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Abstract

We study the spin properties of top quarks produced in collisions of po-
larized photons in the threshold region. For a relatively heavy top quark the
influence of non-perturbative effects is small and its polarization parameters
can be predicted in perturbative QCD. The measurements of the top polar-
ization may allow a novel test of QCD in the #{ system. In particular, they
may provide a new way to determine the precise value of a; and to study the
properties of the top quark.

1. Introduction

Since the top mass m; exceeds the 1W-mass. the {-quark can decay directly to
W*b and its decay width [ is steeply increasing with its mass'?. For m, ~ 130-150
GeV the t-quark width is typically in the Ge\ range® and the ¢ generally decays
before its hadronization occurs!?, In such a situation, the ¢-quark spin proves to be
a very useful tool. The point is that the {-polarization is not diluted since there is no
hadronization and the bremsstrahlung gluons do not flip the top spin. Therefore the
t(f) quark is normally produced in a well-defined state of polarization which can be
measured experimentally. This polarization is transmitted to the secondary particles
produced in their decays and can be well reconstructed from their distributions (see

e.g. Refs.#-8),

The new opportunities would be provided by a Photon Linear Collider (PLC).
This is a facility®='" where high energy. high intensity photon beams are generated
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at a linear ete~ collider via Compton backscattering using high-power lasers'?. PLC
provides highly polarized beams, large luminosity. and a variable luminosity spectrum.
The potential of such a machine to explore top quark threshold production in

yy— tt (1)

was discussed in Refs.’®~1%, Measurements of the top polarization in the process (1)
may provide a novel probe of QCD dynamics in the {f system. Here one deals with
the interference between the S-wave and P-wave production. These measurements
may provide information not only about the overlap of S-wave and P-wave states of
the tf system but also about the phase difference of the corresponding production
amplitudes.

2. Effects of the final state Coulomb interaction

The striking features of the tf production in the threshold region have been dis-
cussed quite frequently in recent years (e.g.®~® and references therein). One faces
here the unique situation that the QCD binding forces are strong but (because of the
infrared cut-off provided by the large top width) are well under the control of pertur-
bation theory!®~!%. The #f production near threshold is significantly enhanced because
of the Coulomb gluon exchanges between the top quarks. To take full advantage of the
polarization measurements one needs to understand the following questions. First,
how strongly the top polarization is affected by the Coulomb threshold interaction.
Second, how the top polarization can be exploited to obtain some new information
on the f interaction forces. Answering these questions is the main concern of this
and the next section.

In what follows we shall use a non-relativistic Green’s function formalism applied
in the previous papers of two of the authors for finding the total cross-section'®='"
and the amplitude'” for the ete™ — #f process, see also Refs.'#-22,

Let us label the particle 4-momenta by 4 (k) + 7 (k2) — #(ps+) +#(p-) and present
the amplitude in the centre-of-mass frame in terms of the four-component quark wave
functions u(p,) and v(p_) as

Agi(P) = 4ma-efu(py) M(p)r(p-). (2)

where e, = 2 is the electric charge and j = p} = pii; is the momentum of top quark.

Up to order ‘E; terms one can rewrite the quark spinors in a form which simplifies
t -

the further treatment of the Dirac structure of the threshold amplitude

(me+p+)

“(P-I-) = \/m

- Nju,



®3)

a3 (me — p-)
U(p..) = —\/m \,_lu
with s
h 0 1%
w=(3): w=(l) WP 7
Then Ay; takes the form
A = drac; ug}t’(ff)lu (5)
where i
R(P) = 5—Ay-(me+ pe)M(F)me—p-) - A (6)
In Born approximation
EM(py — ky + my)é@
MB) - P+ 1 t &
" 2kps)
e (py = ky + my)éM (1))
= €, 15 7
2kaps) i Y
and R(p) becomes
R®(p) = A, [0‘7'0‘)5 + a—n_g 1} A (8)
i
olgfaGd J
BT Rpdf 3O

The quantities a and b; are related to the photon polarization vectors é!), € by

a = 2i(éM x &7,
(9)

b = 2[(M - é@)iycosd 4 (1) iiy)d® 4 (€ - ip)eM)
Yo% and ky = —¥2% are the momenta of the incoming photons in the
]

where I-c’l = "2'1 ks
lab (77 centre-of-mass) frame ( /s is the total centre-of-mass energy), 8 is the polar

angle of the ¢ with respect to 7.
Taking into account the final state interaction near threshold R(p), analogously

H ' ) (10)

to Ref.’”, can be written as
£ v gy
myg

R(p) = (B(H - E —iT,) ' RB(p)|F = 0) (

=2
= Bo+V(r), Ho=L. (1)
™My
Here fi' = —i% is the momentum operator and V(r) is the nonrelativistic QCD
potential for the ¢ system in the colour singlet state
4 a,(r)
= ol 12
V() = —32% (12)
|f) denotes a state of definite momentum j = py = —p_, and |F) a state of definite
relative coordinate (we use normalization (p]7) = e777), E = 1/(p+ + p-)* — 2m.
Let us define the functions G(f, E) and F(j, E)
G(FE) = (AH -E~T)7'[F=0 (o)
(b) (13)

F(F,E) = (JI(H - E —iT,) |7 = 0)
Then the modified expression for the tf production amplitude near threshold can be

presented in the following form
Agi = —4ra- eyt [aC’(ﬁ, E)+L5.7- F(p. E)] X (E - =+ zf':) (14)
m my

In Eq. (14) the a and b parameters are given by the relations (9) and

P’F(5,E) = pFi(j.E). (15)

Note that the functions G, F; coincide with those introdu_ced in Ref.?® for the de-
€ .

scription of the effects of the axial current in the e*e™ — #f reaction

3. Top spin parameters
The amplitude Aj; allows one to derive the threshold expressions for both the

unpolarized cross section do!?) for the top production and the i-polarization vector.
The threshold cross section do'“ ) for production of the t-quark with polarization ¢t

can be written as :
dol®) = ;er;: Tup [laPIG( E)P
]
(16)

+2 Re(a(3-0) - G*(5, EVE(F, B))]
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where R,, = N.e} (N. = 3 is the namber of colours). An expression for the t-quark
spin vector ( is then

- - - a‘g

{ = 2-Re(Go- D E)), G = et (a)
2 F(#,E)

D(p.E) = ———=. b 17
F.E) = 5 (5) (17)

In the Born case (g = 2—,;‘:—.-Ref;,. For the highly polarized photon beams Ia,[ ~ O(1).
For instance, if two photons carry the same helicities then |C_..;.| =1

Thus the top polarization could be strongly modified by the threshold effects and
its measurement in collisions of polarized photons would provide a challenging oppor-
tunity to probe experimentally the new characteristics of the interquark potential,
Re(G* - F) and Im(G* - F). The latter quantity looks especially intriguing since it
cannot be measured by the other methods which are now under consideration, see
e.g.%. To some extent, however, this should be taken with a pinch of salt. The point
is that the correlation I m(a"g{"’) is constructed from the linear polarizations of the
incoming photons. But at PLC one can expect the high degree only for the circular
polarization (about 95% for polarized electron beams'). The degree of linear polar-
ization will not be as high as the circular one (probably around 30%). Moreover, the
monochromaticity of the beams is highest just in the case of circular polarization and
as is well known, the monochromaticity is one of the main concerns in the discussions
of the threshold #f production. However, we do not expect that the top polarization
gets very much diluted because of the beam energy spread and, in principle, better
monochromaticity could be achieved at the cost of luminosity. Once more, one has
to sacrifice more luminosity in the linear case than in the circular case. It would be
rather premature (and for these authors also quite inappropriate) to make some more
definite statements about the prospects of exploiting the advantages of the linear
polarization as well as about the effects of the energy resolution for the beams that
might be achievable ten years from now.

4. Discussion

In the threshold region the ratio D (see Eq. (17)) exhibits a quite intricate struc-
ture which is strongly dependent on the top quark mass and the precise value of a,.
To elucidate some specific consequences of the Coulomb physics let us include in the
consideration the width of the top keeping a, fixed. Using Meixner representation

!VAK is indebted to D. Borden for the discussion of the polarization properties of the beams at
PLC.
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for Gg(¥,7 = 0)** we obtain
R = JT!;:*)[IH”'""/; w2(1 +zd)fi:i(1 mpye], L35,
D) = 2+ (< + ) 507 E), (19)
where p, = 2a,m; and x = \/m For Ty > "2""'; representation (18) is

valid for all real values of E; in the opposite case it can be used in the region
3
9

For values of E outside this region D(j5, E) can be obtained by analytical continuation.

E?*4+T?> -ma®(\/E? + T? — E). (20)

It is clear from (18),(19), that D(5, E) ~ | at p 3> p,. This is in accord with the
region of applicability of Born approximation. For running a, it can be written as

£ 5 a.p) (21)
my

In the region (21) the influence of the final state interaction on the top polarization
is negligible. In the opposite case of small p one can obtain from (18),(19)

1 et~ 1-n)
1'[0
b

D(0,E) = % (22)
Jo =

This shows that outside the region (21) D{(j. E) strongly depends on a,. This con-
clusion is confirmed by the numerical calculations for the realistic case of a running
@,. We have performed the calculations by a method similar to that of Ref.!$202,
using the same parameters as in Ref.?!.

5. Conclusion

We have studied the influence of the spectacular threshold effects on the polar-
ization of top quarks produced in the collisions of polarized photons. Without loss
of generality one may consider some other parity violating angular asymmetries in
the distribution of the secondary particles. For relatively heavy top quark (m. >
130 GeV) the decay width T, provides an infrared cut-off for the strong forces be-
tween quarks and antiquarks and perturbative QCD suffices to treat the threshold
phenomena.



We have demonstrated that the final state interaction between t-quarks induces
two major modifications of the Born result for the top polarization above threshold.
First, in the collisions of linearly polarized photons order a, (T-odd) effects may
appear which would allow one to measure the relative phase of the low energy S-
wave and P-wave scattering of ¢-quarks. Second, the degree of polarization arising
in collisions of circularly polarized photons can be seriously affected because of the
running of the QCD coupling. For relatively heavy top quark its polarization below
threshold is quite sizeable, order a,. The resulting polarization effects are expected
to survive the averaging over the luminosity distributions in the incoming beams.
Optimistically, we anticipate that these polarization measurements would open new
prospects in studying the interquark dynamics. In combination with the threshold
measurements of the cross-sections these polarization results may provide us with an
efficient systematic cross-check on the accuracy with which the values for m, and a,
will have been determined.
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where
A

= A¥

is just the renormalized singlet scattering amplitude. One sees that for a small
number of final particles, n < N, leading order in 1/N result is given just by the
tre?—l.evel fo.rmula where the coupling constant is replaced by the renormalized one.
This is precisely the result of ref.[10] in the particular case of (2+1) dimensions.

% However, eq.(18) is valid only when n < N. If the number of final particles
is compa.r.able to IV, the effect of loops is obviously not a simple renormalization of
the coupling constant. One finds from eq.(16) that the correction to the large-N
result, eq.(17), is proportional to n?/N. When the number of final particles becomes
comparable to the number of their spieces, the 1/N expansion becomes unreliable.
One can expect that the breakdown of the 1/N expansion is not a peculiar feature
pf (2+1) dimensions but holds also in (341)- and higher-dimensional theories.

; 5. So, we see that the renormalization group is a poweful mean for investi-
gating the multiparticle amplitudes in (2+1) dimensional scalar field theory at and
?.round the threshold. The exact formula for the amplitude, if ever be found, must
incorporate _the information obtained here by making use of the renorma.li;sation
group equations.

! .'I“he authors are indepted to M. Voloshin for bringing to our attention the
possibility of summing leading logarithms in (24+1)d. We thank Yu. Makeenko
E. Mottola, L. Yaffe for discussions of the results. ,
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Instanton—Antiinstanton pair induced Asymptotics
of Perturbation Theory in QCD

P.G.Silvestrov
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

Abstract

The instanton—antiinstanton pair induced asymptotics of perturbation the-
ory expansion for QCD correlators is considered. It is argued that though the
true asymptotics is dominated by renormalon, the instanton-induced contribu-
tion may dominate in the intermediate asymptotics n = 5 + 15.

Obtained asymptotic formulae are valid for Ny < N.. For N; = N. the
finite nonperturbative expression for instanton—antiinstanton contribution was

also found.
At ¢* < 0 the imaginary part of correlators in the case Ny = N. is suppressed
like 1/log(g/A), but the present accuracy of instanton calculations allows to

fix it unambiguously.
The series of corrections to the instanton induced asymptotics of the order

of ~ (log(n)/n)* is found.

1 Introduction. Renormalon—Instanton

The aim of this note is to try to show, what the important role may play the instanton
for large order terms of perturbation theory in QCD. During last few years a lot of
papers appears (see e.g.!”") considering the asymptotic behaviour of perturbation
theory series in QCD and QED. However the main attention was paid to the so
called renormalon asymptotics. Two renormalons were considered, the ultraviolet and
infrared. The usual form of the ultraviolet renormalon contribution to, for example,
R.+ .- _hadrons Perturbative expansion is

o n
o ek !
< ( b41r) i ()

where b = 11/3N. — 2/3N; ~ 10. In QCD the series (1) is sign alternating and at
least the Borel sum of the series is well defined. The problems with summation of
ultraviolet renormalon appears in QED, where all terms of series have the same sign.

Another kind of asymptotics is the infrared renormalon:

ba,\"
b, || = ]
s (2 41r) 3 2)
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At large n this series turns to be much smaller than (1). The keen interest in infrared
renormalon was caused by the fact that nobody knows how to sum the series (2).
The Borel sum of this series is ill defined (up to arbitrary ~ 1/¢* correction)

Both ultraviolet and infrared renormalons are associated with a certain chains
of Feynman graphs. However since the works of L.N.Lipatov® another approach is
deve%oped for large order perturbation theory estimates. In this approach one has
nothmg‘to do with Feynman graphs, but tries to find the specific ("classical”) large
fluctuations in the functional space making the main contribution to the high ordir
tfarmsl of perturbative expansion. The natural example of such important fluctua-
tions in QCD is the instanton-antiinstanton pair,but up to now only in the paper of
LI Balitsky® the instanton asymptotics for Re+.-_,hadrons Was considered. In present
work we try to clarify further the role of instanton-antiinstanton pair effects for QCD
correlators, especially in the interesting case Ny = N, (the author of® at N; = N,
have [.lOt found the perturbative asymptotics and use the ambiguous regula.r!iza.tiori
prescription to find nonperturbative corrections).

The generic form of instanton-induced asymptotics appears to be:

ania~ (22) (n+ 4N . 3)

The overall numerical factor in a4 may also be sufficiently large. It is seen that
!‘.hough the renormalons (1,2) do dominate at very large n (n > 15), the instanton-
induced contribution may dominate in the intermediate asymptotics nf =5+15. Ifso
the pure ren(?rmalon behaviour (1) will hardly be observed in directly ca.lcula,ted term;
of perturbation theory due to a strong competition with the instanton contribution.

Of course the exactly known 3 + 4 terms of perturbation theory series (for §-
functl_on of QCD or R.+.-_ hadrons) are much smaller than the estimate (3) and the
question at what number n the perturbative series could reach the full strength (3)
1s open now. Moreover the corrections which are formally ~ 1/n at large n may also
change the value of a, in many orders at small n. For example ¥

(n+4Nc)! = n**enl(1 + 0(1/n)) . (4)

In this paper we have also found (and summed u i
1 p) the subse f i
ani4 (3), which behave like (log(n)/n)* (see (24)). b

N lei for the infrared renormalon (?) all terms of the series (3) have the same sign.

evert (.elas the problem of summation the series (3) seems not so hopeless as the
:Em.matlon of renonne'xlon. Following G.’t Hooft '° the author of® proposed to rewrite
t.he mt.f:gra.l over the 'msta.nton~a.ntiinsta.nton pair in the Borel form by considering
: e acm?tﬁ asa collef:tnre variable. The well-separated instanton-antiinstanton pair is
esponsible for the singular part of Borel function, while the ambiguous strongly inter-
acting instanton and antiinstanton contribute to its smooth part. On the other hand
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the best way to describe the smooth part of the Borel transform is to calculate ex-
actly the few first terms of perturbative expansion. The divergent singular part of the
Borel integral corresponds to almost non-interacting pseudoparticles. The accurate
subtraction from the singularity of dilute gas contribution in the toy model (dou-
ble well oscillator) allowed to find the finite nonperturbative instanton-antiinstanton
contribution™. In QCD at N; = N, the Borel integral diverges only logarithmically
and the total nonperturbative contribution from instanton-antiinstanton pair may be
found by cutting the instanton size at p < 1/A.

At Ny = N, the imaginary part of correlators at negative g* cancels in the one
loop approximation. Nevertheless the invariance of the instanton contribution under
the renormalization group transformations allows to find the imaginary parts.

2 The ansatz

The most popular puzzle for applying the high order estimates is the calculation of
R+ o~ —hadrons» Which is connected with the Euclidean correlator of two electromag-

netic currents

M = [ e™d' < ju(2)in(0) > , 5)

where ju, = X flavours € s¥37,¥;. Calculation of instanton-induced contribution to
(5) requires considerable algebraic efforts (e.g. the fermionic Green function in the
pseudoparticle background must be used). Therefore for the sake of simplicity we will
examine the correlator of two scalar currents

5 3o, 1. 2

jle) = 7> [Gi(=)] (6)
(the notations of'* are used). This correlator, which may be useful for the gluebal
physics, is simple enough so the reader can check almost all steps of the calculation.
Moreover the correlator of two currents (6) reproduces all the interesting features of
the correlator of electromagnetic currents.

As we have said above, the strongly interacting instanton and antiinstanton cor-
respond to a smooth part of the Borel function. It was shown by Balitsky® that
the instanton—antiinstanton configuration relevant for the large orders of perturba-
tion theory is a small instanton inside the very large antiinstanton (or vice versa).
The size of small instanton is regulated by the internal momentum of correlator (5)
gp1 ~ 1. The size of antiinstanton (as well as the distance between the pseudoparticles
pa ~ R) becomes parametrically large as we consider the higher terms of perturbation

theory.
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Now let us specify the ansatz for the gauge fields. We are interesting in the
instanton-antiinstanton interaction in the leading nontrivial approximation. There-
fore the simple sum of instanton and antiinstanton may be used:

A, = U ALUL + ULALUY (1)

where Uy, U are the constant SU(N) matrices. For small instanton the singular
gauge seems to be preferable

" ﬁm/ :E—I[),,p?
" (z-2)((z - 21)? + p})

1 ﬁ“u = Tcﬁ:v 2 (8)

Before we add the antiinstanton to (8) the singularity at = = z; is pure gauge singu-
larity. Therefore in order to remove the singularities from all the physical quantities
one may choose A} in any regular gauge which satisfy the equality ANz'= 1) = 0.
For example one can rotate the BPST antiinstanton

ﬁ u'(‘z i zA)V
AR ] MR A
¢ {(3—344)2 + 04

]s* +i80,5* 9)

TR
Ro=(za—2f)u , §S= exp{‘R:‘:}_ Pi(x *-"'51');1} :
It is easy to show that any other smooth matrix function 5(z), which allows to cancel
the antiinstanton field at = z; will lead to the same correlator.

After direct calculation the classical action of the instanton-antiinstanton config-
uration may be found with the usual dipole-dipole interaction of pseudoparticles

S _41' 1 i B ngi h=2 2 +
"‘-a_,{ —£h} 1E—W1 =2|Tr0|* - Tro0* ,  (10)

and O is the upper left 2 x 2 corner of the matrix I/ = Uu; (7).

Another part of the problem, extremely sensitive to the instanton-antiinstanton
interaction, is the fermionic determinant. It may be shown, that for each flavor of
massless fermions the two anomalously small eigenvalues of Dirac operator D appears

2p1pa

Ag=+—5"—"_—
N CEY IR

ITrO)| . (11)

3 Calculation of correlator

After we have defined the gauge field configuration it is easy to write down the
instanton-antiinstanton contribution to the correlator of two currents (6). Ewvery-
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where it is possible the notations of® are used.
(g) = [ ¢*d'z < j(2)j(0) >= (12)
; 4 d(pr)d
=2 [ ji(2)ir( ) e TrOP ™ exp {a—"fh} L”;) (gt)d:rdn:;dx,.dp;dp;,dU ;
s I A
where
. 36 s
irle) = 4 (13)

w2 ((z - +p))"

and the instanton density!3

2r \ N 2r
il a1\t basfs. yéio Wa 14
de) = 4 (as(P)) p( a,(P)) Lo

The factor 2 in front of the integral in (12) accounts for the equal contribution from
small antiinstanton and large instanton.

We will also use the well known two-loop formula

4 piyes a
WN;I} = blog (-}5) + Elog (log (%)) + (15)

In the most interesting case Ny = N. =3 b =19 and ' = 64.

Before passing to the formal computations let us say a few words about the ex-
istence of integral (12) as a whole. The most ambiguous part of the problem is the
integration over large antiinstanton coordinates p4 and R = z4 — z;. There are two
competing effects. The factor d(ps) ~ p% tends to make the integral over ps diver-
gent. On the other hand, the almost zero fermionic modes (11) tends to suppress the
large p4 and R contribution. If Ny < N, the first effect dominates and the integral
(12) diverges at large ps. Nevertheless just in this case the well defined instanton
induced asymptotics of perturbation theory may be extracted from (12). For nonper-
turbative calculation of the whole integral (12) at Ny < N. the new physical income
is necessary. Below we will show how to perform this integration for Ny = N, = 3.

If the number of massless flavours is sufficiently large (N;y > N.) the attraction
due to fermionic zero modes prevails. As a result the approximation of almost nonin-
teracting pseudoparticles breaks down (ps ~ R ~ p;) and the instantonic approach
itself became ambiguous.

Formulae (14), (15) allow to extract the p4 dependent part from (12)

b N2
d(pa) = #(pi/p%) (g—:) d(pr) , ¢(z)= [1+b:—;10g(r)] 1 (16)
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Everywhere below we suppose o, = a,(g) = a,(pr). For calculation of leading per-
turbative asymptotics one may assume ¢(z) = 1 (as it was done in?), but in order to
calculate the nonperturbative value of correlator (12) the function ¢(z) of the form
(16) should be used. Moreover the corrections ~ (a, log(z))* contained in the ¢(z)
leads to an important subseries of preasymptotic corrections ~ (log(r)/n)* to the
leading asymptotics of the perturbative expansion. Therefore below we shell use the
function ¢(z), though suppose that its argument is small enough |log(z)| > 1.

Now we would like to integrate over p4 and R = z4 — z; for a fixed value of £
272 5—56 P?Pi d d‘R ' ‘"-2 Pg' ¢(£) (17)
f¢(pI/pA)pA W“{ PA -— 2(b—2)(b“1)£”2+1 -
The part of (12) depending on p;,z and z; in the leading approximation over a,
gives:

9%-3 1(b + 2)T2(b)T(b — 2)

Jir@ir e - dtad z1dp = 9 == s
After all the correlator (12) reads
4 d
I(g) = Const ¢*d*(1/q) [ [TrO*M! exp {a—’:gh} ;ff_gl—,gidu : (19)

The last step, which allows to rewrite the correlator in the form of Borel integral
is to introduce the variable t = 1 — £h:

N
e | 7 N (T g T
_  Qnr292(b+Ny—2Ne) a( 2 4 2
i @-1 0 \a i
1 — i b=3N
{] dtd(1 = t)(1 — 1) 51 ¥t < ITrOPMIO(R)A T > +
0
oo - " b—3N
+ [T age -1t )1 8 < TrOPNO(=h)(—h) T >} :
1
Here ©-function equals 0 or 1 in accordance with sign of its argument and < ... >

means averaging over the orientation of the matrix U.

Essentially the same expression as (20) (except for the overall power of ¢ and
numerical factors and with ¢ replaced by 1) was found in® for the correlator of
electromagnetic currents (5).

4 Analyzing the result

The first conclusion which is to be done is that the result (20) may be used only for
N; < N, because the integral over orientations of the matrix U diverges at h = 0 if
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N; > N.. This means that our method can not be applied without strong modification
, for example, to calculation of I'z,—hedrons (Ne =3, Ny =35).

Another interesting application for asymptotic formulae will be the case N; =
N, = 3. The averaging over U for SU(3) group gives

<|TrOf > = g

<|TrOlPO(k) >=137 ; < |TrOI°*©(-h)>=0.03 . (21)

Here the averages with ©@—function are the numerical estimates. The accuracy of the
last (small) value is expected to be not worse than 20%.

Thus the final expression for instanton-antiinstanton pair contribution at N; =

N, = 3 reads

_ 9 sploimiet? 4(4_1r)”
g} 5 a2t 17 oy (23)
1 exp(—t) e exp(—££¢
{1.37/; ¢(1—:;)ﬁf—abwo.ﬂs/1 Bt - 1)——2"dt .

This expression is enough to find the leading asymptotics of perturbative expansion

for II(q):

dnys 9 .,.10171612
Ly (—) I, = =3 1. 12)! 2
O(g)=¢*Y = ; ol T 37(n + 12) (23)

We see that instanton-antiinstanton induced contribution to the series of perturba-
tion theory at n ~ 10 do has a huge enhancement (n + 12)! compared with b"n! for
renormalon. The complete calculation of the ~ 1/n corrections to the leading asymp-
totics requires a considerable efforts even in the simple toy model!'. Nevertheless one
may try to find any particular corrections which are enhanced in some way. The set
of such enhanced ~ log(n)/n corrections appears from the expansion of ¢(1 —t) in
(22) in powers of a,. Let us remind, that physically with ¢(z) one takes into account
the running of the coupling as(pa) which describes the large antiinstanton. It seems
very unlikely if one can find any other effect which lead to such a large corrections
~ (log(n)/n)*. Under this assumption we find:

log(n) 22/9

I, =176 [1 - 9—n——] (n+12)! . (24)
Of course this result may be used only if n > log(n). Though the expression (22)
provides us with the asymptotic of perturbative series, both integrals in (22) diverge
at ¢ = 1. In the configuration space these divergences are related to the integration
over almost noninteracting instanton and antiinstanton. Because the divergence is
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only logarithmic one can try to use the physical intuition in order to restrict the range
of integration in (22). Anyway the natural cut for ps seems to be py < 1/Agep, or

in terms of ¢ L ,
1 A

t — 1lmin ~ i 25

| I (PAmaz) q‘l ( )

If so the nonperturbative part of (22) may be found explicitly (up to corrections
~ a,).

g 710 (i_w)] {137Pj 81~ 1)- (_; i 1;5 (h) ex”(_g)} ,

(26)
Here P means the principal value integral. Let us stress that if one replaces ¢(z) by
1 in (22), the nonperturbative part of (26) would be 31/9 times larger. Effectively
the integration over t in (22),(26) may be thought as the integration over the size
of large antiinstanton. The size of antiinstanton also may be determined through
the coupling constant a,(ps) (the logarithmic scale a,(pa)™! ~ —log(paA)). The
remarkable feature of our result is that all the values of a,(pa) contribute to the
nonperturbative part (26) in the whole range a,(pr) < as(pa) < 1.

5 Imaginary part

In order to find the physical quantities such as the inclusive widths and cross—sections
one have to consider the imaginary part of correlators, which appears after the analytic
continuation to Minkovsky momentum Im(II(—¢* + ic)). In the lowest order in a,
both the singular part and the nonperturbative corrections in (26) behave like (A/q)%.
Thus for Ny = N. = 3 (b = 9) the imaginary part cancels. In this case the second
term of the expansion of a, should be considered (15) and the analytic continuation
of (26) gives:

(—;—;Im(ﬂ(—qz +ie)) = (27)
= 2410‘( ) Pj“’ W1 = ] (

¥(z) = (1 + €3a—, iog(:r)) (1 + 90—’ log(a:))nfg

Very similar expression may be found for R.+c- _agrons- Although the considerable
additional efforts are necessary for this calculation.

12
dt+09103( ) exp(—i—w),

10.

¥l

12!

13.
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