignore the term v 2 ( r )  in Eq. (3) and allow only 
for the first term of the expansion of D in the commutator 
[ a p , V ( r ) ] .  Performing the expansion and representing the 
commutator as 
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we arrive at the following representation for D:  

where 

with lc2= e2- m2. Thus, the problem is reduced to calculat- 
ing the semiclassical Green's function D(') of the Schro- 
dinger equation with Hamiltonian H. 

Now we introduce the impact parameter by 
p= 1 rr '  111 r- r' 1 .  For high-energy processes the important 
distances are of order I r - r ' I -~ lm-~%l / rn  and p s l l m .  
This implies that the characteristic value of the angular mo- 
mentum 1- KP+ 1 and that the semiclassical approximation 
can be employed. Another interesting case is the one in 
which p< I r- r' 1 .  Here the angle between r and - r' or the 
angle between r and r' is small. 

We consider the eigenfunctions of the Hamiltonian H 
and use the completeness relation for these functions in (6) 
by replacing the delta function with a sum of products of the 
eigenfunctions. Naturally, the main contribution to D(') is 
provided by the functions of the continuous spectrum with 
large angular momenta. We use the system of functions of 
the continuous spectrum that are represented far from the 
target by a plane wave and an outgoing spherical wave. The 
system of equations represented far from the target by in- 
coming spherical waves leads to the same result for the 
Green's function. The eigenfunction of the Hamiltonian H 
with eigenvalue q2 that is represented by a plane wave with 
momentum q and an outgoing spherical wave far from the 
target is 

Here Pl(x) is a Legendre polynomial, and 6 is the angle 
between the vectors q and r. In the semiclassical approxima- 
tion the functions ul(r) and a1= S(llq) are specified as 
f0ll0ws:~ 

(8) 

@(r)= IYv(5)  d l ,  ~ ( p ) =  - I:v(w ) d l ,  

with A = ~ l q .  Taking into account the completeness relation, 
we arrive at the following expression for D('): 

Substituting (7) into (9) and evaluating the integral over the 
angles of q via the well-known relationship for Legendre 
polynomials, 

where ni are the unit vectors, we find that 

where n= r l r  and n' = r ' l r  ' . Using (S), we write the product 
ul(r)ul(rr) as follows: 

If the angle 6 between n and - n' is small, Pl(nnf ) can be 
replaced by ( - 1 ) ' ~ * ( l  B),  where J,(x) is a Bessel function. 
Here the main contribution to the sum over 1 is provided by 
the second term in (11). For this term summation over 1 can 
be replaced by integration. In Eq. (10) we carry out an ex- 
ponential parametrization of the energy denominator: 

1 = - iI:exp[is(~2-q2)] ds. 

K2-q2+i0 

The integrals with respect to q and then with respect to s are 
evaluated by the method of stationary phase, which is appli- 
cable under the assumptions. After performing simple calcu- 
lations we find for the case 6 4  1 considered here that 

Here A=E/K. In the relativistic case considered here, 
A=+1  for& > 0 andA=-1 for &<O. 

If the angle 0, = m-- 0 between n and n '  is small, 
J0(16,) can be substituted for Pl(nnf) .  In this case in the 
summation over 1 the main contribution is provided by the 
first term in (1 1). Since this term does not contain 6(1), after 
performing transformations similar to those done in deriving 
Eq. (12) we can integrate with respect to 1. For m-- 6-4 1 we 
obtain 
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Substituting (12) and (13) into Eq. (5), we arrive at the fol- Substituting (1 8) into (16), we arrive at an expression for 
lowing expression for D when 0 6  1 : the semiclassical Green's function in a Coulomb field that 

agrees with the one obtained in Refs. 1 and 2. 
i exp[i~(r+r ' ) ]I ;  [ 

~ ( r , r ' l e ) =  
4 ~ ~ r r '  

d l  1 J,(l0) 
3. DELBR~~CK SCATTERING 

Here S1(p) = dS(p)ldp. 
When T- 8 4  1, 

X [V(r) - V(rr)] 4 n S  n') I 

Substituting (14) and (15) into Eq. (2), we arrive at the final 
expression for the semiclassical Green's function in a cen- 
trally symmetric field with 6 4  1 : 

i e x P [ i ~ ( r + r 1 ) ]  [ [12 ( r+ r ' )  
G(r , r t  (E )  = 

4 ~ k r r '  
dl  lexp i 

2 ~ r r '  

We now use the derived expressions for the Green's 
function to calculate the amplitude of Delbriick scattering in 
a screened Coulomb field. In the Thomas-Fermi model the 
screening radius r , - ( m a ) - ' ~ - " ~ .  The characteristic im- 
pact parameter p- 1 /A. If R 6  1 I A 4 r c ,  where R is the ra- 
dius of the nucleus, screening is unimportant and the ampli- 
tude coincides with that of scattering in a Coulomb field. If 
A1 1 - rc% 1 lm, screening must be taken into account. For 
such momentum transfer the values of p contributing to the 
amplitude range from llm to r, . The corresponding orbital 
angular momenta 1-wp% 1, with the result that the semi- 
classical approximation holds. 

Suppose that a photon with momentum k, creates at 
point rl a pair of virtual particles that at point r2 transform 
into a photon with momentum k2. The uncertainty relation 
implies that the virtual electron-positron pair has a lifetime 
r- (r2 - rl 1 - wl(m2+ A2). Hence for wlm2%rc the angles 
between the vectors k, and k2,  and r2 and - r, are small. It 
is in this range of photon energies that we operate. According 
to Feynman's rules, in the Furry representation the Delbriick 
scattering amplitude is 

where e r  and e r  are the initial and final photon polarization 
vectors, and e* = epy, . In (19) one must subtract from the 
integrand its value in zero field. We assume that such a sub- 
traction has been done, but we perform it explicitly in the 
final result. The main contribution to the amplitude M 
emerges from integration with respect to E from m to 
w - m. Thus, A = + 1 in the first Green's function in (19) and 
X = - 1 in the second. The representation (2) provides a con- 
venient means of writing Eq. (19) in the form 

while with T- 0 4  1 we have 

~ [ ( 2 e l ~ l + e * I i l ) ~ ( r ,  J2I -811 
G( r , r r l e )=  -L 4 TR [ ? e f m -  $ ( K +  (y,R)] 

+ 2iaefe,  d r  exp[i(k, - k2)r] de  Sp D(r,rle). 
X e x p { i ~ R + i A s i g n ( r - r t ) [ @ ( r )  

-@(rr)]}, R=r- r ' .  

I I 
(17) 

(20) 

Here P , , ~ =  - iV1,2. After normalization the last term on the 
For the Coulomb field V(r) = - Za l r  we have right-hand side contributes nothing to the amplitude at high 

energies, since this term is independent of w and depends 
solely on the momentum transfer A. On the other hand, for 

2 s ( p ) + @ ( r ) + @ ( r r ) = Z a  In 
wS)A the amplitude is proportional to w (see, e.g., Ref. 7). 

(18) Further calculations amount to doing the following. We sub- 
S1(p)= - Zalp. stitute (14) into (20), find the derivative of the result, and 
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take the trace in the y-matrices. It is convenient to direct the 
axis of the spherical coordinate system along the vector 
k1 + k2. Allowing for the smallness of the angles, we can 
write dfl d6i.2 d41,2=d81,2, with (81,2kl + k2)=0. 
The Bessel functions depend on the two vectors 81,2 only as 
a function of the combination 6= 1 81 + &I. We transform to 
variables 8= el + & and &= r 81 - r2 02. After this we can 
easily evaluate the integral with respect to d t .  Next, to sim- 
plify the derivation, we consider only calculations for zero 
momentum transfer (k2 = k, = k), and then give the result of 
similar calculations for the case where A - 1 lr, . 

3.1. Zero momentum transfer 

We assume that k l  = k2 and el = e2 and evaluate the in- 
tegral with respect to d 8 using the re la t ion~hi~ '~  

and the relationships obtained by differentiating the above 
with respect to a parameter. We change variables in the inte- 
gral representation of the Green's function: 

where 

We then go from the variables r l  and r2 to the variables s 
and x: 

K l K 2  K l K 2  
r 1 = 2  9 r2=m2wS(1 -X) . m wsx 

As a result, integration with respect to E becomes elementary 
and we arrive at the following expression: 

Here we have subtracted from the integrand its value at zero 
field. We change variables in the following manner: 
p = pep 'I2 and p2 = We rotate the contour of integra- 
tion with respect to the variable s in such a way that it goes 
from zero to i m  and evaluate the integral with respect to s 
via the relationship15 

where a< b, and Iv(x) and Kv(x) are the modified Bessel 
functions of the first and third kinds, respectively. As a result 
we obtain 

where y mpexp[Td2] J-. 
We partition the integration with respect to T into two 

domains: one from 0 to TO and the other from TO to a, where 
1 %-rO% l/(mr,). We start our calculations with the second 
domain. There the main contribution is provided by impact 
parameters p< r, , and the field can be assumed to be of the 
Coulomb form. Evaluating the integrals with respect to x and 
p,  and then with respect to T, we obtain 

(23) 

Here $(x) = dlnr(x)ldr, and C =  0.577 ... is Euler's constant. 
In the first domain the difference ~ ( ~ e ' " )  - S(pepr'2) is 

small, and we can expand in this difference. Hence this do- 
main contributes only in the lowest Born approximation in 
the interaction with the external field. We partition the inte- 
gration with respect to p into two domains: from zero to 
po and from po to w, where re+ po%- 1 l(m rO). In the inte- 
gral from zero to po the field can be assumed to be of the 
Coulomb form, with the result that the integrals can easily be 
evaluated. The corresponding contribution is 

In the integral from po to we can use the asymptotic be- 
havior of the Bessel functions lo(x) and Ko(x) for large 
values of the argument and continue integration with respect 
to T to infinity. As a result we find that 

Adding Eqs. (23), (24), and (25), we get 

For p<r,  the integral in this expression is equal to 
In(r,lpo)+A, where A is a constant of order unity. Hence M 
in Eq. (26) is independent of po, and we can select, say, 
po= 2lm. Thus, we have arrived at an expression for the 
Delbriick forward scattering amplitude in an arbitrary 
screened potential. The value of the constant depends on the 
shape of the potential. We consider the Moliere ptential,16 
which approximates the potential in the Thomas-Fermi 
model: 
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where al =0.1, a2=0.55, a, =0.35, ~ ~ = m ~ ' / ~ b ~ / 1 2 1 ,  
b = 6, b2 = 1.2, b3 = 0.3. For this potential the scattering 
phase is 

3 

~ ( p )  =zaC aiKo(Pip). 
i= 1 

(28) 

Substituting this into (26), we arrive at the final expression 
for the Delbriick forward scattering amplitude in the Moliere 
potential: 

As is known, the imaginary part of the photon's forward 
scattering amplitude is related to the total cross section u of 
electron-positron pair production by the photon in the field 
through the formula a= ImMlw. Hence Eq. (29) agrees with 
the result obtained by Davies et al.17 for the total cross sec- 
tion of pair production in a screened potential. Note that the 
real part of the Delbriick forward scattering amplitude in a 
screened potential is zero, in contrast to the case of an un- 
screened Coulomb 

3.2. Nonzero momentum transfer 

For finite momentum transfer it is convenient to proceed 
with our discussion using the language of helical amplitudes. 
We select the polarization vectors in the form 

e? ,,2-([xvl,21-+ih)fi, - A= [v,v21/1[v1~2119 (30) 

where vl,2 = k1,21w. There are two independent variables: 
M++ = M-- and M+- = M-+. In terms of linear polar- 
ization, due to parity conservation, the amplitude is finite 
only when the polarization vectors of the initial and final 
photons both lie in the scattering plane (MI1) or are perpen- 
dicular to it (MI). Here 

In the event of zero momentum transfer the amplitude 
M+- is zero in view of conservation of the projection of 
angular momentum on to the direction of motion of the ini- 
tial photon, and the amplitude M + +  coincides with (29). As 
in the case with zero momentum transfer, we partition the 
integration with respect to the parameter r into two domains: 
from 0 to 7-0, and from r0 to 03, where 1 S rOS llmr,. The 
angle 60 between the vectors kl and k2 is equal to A l o  
< mlo. In the domain of integration from r0 to m, we can 
assume a Coulomb field and ignore the angle 60. As a result, 
the contribution of this domain to M++ coincides with M2 of 
Eq. (29), while the contribution to M+- is zero. In the inte- 
gration with respect to r from 0 to r0 we again partition the 
integration with respect to the variable p into two domains: 
from zero to po , and from po to 03, where r,%po% 1 lmrO. In 
the integral from zero to po we can again assume a Coulomb 
field and ignore 60. The contribution of this domain to 
M++ coincides with M I I  of Eq. (24), while the contribution 

to M + -  is zero. Screening affects the magnitude of the in- 
tegral only in the second domain, from po to m. Here the 
main contribution in integrating over the angles is provided 
by the values 0 - pl r  - pm2/w * mlw %- 60. The 
argument of the Bessel functions in the Green's functions is 
16 - opt9 - (rnp12 1, and we can employ the asymp- 
totic behavior of the Bessel functions for large values of the 
argument. We must retain the first two terms in their asymp- 
totic expansions, since the first term is compensated for in 
the pre-exponential factor. After this is done, the integrals 
with respect to 6 other variables can easily be evaluated, and 
we arrive at the following expression for the contribution of 
this domain to M+ +: 

Adding Eqs. (31), (23), and (24), we get 

We substitute (28) into (32) and evaluate the integral with 
respect to p via Eq. (6.578(10)) of Ref. 15. As a result we 
arrive at the final expression for the scattering amplitude 
M + + in the Moliere potential: 

where u= ( ~ ~ + f 3 ; + ~ ; ) / 2 / 3 ~ / 3 ~ .  When A< l l r , ,  Eq. (33) 
transforms into (29). When m S A B  l lr , ,  Eq. (33) becomes 

which coincides with the result of Refs. 2, 8, and 9. Reason- 
ing as we did in deriving (31), we obtain the following ex- 
pression for the amplitude M+ - : 

2 

M + - = i  $/:p($) J2(pA) dp. 

Here integration with respect to p from po to co was replaced 
by integration from zero to ca because the domain from zero 
to po contributes nothing to the integral. For the Moliere 
potential we have 
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As A 4 0 ,  the amplitude M + -  specified by Eq. (36) tends to 
zero. When m S A S llr, , Eq. (36) becomes 

which coincides with the result of Refs. 2, 8, and 9. Thus, 
using the calculation of the Delbriick scattering amplitudes 
in a screened Coulomb potential, we have found that the 
semiclassical Green's function obtained for the case of an 
arbitrary decreasing centrally symmetric potential can be ef- 
fectively used in studies of QED processes at high energies. 
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