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Abstract 
The intensity of the coherent undulator radiation of an electron beam, preliminarily microbunched in the FEL master 

oscillator for the FEL power outcoupling. is approximately calculated by simple analytic considerations. taking into account 

the transverse emittance and the energy spread of the initial electron beam. 

In our previous paper [I] we discussed the conservation 

of spatial-temporal correlations of longitudinal density of 
the electron beam passing through an achromatic magnetic 

system. This property provides the mutual coherence of 
radiation from two undulators separated by this achromatic 

bend, which we had observed earlier [2]. Thus, if the first 
undulator is a part of magnetic system of the oscillator 

FEL (see Fig. I ), at its exit the energy and density of 
electrons are modulated. Then, passing through the second 
undulator (radiator), this beam radiates coherently at the 
wavelength of its longitudinal modulation (the wavelength 
of the master oscillator FEL). Using an achromatic band 
between the undulators, we can deflect this coherent 
radiation from the axis and take it out of the FEL optical 

resonator. The theory of coherent undulator radiation was 
described in a number of papers (see, for example Refs. 
[3.4]). We will take into account the influence of the finite 

values of the energy modulation, the energy spread and the 
transverse emittances of the electron beam. 

Consider an energy-modulated electron beam at the 
entrance of the dispersive section. Using the longitudinal 

Fig. I. The schematic diagram of the electron radiation outcon- 

pling from the oscillator FEL. 
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coordinate Z as an independent variable we can write the 

distribution function of electrons in form: 

f, (.b Yo , xb. .v;, s,,. t,,) =&,,, ?‘I,> *I, ?I, s,, 

- A sm(wt,, ), t,, ) . (1) 

where A and w are the relative amplitude and the 

frequency of the modulation; ,f, (.x0, ylr, xi,, y,;, S,,. t,,) is the 
initial distribution function of transverse coordinates x,,, 

v,,, angles x:,, vi,, relative deviation of energy S,, and the 
time deviation t,,. Let us note, that A, is the density of 
particle flow (really independent on f,,) in a phase space 
with the normalization defined as 

dx,, dy,, dx:, dy;, d6,, = 1, (2) 

After passing through a short magnetic system with 
longitudinal dispersion D, the distribution function is 

transformed as 

(3) 

where k = w/c is the longitudinal modulation 
wavenumber. Then, let such modulated electron beam 
pass through a planar undulator, in median plane of which 
the magnetic field H is parallel to axis Y and oscillates 
along the axis 2 with amplitude H,,. In general case, when 
the undulator construction provides both the vertical and 
horizontal focusing, the vertical magnetic field near the 
undulator axis is described by the dependence 
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H,(x. y, T) = H,, cosh&,x) cosh(k,,_v) cos(k,<:) , (5) 

where kt, +kt, = kt; kU = 27rlh,; AU is a period of 

undulator. Then the dependence of the electron longi- 
tudinal velocity along the undulator is of the form 

V;(Z) = v 
I 

I - [(I ~ 26)at,,/2 + Xf/& + .rb2 + J$p;, 

Z 

+ ~$‘]/2 + 2 cos[2ku:] 
1 

, (6) 

where ay,,, = (eH,,)l(E,,k,) and E,, are the mean deflection 

angle amplitude and the mean energy of the electrons in 

the undulator, correspondingly; 

P,, = PAJk,,, P,,. = PA,lk,> % (7) 

P” is the matched beta-function of electron beam in 

undulator: 

The transverse components of the velocity vector are 

expressed as 

V,(Z) = v[x’(:) - cu,,, sir&z)] , (9) 

V&Z) = rv’(z) , (10) 

X’(Z) = .rhcos(,-lb,,) - x,, sin(zl/?,,)l/?,, . (II) 

V’(Z) = y:, cos(zl&,) - y,, sin(zl&,)l&, (12') 

From Eq. (6) in particular, one can see that the electron 
longitudinal velocity v., averaged over the undulator 
period, conserves its initial value at passing along the 
undulator. 

Let us describe the radiation field of a moving electron 
by the Fourier-harmonic of its vector-potential [5] 

A,=: 
j 

vO exp{iw[t -t R(t)lc]} dt , 
c R(f) 

(13) 

where R(r) is the distance from the electron to the 

observation point at the time t. In the far zone of the 
radiation field 

R(r) = R,, -r(t). lR,I * Ir(t)l . (14) 

where R,, is the radius-vector from the undulator to the 
observation point, r(t) is the radius-vector of an electron 
moving along the undulator; replacing the integration 
variable 

t = t;, + 
j 

;dx, 
(15) 

0 v_.(z,) ’ 

where ti, is the time of the electron coming to the undulator 
entrance, we get 

where L is the length of the undulator; k is the radiation 
wave number vector (lkl = w/c). directed to the observa- 
tion point; 

T(Z) = [X(Z) + cu,,, cos(ku~)lk,. y(i), z] . 

x(z) = .r,,cos(d~,, 1 + x,\P,, sinkl& I) . (17) 

V(Z) = J(, cos(~l&,) + y;#,, sinkl&) (18) 

The total vector-potential of the radiation field of the 

electron beam with the distribution function 

f?(X”’ y,,, xb. vi,. S,‘,. t:,) at the undulator entrance, taking 
into account the normalization (2). is expressed as 

Act) = 2 Re 

where I is total current of the electron beam. 
Knowing, that the power of the first harmonic of 

electron undulator radiation is concentrated in the angular 

cone with the opening angle about I /y, [6] (where y,= 
/ 

yl\ll + K’/2; y is the electron relativistic factor; K = 

?%I, is the undulator parameter), we will derive an 
approximate expression for the coherent undulator radia- 

tion, valid when the electron angular spread cr,,,,, in the 

beam 

UY,,,, G 1 ly, (20) 

and the diffractive divergence of the coherent radiation of 

electron beam with r.m.s. transverse size g,,., 

+11ly*> i.e. 
.‘i. \ 

(2’) 

With such an approximation, we get (see Ref. [7]). that at 
small observation angles with the undulator axis (Or,, e 
l/y*) the vector-potential of the first harmonic of the 
considered undulator radiation mainly contains only one 
component: 

{ 

-it 
A.(t) = Re x exp(ikR,, - iot)a,,,[J, - J, 11: 

1 
, (22) 

0 

where .J,) = JO(kn~,18ku) and J, = J,(kai,/8k,) are Bessel 
functions of zero and first orders. The quantity 1: is given 
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for the initial beam (before the energy and density 
modulating) with the distribution function A,. independent 

on time, as follows: 

x &,, dy, dr;, dy:, d6,, dz . (23) 

where X,, = -kDA is the parameter of beam bunching at 
the undulator entrance. Then, expressing the radiation 

magnetic field as 

H w, = ikAmr. (24) 

we write an expression for the angular distribution of the 

coherent radiation power: 

(25) 

The total power of coherent radiation can be expressed as 

P = ILZu . (26) 

where 

z = {ka,,,[J,, - J,l>' 
” 8~rc I 

IJ,i’dR (27) 

is the effective impedance of the undulator. For negligible 

values of the transverse emittance, the energy spread and 
the energy modulation of the electron beam, the expression 

(23) takes the form 

sin(kL0’/4 -x) 
1J;o = J,(x,,)L kL6z,4 _* 1 

where 19’ = 6: + 05: x = [k, - (k/2y5)]L/2 = kL8:/4 is 
a resonance detune of the undulator; here 0,, is the 
observation angle, which corresponds to the wavelength A 
in angular dependence of the spontaneous undulator radia- 
tion spectrum: 

From Eq. (27). after integration over the solid angle, 
supposing 

k- 
4rry? 

/\,(l + K’12) ’ 

with x * 1 we get the maximal achievable impedance of 
the undulator 

Z 
~{T~K[J,, - J,lJ,CX,,,}’ 

“0 =q 
~(1 + K’E) ’ 

where 4 = L/Au is the number of undulator periods. With 

K * I and max[J, (X,, )] = J, ( 1, 84) = 0.582 we have 

z”,,=qx l%n, (31) 

and the expression (27) can be rewritten in the form 

I 
I&\’ dQ 

ZU -z,,, x 0.47 AL (32) 

It is interesting to remark that for x * I the dependence of 
the total radiated power on the electron energy is very 
weak, and therefore we may obtain an electron efficiency 
much more than I /q, even without tapering. 

An operation at high x of the undulator-radiator makes 
other schemes of the electron FEL outcoupling possible 
(see Fig. 2a). An advantage of this configuration is the 

absence of the achromatic bend before the radiator, 
moreover, which may be installed between two undulators 
of the optical klystron (OK) master oscillator and serves 

also as the OK dispersive section (see Fig. 2b). 
The real effective impedance ZU of the undulator- 

radiator can be much lower than Z”,,. due to the emittance 
and the energy spread of electron beam, the influence of 
whose we will study further. Let us study the beam with 
the Gaussian function of the electron distribution 

(33) 

where qe is the relative dispersion of the electron energy 

spread; E,, , are the transverse emittances of the electron 

beam; (Ye,,. P,.,. Y,., are the Twiss parameters for trans- 

verse phase ellipses of the electron beam at the undulator 

I \e 
Fig. 2. The schematic diagram of the “cone” electron radiation 
outcoupling from the oscillator FEL (a) and the oscillator OK (b). 
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entrance. Having omitted the details of the integration (23) 
over the energy spread and the transverse emittances of 

electron beam, we write its final result: 

I 

L 
I; = F&)F,k)F,(:) 

0 

x exp{ic[k(llyz + 0: + 0f)/?-k”]}dz, 

where 

(34) 

Let us consider the particular case of negligible trans- 
verse emittances, when F,,>(z) = 1 is carried out along the 

whole undulator (0 < ; CL). Then we can approximately 
rewrite the integral (34) in the form 

ITe = F,(z) exp{ikz(B’ - 0:)/2} dz (37) 

Using Eq. (36). after the integral over the solid angle in 
Eq. (27), for the infinite long undulator at high detune 
(,y = I), with X,, = 0, and taking into account, that 

? 
1 7 

max 
[i 

J;([v-Ala,) exp(-SW) d[ ‘5 
0 1 = 0.148 with A/q = 1.80, (38) 

we get the expression for the undulator maximal achiev- 
able impedance at the energy spread of the electron beam: 

Z ur = 6.83 0/g (39) 

Let us note, that when the magnetic system, used for the 
electron beam bunching before the undulator, has the 
positive value of longitudinal dispersion (sign opposite to 
the undulator dispersion value), the maximal impedance of 
the infinite undulator is reached at -X0 + 1 and is twice as 
much as the value (39). 

Now let us study the particular case of negligible 

electron energy spread, when F,(i) = max[J, (X,))] = 
J, ( 1.84) = 0.582 is carried out along the whole undulator 
(0 <z <L). Then the integral (34) can be approximately 
rewritten as 

I;_ = 0.582 F&)F,(i) exp{ih(B - f3:/2} dz (40) 

-i‘.. 
0 05 10 15 20 k& 

Fig. 3. The computed function F,(kz). 

Let us consider the long undulator with equal horizontal 
and vertical focusing, with matched beta-functions of the 

electron beam at the undulator entrance: 

Ly 1,, =o; p,., =p,& x., = IJ&., . (41) 

For the infinite long undulator, using Eq. (35), supposing 
E, = E,. = E, from Eq. (27) we get the expression for the 

undulator maximal achievable impedance at the transverse 
emittance of the electron beam: 

with X-&<l, 

where we have defined 

F&Y) = max[F&, 0 t)] over 8 f , 

F$&, 0,:) = 2 1 
* 

n? 0 
1Z;8(ka 0;, eZ)I’ d0’. 

J 

I 

I:<(ka 0; ,O’) = 0.582 
0 

(42) 

(43) 

(44) 

k'.z'O' 
exp -p+iz(/j-0:) /(l-id’d:. 

(I -i:) I 
(45) 

The computed function Fr(k.$ is plotted in Fig. 3. 
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