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Rigorous treatment of charge exchange, ionization, and collisional 
processes in neutral-beam-injected mirrors 

o. Demokan and V. Mirnoylll 
Physics Department, Middle East Technical University, Ankara, Turkey 

(Received 12 April 1994; accepted 19 September 1994) 

The ion distribution function is analytically studied in mirror machines with perpendicular injection. 
A uniform model is considered by assuming a square-well configuration for the magnetic field. The 
existence of the mirrors and the consequent electrostatic potential are represented by related 
boundary conditions on the ion distribution function. The Vlasov-Boltzmann equation is written 
with the explicit expressions for the charge exchange, electron impact ionization, ion-electron 
collision processes and solved for the steady state. The justification for neglecting the ion-ion 
collisions is provided. © 1995 American Institute of Physics. 

I. INTRODUCTION 

The concept of a steady-state density in neutral-beam
injected mirror machines has been studied repeatedly'-6 dur
ing the past 30 years. The kinetic studies were based on the 
Fokker-Planck equations involving nonlinear terms, and the 
problem had to be treated numerically in most of these 
works. I

-
4 Furthermore, due to the complicated dependence 

of the atomic processes on the particle energies, or due to the 
inadequacy of data, available earlier on the associated cross 
sections, these terms were either treated formally or disre
garded totally in the previous works. 

In this paper, the relevant collisional and atomic pro
cesses are discussed in line with the experimental data, and 
treated in their explicit, actual forms. A uniform model is 
considered by imposing a square-well type of configuration 
for the magnetic field. The beam injection is assumed to be 
in the perpendicular direction. The ion velocity and electron 
temperatures are assumed to be in the range, which allows 
the ion drag on the electrons to emerge as the dominant 
collisional process. More explicitly, this corresponds to the 
case, where the electron temperature is low enough to let the 
drag time needed by the ion to travel from the source point 
localized at high energy, to the loss cone boundary localized 
at low energy to be shorter than the ion-ion scattering time. 
Consequently, the ion-ion collisions result in a slight broad
ening of the angular distribution, close to that inherent to the 
actual neutral beam, whose angular distribution is approxi
mated to be a delta function in this work. The speed or en
ergy dependence of the ion distribution function can there
fore be analytically obtained by neglecting the diffusive 
terms due to ion-ion collisions, and thereby avoiding the 
nonlinear terms in the formal Fokker-Planck treatment. This 
distribution function can then be used to estimate the angular 
spread due to ion-ion collisions, and to verify that it is in
deed a minor correction for the bulk of the function. 

The losses through the mirrors are not explicitly dealt 
with, but instead introduced as a loss cone boundary condi
tion on the ion distribution function. That is, the velocity 
dependence is regarded as a step-like function, which is zero 
for velocities inside the loss cone boundary, and finite 

a1permanent address: Institute of Nuclear Physics, Novosibirsk 90, Russia. 

otherwise.5
•
6 This step-like behavior is a consequence of ne

glecting the diffusive terms, which leads to the steepening of 
the ion distribution function around the loss cone boundary. 

Following the prescribed procedure, the Vlasov
Boltzmann equation is solved analytically for the steady
state distribution function. A self-consistent expression for 
the steady-state ion density is also derived. Finally, the opti
mization of the plasma and beam parameters, to achieve 
maximum steady-state density is discussed. 

II. THE RELEVANT COLLISIONAL AND ATOMIC 
PROCESSES 

The complete form of the Vlasov-Boltzmann equation 
for the ion distribution function can be formally written as 

af af F af 
-+v· -+-. -=-V ·J+Q(v) at ar M av v ' 

(1) 

where f and M denote the ion distribution function and the 
ion mass, respectively, J is the ion flux in velocity space due 
to collisions, and Q(v) represents the source and loss terms 
for ions with velocity v. In this section, the collisional and 
the atomic processes contributing to the right-hand side will 
be considered in detail. 

According to Landau/ the ith component of the ion flux 
can be written as 

J
i
=27Te4AM- 1L: (L J U

ik 
affA~') d 3u' 

f3,k mf3 aUk 

-M- 1 :t
k 
J Uikff3(V')d3u'), (2) 

where A is the Coulomb logarithm, f3 represents electrons 
and ions, k represents the components and 

Iv- v' I 0ik - (v i- v ;)(v k - V ~) 
U ik= Iv-v'13 (3) 

To evaluate the contribution of electrons (f3=e) to the ion 
flux, the electron distribution function is assumed to be Max-
wellian, 

me meve 
( )

312 ( 2) 
fe=n 27TTe exp - 2Te ' (4) 
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where n is the plasma density, me' Te , and Ve are the elec
tron mass, temperature and velocity, respectively. After 
straightforward manipulations, the electron contribution to 
the ith component of the ion flux is obtained as 

J(e)= -2'TTe4AM- 1 , 

(5) 

Since the ion velocity is usually much less than the electron 
velocity, it can be shown that the term 

f Vide d3Ve~ f (~;:- Ve~~ek)fe d 3v e , 

and therefore 

(d"", _ 4'TTe
4
An ( 2me) l/2( . L -1 af) 

J, 3M 'TTTe VI Tee +M av;' 

Concerning the component along v, the second term can be 
neglected for v~(TeIM)I12, The 0 component of J(e), aris
ing from the second term is much less than the 0 component 
of the flux due to ion-ion collisions (for ion velocities much 
less than electron thermal velocity), Since even the ion-ion 
collisions were explained to be negligible in the Introduction, 
the electron contribution to the ion flux can be written as 

(6) 

where 

_ 4'TTe4 An ( 2me) 112 
C- -

3TeM 'TTTe 
(7) 

The contribution of the ion-ion collisions to the ion flux 
will be disregarded, due to the choice of the parameter range 
discussed in the Introduction. This contribution will be esti
mated later in the work, to verify that. it is indeed a minor 
correction, concerning the bulk of the ion distribution func
tion. Thus Eq. (6) is assumed to give the total ion flux at this 
stage. We shall now proceed with the relevant atomic pro
cesses, contributing to Q(v) on the right-hand side of Eq. (1). 

The first process to be considered is the charge exchange 
between the neutral beam and the plasma ions. At a particu
lar magnetic field surface, the neutral beam having a density 
nb (less than the injection density, due to ionization) yields 
ions with the beam'velocity Vb, upon charge exchange with 
the plasma ions. The rate, at which the ion distribution func
tion increases at V=Vb due to charge exchange can be written 
as 

(8) 

where O'ex(IV-vbl> is the charge-exchange cross section, 
which is a function of the relative velocity. On the other 
hand, the plasma ions neutralized by the beam via charge 
exchange, escape from the system, yielding a rate of loss for 
the whole ion distribution feY), given by 

(9) 
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The next process to be considered is the ionization of the 
neutral beam, due to the electron and ion impact. Since elec
trons are clearly much more dominant, the latter will be ig
nored. This process also yields ions with the beam velocity, 
and the corresponding rate at which the ion distribution func
tion increases can be written as 

Q;(V) =nb8( V-Vb) f fee ve)O'iClve- vbDlve - vbl d3v e' 

(10) 

where O'i(lve - V bl) is the cross section for the electron impact 
ionization. Since v b <is ve , 

Q;(v)=nb 8(v-vb) f feCve)O';(ve)v e d
3v e 

=nbn 8(v- Vb)(O'iVe)' (11) 

It must be noted that < 0'; V e) is the ionization rate coefficient 
due to electron impact, which depends on the electron tem
perature Te only. Although the electron temperature in mirror 
machines depends on the ion density and energy, as well as 
other parameters, it will be regarded as a given, constant 
quantity in this work .. 

III. THE STEADY·STATE SOLUTION 

The complete steady-state form of Eq. (1) for a uniform 
model can be written as, 

e af(v) 
- (vXB)· --= -V 'J(e)+Q(v}. 
Me av u 

(12) 

The term J(e) represents the ion flux due to electron-ion 
drag. The explicit fonn of Q(v), in principle consists of the 
sum of the charge exchange and ionization rates discussed in 
the previous section, and the loss rate through the mirrors. 
This loss rate will not be considered explicitly in the term 
Q(v), but will be taken into account as a loss cone boundary, 
on the surface of which, the ion distribution drops to zero. In 
the standard approach,6 the ion distribution function is as
sumed to drop to zero gradually. However, since the diffu
sive terms are ignored in this work, the distribution function 
steepens, forming a more or less step function discontinuity 
at the boundary. This profile does not violate the continuity 
of the ion current, since it is determined by the gradient of 
the distribution function at the very thin transition layer (dif
fusive terms), rather than its magnitude. 

Returning to Eq. (12), letting the magnetic field be in the 
z direction and substituting Eqs. (6), (8), (9), and (I I), one 
can write 

af [ 
-We acp =CVv·(vf )+nb8(v-Vb) n(O';v e> 

+ f O'ex(lv-vbl)iv-vblf d 3v 1 

- nbO'ex(lv- Vb!) I V- Vb If, (13) 

where wc=eBIMc and cp is the azimuthal angle. Substitut
ing typical values for mirror machines, it can be seen that We 

is much larger than the frequency of collisions and charge 
exchange, implying that aflacp must be very small. Due to 
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the periodicity of variations with respect to cp, this can be 
possible only if I consists of a large cp independent part and 
a small cp dependent part. Therefore, 

I(v) = lo(v) + II (v), 

where 10(v)'P/l(V). Using this expansion, the zeroth-order 
form of Eq. (13) confirms the fact that lo(v) is independent 
of cp, and the first-order form yields 

all [ 
-We acp =CVv,(v/O)+nbo(v-vb) n«(J'jv e} 

+ J (J'ex(IV-VbDlv-Vbl/o d 3v] 

- nb(J'ex(lv- vbl )Iv- Vb 1/0 . (14) 

We shall now adopt the spherical coordinates in velocity 
space, with cp remaining as the azimuthal angle. Setting the 
beam velocity arbitrarily in x direction for perpendicular in
jection, one can write 

o(v- Vb) = V;2 o(v - v b) o( cp) o( fJ- 7T/2). 

Using this expression and taking the average value of Eq. 
(14) with respect to angle cp, the left-hand side vanishes and 
one obtains 

a 
av (v 3/0) - g( v, fJ)( v 3/0) =Av 2 o( v - v b) o( fJ- 7T/2), 

(15) 

where 

(16) 

and 

A= - 2;~V~ (n«(J'jv e ) 

+ J (J'ex(IV-Vbl)/o(v)IV-Vbld3v). (17) 

Equation (IS) can be solved for the regions v < v b and v> v b 
separately. Both solutions are of the form 

K( fJ) 
lo( v , fJ) = ----:-:r a( v , fJ), 

v 
(18) 

where K( fJ) is an arbitrary function with two different values 
for v < v b and v > v b regions, and 

a(v,fJ)=exp J g(v,fJ)dv. (19) 

The steady-state density involves the integration of lo( v, (J) 
in spherical coordinates, that is, the integral of 
V-I a( v, (J) dv. Since g (v, (J) is always a positi ve function of 
v, a( v, fJ) > I and this integral will diverge at the upper limit, 
v = +00. For a finite steady-state density, the arbitrary func
tion K( (J) must therefore be zero for v> Vb' hence 

[

0, for v<vo, 1 
lo(v,fJ)= K«(J)v- 3a(v,(J), for VO<V<Vb, , (20) 

0, for V>Vb, 
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where Vo represents the velocity at the loss cone boundary. 
To evaluate the function K( (J), Eq. (15) is integrated 

over the velocity between the limits v = Vb ± E, where E is 
arbitrarily small. Substituting Eq. (20), this procedure yields 

AVbo(0-7T/2) 
K«(J)=- ( 0) a Vb, 

(21) 

Equation (21) indicates that the ion distribution is a disk-like 
distribution localized precisely at (J= 7T12, implying that all 
velocities including Vo are purely in the perpendicular direc
tion. This may appear to contradict with the existence of 
mirror losses. At this point, it is necessary to remember that, 
this form of the distribution function is the consequence of 
neglecting the ion-ion collisions, and it is hence an approxi
mation. In reality, there is a small angular spread to be given 
by Eq. (51), which justifies using the hyperbolic form of the 
loss cone boundary, where v 0 is basically determined by the 
ambipolar potential. 

Equations (20) and (21) constitute the formal solution 
for the ion distribution function. To obtain the explicit form, 
we shall start with investigating the constant term A. Substi
tuting Eqs. (20) and (21), Eq. (17) can be rewritten as 

x sin (J dOd cp dv. (22) 

After integrating over (J, the integral in this equation takes 
the form 

(23) 

where 

V rei = Iv- vblll=7TI2= (v 2+ v~ - 2vv b cos cp) 112. (24) 

It can be seen from Eq. (16) that, the integration over cp in 
Eq. (23) is simply 27TCVg(U,7TI2)/nb' Using this fact and 
Eq. (19), Eq. (23) can be written as 

1= a~~~:~) J::[ exp J g(v,7T/2)dv ]g(V,7T/2)dV 

27TC[ a(v b ,7T/2) - a(vo, 7T/2)] 

nb a (vb,7T/2) 

Substituting this result into Eq. (22) yields 

nbn«(J'jVe}a(vb ,7TI2) 
A=- 2 

27TCU ba(VO, 7T/2) 

(25) 

(26) 

Using Eqs. (20), (21), and (26), the ion distribution function 
for Vo < v < V b can now be written as 
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v 8 =(nbn(O"iVe)a(V b,'Tf12») a(v,8)8(8-'Tf/2) 
lo( , ) 27TCa(vo,7T12) a(vb,8)v 3 ' 

(27) 

The next task is to derive the explicit form of the func
tion a(v,8) or simply a(v,7TI2), due to the delta function in 
Eq. (27). An analytic expression for the charge exchange 
cross section O"ex in the function a(v,7T/2), can be derived 
from the experimental data8 by curve fitting techniques as 

O"ex= 1O- 14(1-0.5Eo.06+2· 1O- 7E) cm2 , (28) 

where E is the collision energy in e V for deuterium ions and 
neutrals, that is, 

(29) 

Equation (28) agrees very well with the data, up to energies 
on the order of 400 keY, corresponding to particle energies of 
100 keY, which is applicable to all present technologies. 
Substituting Eqs. (28) and (29) into Eq. (16) yields 

1O- 14n (271" 
g( v, 'Tf/2) = 2 'TfCV b J 0 Vrel( 1 - 0.095 V~~112 

(30) 

where Vrel is the term defined by Eq. (24). The integral in Eq. 
(30) can be evaluated numerically for a set of values of 
(V/Vb)' and the following polynomial is found to represent 
g(v,7T/2) with an accuracy better than 95%: 

g(v, 7T/2) = (l1b IC)(aoe 1 + a 1 + a2~+a3~2), (31) 

where ~=vlvb' 

ao= 1O-14( I-O.095v~·12+2.08 .1O- 19v;), 

a 1 = 10- 14(0.048 -7.6·1 0-3v2' 12), 

a2= 1O-14(0.23-0.026v~·12+4.08.1O-19v;), 

a3= l.l·10-33d. 

Substituting Eq. (31) into Eq. (19) yields 

a(~,7T/2)= g(nbvbao/C) exp{ (n~b)[ al~+ (~2)e 

(32) 

and the ion distribution, given by Eq. (27), can now be writ
ten in its final, explicit form as 

_ nbn(O"iVe)(~)(flbUbaOIC) {(nbVb) 
lo(v)- 2 C 3 exp C 

7T v Vo 

(33) 

It is to be remembered that, this function exists only for 
8= 'Tf12 and v "'" Vb' 

To complete the steady-state analysis, we shall now 
solve for the density n in a self-consistent way. Integrating 
the function lo( v) over the three-dimensional velocity space, 
from v = va to v = V b and equating to n yields 

(vo Iv d'Vhao(n h in) exp{Av b(nb In)[ a I (vo Iv b) + (az 12)( Vo Iv b)2 + (a3 13)( Vo Iv b)3]} 

A(O"iV e)(l1b ln ) 

= {~/V/Aubao(nbln)-I exp{ AV b( :b)[ at ~+ (~2) e + ( ~3) g3}} dg, (34) 

where A=nIC is substituted to distinguish the n dependent 
terms. To explore the possibility of expanding the exponen
tial functions in this equation, the coefficients ai' will be 
investigated. For a wide range of beam energy from 10 to 
100 ke V, the ranges of these coefficients are found 
to be ao~1O-14(0.13-0.03), al~-IO-1\O.2-0.3), 
a2~ -10- 15(0.03-0.12) and a3~ 10- 16(0.1-0.9). Since 
g","I and (vOIVb)~l, the exponents are always negative, It 
can then be seen that, the left-hand side of Eq. (34) starts at 
+~ for (l1bln) ==0, decays very rapidly and asymptotically 
goes to zero for large (nb1n). On the other hand, the right
hand side of Eq. (34) starts with a value of In(vblvo) at 
(l1b1n) ==0, decays smoothly (with a finite slope, on the order 
of AV ba 0 at small n bl 11) and asymptotically goes to zero 
also, for large (nb1n). Furthermore, the slope of the left-hand 
side is more negative than the slope of the right-hand side, 
definitely for small and large values of (nbln), and very 
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likely for the entire range of this parameter. This picture 
implies that. there is only one solution of Eq. (34) for (nh1n), 
and it is a very small quantity. With this intuition, the expo
nents in Eq. (34) are approximated as unity, and the follow
ing expression for the steady-state density is obtained: 

(35) 

Having thus completed the steady-state analysis, the op
timum values of the controllable parameters in this equation 
will now be briefly discussed. The factor A is on the order of 
108 T~/2 (eV). For the electron impact ionization rate, the 
expression given in Ref. 9 is adopted: 
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1.5.10 

104 

0.5.104 

--

Te= 100 eV 

Te= 60 eV 

Te= 20 eV 

Vb Cmls) 

3.108 

FIG. 1. Dependence of (nlnb) on the beam velocity vb and electron tem
perature T., 

«(}'iv~) ... S.3 .1O- S( z 1l2E(z) 

_ 1.0SZ3I2E(Z+0.S6») 
cm3 s-I, 

z+0.S6 
(36) 

where Z = 13 .61Te (eV) and E(z) is the exponential integral. 
According to this expression, the ionization rate is on the 
order of 10-8 cm3 S-I at Te=20 eV and gradually increases 
upto 3.10-8 cm3 S-I at Te -150 eV, which covers adequately 
the typical range for the mirror machines. The lower bound 
for the velocity Vo has a rather complicated dependence on 
the electron temperature. It can be estimated from the elec
trostatic potential, to correspond roughly to an energy, on the 
order of Te In CM Ime) 112. A more rigorous treatment of this 
quantity is not necessary, since the term InC v blvo) is found 
to vary between 2 and 3, for a broad range of beam energy 
from 10 to 100 keY, and electron temperatures from 20 to 
100 eV. It can then safely be stated that the steady-state 
density increases with the electron temperature and the beam 
density. To explore the dependence on the beam velocity, the 
product v baD should be considered together, since aD is a 
function of Vb' Treating the term In( v bl v 0) as a constant, it 
can easily be shown that the steady-state density increases 
with the term vbaO' Using Eq. (31), vbaO is found to in
crease with Vb' up to a value of 1.35.10-7 at vb = 108 

cm s -I, then decrease until Vb = 6.S . lOs cm s -1, and increase 
again for larger values of vb' However, since the latter value 
of v b already corresponds to a beam energy of 400 ke V, the 
optimum value of the beam velocity should be around 108 

cm S-I for the present technology. Then, choosing the opti
mum values as Te -80 eV and vb=108 ems-I, the maxi-

Phys. Plasmas, Vol. 2, No.1, January 1995 

mum value of the steady-state density is found to be on the 
order of 104 nb' The dependence of (nlnb) on Vb is illus
trated in Fig. I, for a set of ,-;alues of T e • 

As a final point in this work, we shall now attempt to 
provide justifications for the two assumptions made so far; 
equating the exponential functions in Eq. (34) to approxi
mately unity, and neglecting the ion-ion collisions in Eq. 
(12). For the optimum values discussed above, it can be seen 
from Eqs. (31) and (3S) that la[laol-0.14 and 
AVbao(nbln)<l, respectively. The magnitudes of the expo
nents in Eq. (34) are roughly AVbladCnbln)(volvb) and 
AVblaIICnbln)(;, for the left- and right-hand sides, respec
tively. Since v 0 ~ V b and (; is considerably less than unity for 
a large range of the integral in Eq. (34), the maximum error 
resulting from the first assumption is less than 10%, which is 
insignificant. 

As far as the ion-ion collisions are concerned, the deri
vations are rather detailed and only the main points will be 
stated. The contribution of ion-ion collisions to the right
hand side of Eq. (12) can be written as 

, a (') 1 a (') -V .J(/)= -v-2 - (v 2J 1)_ -.- - (sin f) J I). 
V av v v sm f) af) fJ 

(37) 

Due to the expectation that the ion distribution has a 
very narrow angular spread (lJ function in our former re
sults), the second term on the right-hand side of Eq. (37) is 
dominant. Starting with Eq. (2), one finally obtains the fol
lowing expression for this term: 

1) ,(a fJfJ' - +g -
u fJ u 

(38) 

where C' = 27TAe41M2
, gfJ=(f' Iv)af/ae, g~=(flv ')Jj' I 

a(Y Gvv,=(vjlv')aj'lav'-j'(ajlav), afJv,=sin f)' cos f) 
Xcos(<p-q/)-cos f)' sin f), avv,=sin f)sin f)' cos(<p-<p'), 
avfJ' =sin f) cos f)' cos(<p-<p')-cos f) sin f)', a 88' =sin f) sin f)' 
+cos f) cos f)' cos(<p- <p') and u = (v 2 + V '2_ 2vv' a vv ') 112. 

The steep derivative aj'laf)' in g ~ will be smoothened 
after the df)' integration, and Gvv ' is a well-behaving func
tion. Therefore, the main contribution is expected from the 
first term, that is, 

C ' Ii' ('2 2 ( ') aJ f v a fJv ' J 1
"" . j' fJ -;-. ae u3 (39) 

Again, since j and j' are expected to be highly peaked 
around f)= 7T12 and f)' = 7T/2, the contribution of the first term 
on the right-hand side ofEq. (39) will be very small, yielding 

(40) ---
Accepting this expression as the total ion flux due to 

ion-ion collisions, substituting into Eq. (12), considering the 
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assumption that the ion distribution is highly peaked around 
8-'lT12, and following the steps until Eq. (15), one obtains 

[ 
C' f f' } a2

(v
3f ) a 

Cv3 -;;d
3
v' a02 + av (v

3
f)-g(v,e)(v

3
f) 

=Av 28(v - v b) 8( 0- 'lT/2). (41) 

Using g(v,'lT/2) instead of g(v,() and letting 

v 3f=F exp f g(v,'lT/2)dv, (42) 

Eq. (41) takes the form, 

a2F aF Av 2 8(v -vb)8(O- 'lT/2) 
H(v,O) a02 + av = a(v,'lT/2) (43) 

where 

C' J H(v,O)= Cv 3 

Again, using H(v,'lT/2) instead of HCv,O) and letting 

W( v ) = {)b H( v' , 'lT/2 )dv ' , 

Eq. (43) can be written as 

a2 F aF Av2 8( v - v b) 8( O-'lTI2) 

ae2- aw = H(v,'lT/2)a(v,'lT/2) 

(44) 

(45) 

(46) 

This is a diffusion type of equation with the solution of the 
form, 

(47) 

where F 0 and ()o are constants, which can be determined by 
integrating Eq. (43) over v, between the limits v=vb±E, 
where E is arbitrarily small. This procedure yields 

Avl8( ()- 'lT/2) 
F(Vb+E)-F(Vb- E)= ( 12)' a Vb ,'IT 

(48) 

Since F( v) is proportional to f 0' which is zero for v> Vb' 
F(Vb+E)==O, and 

Avl8( 0- 'lT12) 
F(Vb)=- ( 12)' (49) a Vb ,'IT 

Returning to Eq. (47) and noting that W(Vb)=O, one can 
write 

F(Vb)=2'IT"ZF o' 8(0- eo). 

Comparing Eqs. (49) and (50) yields 

Avz 

F 0 = - 2 'IT 112 a( v: , 'lT/2) and ()o = 'lT/2. 

(50) 

Substituting this result into Eq. (47) and using Eq. (42), one 
finally obtains 

Aula( v, 'lT/2) -liZ 
f(v,()=- 3 ( 12) [4'ITw(v)] 

u a Vb,'IT 

X exp[ - «()- 'lT12 )2/4w( v)]. (51) 

144 Phys. Plasmas, Vol. 2, No.1, January 1995 

It can easily be shown that, neglecting the ion-ion col
lisions corresponds to the limit W = 0, and the previous result 
is recovered exactly. The effect of these collisions is then 
merely the broadening of the ion distribution function around 
()= 'lT/2. This broadening is obviously negligible for the 
higher velocities, since w( v b) =0. We shall now consider its 
maximum value, w(vo). Using Eqs. (44) and (45), substitut
ing the former expression of f( v) for simplicity, and inte
grating numerically yields 

10nbT~/2(eV) 
w(vo)- .. (52) 

n 

For mirror machines, this quantity is considerably less 
than one, implying that the effect of ion-ion collisions on the 
ion distribution function can be neglected for a large range of 
velocities. except the relatively narrow range v-vo. justify
ing our second assumption. 

IV. DISCUSSION OF THE RESULTS 

In this work, the Vlasov-Boltzmann equation is written 
with the explicit expressions of all the relevant collisional 
and atomic processes in neutral-bearn-injected mirrors, and 
solved analytically for the steady-state ion distribution func
tion. A self-consistent, analytic expression for the steady
state density is also obtained, by integrating the distribution 
function over the velocity space. The nonlinear ion-ion col
lision term is treated as a perturbation, and its contribution is 
later shown to be a slight broadening of the distribution func
tion around the perpendicular direction, which gets notice
able only around v-vo' The steady-state density is found to 
increase linearly with the beam density and logarithmically 
with the ratio of the beam velocity to the escape velocity. 
The dependence on the escape velocity is therefore relatively 
weak, but it is worth noting that the steady-state density be
comes zero when these velocities are equal, and becomes 
infinite when the escape velocity is zero, as expected. Both 
the charge-exchange and electron impact ionization contrib
ute positively to the steady-state density, where the depen
dence on the latter process is again relatively weak, due to 
the logarithmic behavior. The contribution of electron tem
perature is also positive, since it increases the ionization and 
decreases the electron drag on the ions. Finally, the steady
state density is found to increase with the beam velocity up 
to a certain value, but decrease for any further increase in the 
beam velocity, due to the fact that the charge-exchange cross 
section decreases rapidly with the relative velocity, after this 
quantity exceeds a certain value. 

It can be seen that the results are in agreement with the 
physical expectations, but no comparison with the previous 
works can be made, since the atomic processes have not been 
considered with their explicit, exact forms before. 
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