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A possible connection between the existence of three quark—lepton generations and the triality property of
SO(8) group (the equality between 8-dimensional vectors and spinors) is investigated.

1. INTRODUCTION

One of the most striking features of the quark—lep-
ton spectrum is its cloning property: i and T families
seem to be just heavy copies of electron family.
Actually, we have two questions to be answered: what
is an origin of family formation and how many genera-
tions do exist? Recent LEP data [1] strongly suggest
three quark—lepton generations. Although Calabi-Yau
compactifications of the heterotic string model can lead
to three generations [2], there are many such Calabi—
Yau manifolds, and additional assumptions are needed
to argue why the number three is preferred [3].

There is another well-known example of particle
cloning (doubling of states): the existence of antipar-
ticles. Algebraically the charge conjugation operator
defines an (outer) automorphism of underlying
symmetry group [4, 5] and reflects the symmetry of the
corresponding Dynkin diagram. We can think that the
observed triplication of states can have the same origin.

The most symmetric Dynkin diagram is associated
with SO(8) group. So it is the richest in automorphisms
and, if SO(8) plays some dynamical role, we can hope
that its greatly symmetrical internal structure naturally
leads to the desired multiplication of states in elemen-
tary particle spectrum. What follows is an elaboration
of this idea.

Although the relevant mathematical properties of
SO(8) are known for a long time [6], they have not been
discussed in the context of the generation problem, to
my knowledge.

2. PECULIARITIES OF THE SO(8) GROUP

It is well known [7, 8] that the structure of a simple
Lie algebra is uniquely defined by the length and angle
relations among simple roots. This information is com-
pactly represented by the Dynkin diagram. On such a
diagram each simple root is depicted by a small circle,
which is made black, if the root is a short one. Each pair
of vertices on the Dynkin diagram is connected by
lines, the number of which equals 4cos?p, @ being the
angle between the corresponding simple roots.

The main classification theorem for simple Lie
algebras states that there exist only four infinite series
and five exceptional algebras [7]. Among them D,,
the Lie algebra of the SO(8) group, really has the most
symmetric Dynkin diagram:
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Actually, only the symmetry with regard to the
cyclic permutations of the (o, o, 0,) simple roots
(which we call triality symmetry) is new, because the
symmetry with regard to the interchange o; =— 0,
(last two simple roots) is shared by other D, Lie alge-
bras also.

Due to this triality symmetry, 8 ,=(1000), 8, = (0010)
and 8, = (0001) basic irreps ((a,, a,, ..., a,) being the
highest weight in the Dynkin coordinates [8]) all have
the same dimensionality 8 — the remarkable fact valid
only for the D, Lie algebra. The corresponding highest
weights are connected by the above mentioned triality
symmetry. For other orthogonal groups (10 ... 0) is a
vector representation, (00 ... 01) — a first kind spinor
and (00 ... 10) —a second kind spinor. So there is no in-
trinsic difference between (complex) vectors and
spinors in the 8 - dimensional space [9], which object is
vector and which ones are spinors depend simply on
how we have enumerated symmetric simple roots and
so is a mere convention.

It is tempting to use this peculiarity of the SO(8)
group to justify the observed triplication of the quark—
lepton degrees of freedom. This possible connection
between generations and SO(8) can be formulated most
naturally in terms of octonions.
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3. OCTONIONS AND TRIALITY

Eight-dimensional vectors and spinors can be real-
ized through octonions [10, 11], which can be viewed
as a generalization of the complex numbers: instead of one
imaginary unit we have seven imaginary units ei =-1,
A =1 -7, in the octonionic algebra. The multiplication
table between them can be found in [11].

The octonion algebra is an alternative algebra
(but not associative). This means that the associator
(x, y, 2) = x(yz) — (xy)z is a skew symmetric function of
the x, y, z octonions.

The conjugate octonion g and the scalar product of
octonions are defined as

3 | Ermiess 5,
qd=qo—qss (P.q) = E(P‘I"'qp) = (p,q).(1)

Let us consider eight linear operators I',,, m=0-7, act-
ing in the 16-dimensional bioctonionic space:

rm[Ql)=(_0em)[q1J:(fmq2]' (2)
q> e, 0 q; €md1

Using the alternativity property of octonions, it can be

tested that these operators generate a Clifford algebra
r,rr,+I,I,=20,,.

(Note, that, because of nonassociativity, the operator

product is not equivalent to the product of the corre-

sponding octonionic matrices).

The 8-dimensional vectors and spinors can be construct-

ed in the standard way from this Clifford algebra [12].

Namely, the infinitesimal rotation in the (k, /)- plane by

an angle 0 is represented by the operator

1
R“ = ] + ierkrl,

and the transformation law for the (bi)spinor ¥’ = ( 4 J
q

iS \P‘ = RHT.
For I, given by (2) the upper and lower octonionic

components of ¥ transform independently under the
8-dimensional rotations

1 -,
@i=q9+ ieek(e!‘?I) =q,+6F,(q,),
i (3)
9, =4+ 5951((31‘1:) =q,+0C(q),
while the vector transformation law can be represented
in the form
x'=x+0{ee, x) — efeg, x)} =x+ Gy(x)H. (4)
One more manifestation of the equaiity between
8-dimensional vectors and spinors is the fact [9] that

each spinor transformation from (3) can be represented
as a sum of four vector rotations:

1
Fop = E(Gm +Gyp,+Gup,+Gan) (&)
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where A;, B; are defined through the condition e, e =e,,
and

1
Fyp'= i(Ga,Bl +Gos— Gy p,— Gap)- 6

An algebraic expression of the equality between vec-
tors and spinors in the 8-dimensional space is the follow-
ing equation, valid for any two x, y octonions [11]:

Su(xy) = Gu®)y +xCy(y), ™
where S, = KF,K, K being the (octonionic) conjugation
operator K(q) = q.

Equation (7) remains valid under any cyclic permu-
tations of (S, Gy, Cy). Note that

Su=UGy) , Cy=UuSy) =TH(Gp), t))

where T is an automorphism of the D, Lie algebra. We
can call it the triality automorphism, because it per-
forms a cyclic interchange between vector and spinors:
G,, operators realize the (1000) vector representation,
S,, — a first kind spinor (0001), and C}, — a second kind
spinor (0010).

In general, vectors and spinors transform differently
under 8-dimensional rotations, because G # Sy # Cy.

But it follows from (6) that G, ; — G, 5, and G, 5 —
— G, p, are invariant with regard to the triality automor-

phism, and so, under such rotations, an 8-dimensional
vector and both kinds of spinors transform in the same
way. These transformations are automorphisms of the
octonion algebra, because their generators act as deri-
vations, as the principle of triality (7) shows. We can
construct 14 linearly independent derivations of the oc-
tonion algebra, because the method described above
gives two independent rotations per one imaginary oc-
tonionic unit e, = e, e . It is well known [10] that the
derivations of the octonion algebra form G, exceptional
Lie algebra. It was suggested [11, 13, 14] that the sub-
group of this G,, which leaves the seventh imaginary

unit invariant, can be identified with the colour SU(3)
group. If we define the split octonionic units [11]

1 ) 1 )
By = i(e0+ ie;), ul = i(e"_ iej),

®)

1 ; 1 :
U, = i(ek""‘ens)’ Uy = E(ek_ iey,3),
where k = 1 - 3, then with regard to this SU(3) u, trans-

forms as triplet, u} — as antitriplet and u,, ug are sin-
glets [11]. Therefore, all one-flavour quark-lepton de-
grees of freedom can be represented as one octonionic
(super)field

g(x) = l(x)u0+qk(x)u,c+qf(x)u’: + 8 (uy, (10)
here, I(x), q,(x) are lepton and (three coloured) quark
fields and /°(x), qf — their charge conjugates.
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Note that it does not matter what an octonion, first
kind spinor, second kind spinor or vector we have in
(10), because they all transform identically under SU(3).

So SO(8) can be considered as a natural one-flavour
quark-lepton unification group. We can call it also a
generalized colour group in the Pati-Salam sense, re-
membering their idea about the lepton number as the
fourth colour [15]. Then the triality property of the
SO(8) gives a natural reason why the number of fla-
vours should be triplicated.

4. FAMILY FORMATION AND SO(10)

Unfortunately, SO(8) is not large enough to be used
as a grand unification group: there is no room for weak
interactions in it. This is not surprising, because weak
interactions connect two different flavours and we are
considering SO(8) as a one-flavour unification group.

The following observation points out the way how
SO(8) can be extended to include the weak interactions.
Because Cyp = Fup and Cyy=—F o for A, B=1-7, the
SO(8) (Hermitian) generators for the (bi)spinor trans-
formation (3) can be represented as M,z = —iF,, and
M yo = —Mos = —i03F 4.

The last equation suggests to consider M,;,, =
= — i0,F 4, generators, where k = 1 - 3 and summation
o the modulus 10 is assumed, i.e., 7 + 3 = 0. So we
1ave two new operators —io,F,, and —io,F,, which
nix the upper and lower (bi)spinor octonionic compo-
ients. Besides, if we consider these operators as rota-
ions, then we have to add two extra dimensions and it
s expected that SO(8) will be enlarged to SO(10) in this
vay and two different SO(8) spinors (two different fla-
ours) will join in one SO(10) spinor (family formation).

ndeed, the following generators

; 1
M,p = —iF,p, M7+r‘.7+jziefjk0k’ an

Myq=-ioFy, M, sbd =My

vhere A, B=1-7and i, j, k=1 - 3, really satisfy the
O(10) commutation relations

= ~i(8, My, +8,,M,.~ 8, . M,,— 8, M,).

It is clear from (12), that My (0, B=0,7,8,9) and
l,,n (M, n=1 - 6) subsets of generators are closed under
ommutation and commute to each other. They corre-
vond to SU,(2) ® SUk(2) and SU(4) subgroups of
O(10). The generators of the SU,(2) ® SU,(2) can be
>presented as

(12)

TR ;1
1= 50Uy, Ty = ioiuﬁ ; (13)
o multiplication by u, or u§ split octonion units plays
e role of projection operator on the left and right weak
ospin, respectively.
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The SU(4) generators can be also expressed via split
octonionic units:

E; = _‘u,.(u’." o By = —u;(uy, Ej = u¥ (uf.(14)

In the last two equations (i, j, k) is a cyclic permuta-
tion of (1, 2, 3) and it is assumed that, for example,

Efq) = —u(ufq).
Under SU(4) u, (o0 =0 - 3) transforms as a 4 fundamen-

tal representation and uf — as its conjugate 4*.

So SU(4) unifies u, colour singlet and u, colour triplet
in one single object, and therefore plays the role of the
Pati-Salam group [15].

Note that all one-family (left-handed) quark-lepton
degrees of freedom are unified in one bioctonionic (su-
penfield (16-dimensional SO(10) spinor) [16]

¥, = ( v(x)J uy+ 4 (x) u;+
W dy e )

C dC
3 [(x) ug + q; (x) u*
Ve ),

uC ¢
q; (x) »

The fact that we should take the Weyl (left-handed)
spinors instead of Dirac (that the weak interactions are
flavour chiral) indicates close interplay between space-
time (space inversion) and internal symmetries [17].

Thus our construction leads to SO(10) as a natural
one-family unification group. But doing so, we have
broken the triality symmetry: only the spinoric octo-
nions take part in family formation and the vectoric oc-
tonion is singled out. Can we in some way restore
equivalence between vector and spinor octonions?

First of all, we need to realize vector octonion in

terms of the SO(10) representation and this can be done
by means of 2 X 2 octonionic Hermitian matrices, which

(15)

together with the symmetric product X o ¥ = % XY +YX)

form the M Jordan algebra [18]. SO(10) appears as a
(reduced) structure group of this Jordan algebra [18]
and 10-dimensional complex vector space generated by
the Mg basic elements (the compiexification of Mg)
gives (10000) irreducible representation of its D5 Lie
algebra.

Thus, now we have at hand the realization of
spinoric octonions as a 16-dimensional SO(10) spinor

[q, ) and vectoric octonion as a 10-dimensional
q»

SO(10) vector [‘f’_‘
q

unitary symmetry example how to unify an isodublet

;ﬂ . How to unify them? The familiar
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and an isotriplet in the 3 X 3 complex Hermitian matrix
can give a hint and so let us consider 3 X 3 octonion
Hermitian matrices.

5. E¢, TRIALITY AND FAMILY TRIPLICATION
Together with the symmetric product, 3 X 3 octo-

nion Hermitian matrices form the M exceptional Jor-

dan algebra [10]. A general element from it has a form

o X3 X,

X B ox

Xy % Y

and can be uniquely represented as X = 0, + BE, + YE; +

+ F}' + Fy' + Fy. This is the Peirce decomposition [18]

of M§ relative to the mutually orthogonal idempotents E;.

X =

A reduced structure group of Mg is E, exceptional
Lie group [19]. Its Lie algebra consists of the following
transformations:

1) 24 linearly independent {a,, a,, a;} generators,
which are defined as {a,, @, a;}X = [A, X], where

0 a; a,
is a 3 X 3 octonion anti-Hermitian matrix with zero di-
agonal elements.

2) (A, A,, A3} triality triplets (7), (8),which annihi-
late E; idempotents and in the F; Peirce components act
according to

{Ap Az’ Aa} Ff = F'?i(a)-

Because a triality triplet is uniquely defined by its first
element: A, = T(A;) and A; = T(A,), this gives extra 28 lin-
early independent generators. Together with {a,, a,, a3}
type operators, they form 52-dimensional F, exception-
al Lie algebra [10, 20].

3) T" linear transformations of Mg, defined as T°X =
= T o X, where T is any element from M § with zero trace.

The way how E4 exceptional Lie algebra was con-
structed shows the close relationship between Ds and Eg:
the latter is connected to the exceptional Jordan algebra

Mg and the former — to the Mg Jordan algebra [21]. But

Mg has three Mﬂ2 (Jordan) subalgebras, consisting cor-
respondingly from elements:

oaal a0a 000
aBo | 000 |and | Ot a |
000 a0p 0ap

SILAGADZE

therefore E, has three equivalent D5 subalgebras. Let
D', be that Dy subalgebra of E; which acts in the M;
Jordan algebra, formed from the F}, E;, E; elements.
It consists from {A;, Ay, Ay}, (F)", (E; — EY)', {841,
8,4, 8,3a;) operators and their (complex) linear com-

binations. Therefore the intersection of these D; subal-
gebras is D, formed from the {4, A,, A} triality trip-
lets, and their unification gives the whole E¢ algebra.

The triality automorphism for D,, can be continued
on Eg:

{a,, ay a3} (F‘fK
{a2: a3ra1}“_'{a3' at’az} (Fg )A -(Ff)h
1:
Pae

{A‘zl A31 Al}"—_{AJiA]rAz} E; E;

It can be verified [22] that (15) actually gives an Eq
automorphism. This T automorphism causes a cyclic

permutation of the D; subalgebras:

Dl
T

D3 D}

So E, exceptional Lie group is very closely related
to triality. Firstly, it unifies the spinoric and vectoric
octonions in one 27-dimensional irreducible represen-

tation (algebraically they unify in the Mg exceptional
Jordan algebra). Secondly, its internal structure also re-
veals a very interesting triality picture:

-

The equality between SO(8) spinors and vector
now results in the equality of three SO(10) subgroup
(in the existence of the triality automorphism T, whicl
interchanges these subgroups).

To form a quark-lepton family, we have to selec
one of these SO(10) subgroups. Put a priori there isn
reason to prefer any of them. The implest possibility t
have family formation which resj ccts this equality be
tween various SO(10) subgroups (Ej triality symmetry

N8 1995
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is to take three copies of Mg' and arrange matters in

such a way that in the first M3 the first SO(10) sub-
group acts as a family formating group, in the second

M;, - the second SO(10) and in the third one — the third

S0(10):
e X : / o 2

g

More formally, we have 27 + 27 + 27 reducible repre-
sentation of Eg, such that when we go from one irreduc-
ible subspace to another, the representation matrices
are rotated by the triality automorphism T.

6. CONCLUSION
If we take seriously that octonions play some

underlying dynamical role in particle physics and

SO(8) appears as a one-flavour unification group, then
the triality property of SO(8) gives a natural reason for
the existence of three quark—lepton generations. Family
formation from two flavours due to weak interactions
can be connected naturally enough to SO(10) group,
but with the triality symmetry violated. An attempt to
restore this symmetry leads to the exceptional group Eg
and three quark—lepton families.

Note added. SO(8) triality plays a crucial role in
separating (V — A) and (V + A) families in the SO(18)
grand unification models, as is explained in Wilczek F.,
Zee A., Phys. Rev. D, 1982, vol. 25, p. 553. I am grate-
ful to A. Zee for drawing my attention to this work.
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-SO(8)-LIBET KAK BO3MOXHBIM MCTOYHHUK IMOKOJEHUN

3. K. Cnnaranze

HccnenyeTcs BO3MOXHAs CBA3b MEX/Y CYLIECTBOBAHUEM TPEX KBaPK-JIENTOHHBIX NOKOJEHHH H CBOUCTBOM
TPHANLHOCTH A rpynmbl SO(8) (3KBMBaJIEHTHOCTh BOCBMHMEPHBIX BEKTOPOB H CIHHOPOB). SO(8) BbICTY-
MaeT Kak ecTecTBeHHas rpymnna o6belHHEHNs B paMKax OfiHOro apomarta. PopMHpoOBaHHE KBapK-JIENTOH-
HOTO CeMEHCTBa M3-3a CnabbIX B3aUMOJIEHCTBHI CBs3bIBaeTca ¢ rpynnoi SO(10), HO ¢ HapYLIEHUEM TPH-
anbHO# cummMeTpun. TTONBITKH BOCCTAHOBUTL 3TY CHMMETPHIO NPHBOJAT K HCKJIIOYATENLHOM rpynne Eg u

TPEM KBapK-JIENNTOHHbLIM MOKOJIEHUAM.
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