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Abstract

The instanton-anti-instanton pair induced asymptotics of perturbation theory expansion for the
hadronic width of r-lepton was found. For Ny = N, the nonperturbative instanton contribution is
finite and may be calculated without phenomenological input. The instanton induced peturbative
asymptotics was shown to be enhanced as (n + 10)! and in the intermediate region n < 15 may
exceed the renormalon contribution. Unfortunately, the analysis of ~ 1/n corrections shows that for
n ~ 10 the obtained asymptotic expressions are at best only the order of magnitude estimate. The
instanton-anti-instanton pair nonperturbative contribution to Ry _4hadrons blows up. On the one hand,
this means that instantons could not be considered ab—initio at such energies. On the other hand, this
result casts a strong doubt upon the possibility to determine the o, from the r—lepton width.

1. The possibility to extract the value of the strong coupling a,(m,) from the hadronic width of the
r-lepton is now actively discussed. The usual belief is [2]-[6] that one may find the value of the strong
coupling at the m, pole within 10% accuracy.

In this talk we would like to consider the contribution of the instanton-anti-instanton pair to the =
decay width. Previously the attempts to estimate theoretically the instanton contribution to R;—shadrons
have been done in refs. [7, 8]. However, it may be shown that authors of both papers [7, 8] have
underestimated the instanton effects!. As we will see bellow, the instanton—anti-instanton pair induced
correction to Ry—hadrons turns out to be much larger than the most reasonable semi-phenomenological
result of the paper [8].

The semiclassical technique for high order perturbation theory estimates was suggested by L.N.Lipatov
[1] almost 20 years ago. Nevertheless up to now the only attempt to find the instanton induced asymptotics
of perturbation theory in realistic QCD was done in the paper of I.I.Balitsky [18]. However, unfortunately
he could not find correctly either asymptotics of perturbation theory, or nonperturbative contribution of
the instanton—anti-instanton pair in the most actual case Ny = N..

Following G.’t Hooft [10], one can rewrite the integral over the instanton—anti-instanton pair in the
Borel form by considering the action as a collective variable. Within this approach the ambiguous, strongly
interacting instanton and anti-instanton contribute to the smooth part of the Borel function and, thus,
do not effect the asymptotics of perturbation theory. On the other hand, the singular part of the Borel
function is saturated by the almost non-interacting pseudoparticles. That is why one can obtain the
reliable prediction for the asymptotics starting from such ill defined object as the instanton-anti-instanton
pair. The field configuration relevant for the large orders of perturbation theory is a small instanton inside
of a very large anti-instanton (or vice versa). The size of small instanton is regulated by the internal
momentum in correlator gpo; ~ 1. The size of anti-instanton (as well as the distance between the centers
of pseudoparticles R ~ p4 > pr) determines how close we are to the singularity on the Borel plane.

Thus, unlike the authors of the papers [7, 8], we are able to find the asymptotics of the perturbation
theory. As for the nonperturbative contribution, as we will see, in the case Ny = N, the integral over py
with the logarithmic accuracy comes from the whole region 1/¢ <« pa < 1/Aqcp. This means that we
have found explicitly the most probable long-wave background for the small instanton.

1More concretely, in [7] only the single-instanton contribution proportional to the product of light quark masses mymam,
was found. The more reasonable is the approach of [8]. However, their result also contains a strong model dependent
cancellation of vector and axial contributions.
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2. The ratio of hadronic 7 decay width to its leptonic width R;_,hadrons may be found by the analytical
continuation of the correlator of the weak currents from the euclidean ¢2 region (see e.g. [7, 8]):

Rroshadrons = —6im }l(l ds(1 — 8)2[(1 + 28)[IT (—sm?) + 1% (—sm?)] , )
s|=1

M, (¢%) = 7 (¢%) (qugw — ¢%8u) + T4 (¢%)quaw = f dze'*(j} (2).(0)) ,

where
Ju= Vudﬂ+‘y“(l + 75)d + Vusu+“fu(1 + '75)3 . (2)
Here the cut goes along the positive real axis of the complex s-plane.
As we have said before, the most interesting configuration for us turns out to be the small instanton
inside of the very large anti-instanton. The classical action for such configuration was found for example
in [18] (see also [21])

Sta = = {1-¢h} , €= -——M— h = 2|TrO|? - TrOO" . (3)
a, ’ (R2+p%)? "’
Here O is the upper left 2 x 2 corner of the matrix U = UX Uy describing relative orientations of instanton
and anti-instanton.
The features of light fermions are mostly sensitive to the presence of instantons. The Dirac operator
D for each flavor of massless fermions has two almost zero modes ¥4 with eigenvalues Ax. Explicit
expressions for zero modes in the background of instanton and anti-instanton at |z — zr| ~ pr are:

1 e oz (4 2Acps (e—wp) pA ( ¢ )
et (0) et ( ) W

where ¢2™ = gom /2 for @ = 1,2 and ¢*™ = 0 for a > 2, a is color index, m = 1,2 is spinor index, €am

is an antisymmetric tensor, and ¥ = (Fi, 7).
Because the instantons interact very slightly, the nonzero modes contribution to the fermionic determ-
inant factorizes. The Green function in at |z — zy| ~ pr also has rather simple form:

S(z,y) = Sx+ Gr+0(¢) . (5)

Here G is the Green function in the background of separate instanton and S, is the zero mode contribution.
As was shown in [21]:

. 2p1pa _ 1 [Tro* + + ITrO
Ay = i(ﬂi T+ R |TrO] , Si(z,y) = B {{TrOlw““I" +‘I’I‘I"—[Tr0| ; (6)

The Green function S(z,y) may contain only the terms which convert the right fermions to the left and
vice versa. Therefore, S) contains only the interference terms ~ \IIIIIII and the contributions of the
zero modes and of "quantum” Green function Gy to the correlation functions are of the same order of
magnitude. The Green function in the instanton field has the form [14] (z; = 0):

iy (zr7)[. pi+(rFz)(r7y) (zr)pf ] (try) (1475
7T, T [z“ A il 2z=T:] vl ( 2 )
+(cec,z ey, (7

2F2GI($1 y) =

where T, = p? + 2% and z = z — y. We use the Hermitean matrices {7, T} =26,
3. Now we can write down the expression for the correlation function:

n, = -4 ]e‘q" exp {ith} Tuw(z,0) x
[Tr{'n.S(z. Y7 Sw,z)} = Tr{v.Go(z, ¥)%Go(y, z)}] (8)

[453/2|Tr012]"r%li‘ﬁ’%dmz;dudp,dmdv :
I A
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Here, Go(z — y) is the bare Green function and (1) (|Vua|? 4 |Vus|?) = 1. The factor ~ £3¥1/2|TrO|?N1 in
the square brackets accounts for the contribution of almost zero modes (6) to the fermion determinant.
The instanton density reads [15, 16, 17]:

cre=Neea+Nyes or \ 3N 2r
d(0) = TN, TN, = 21 (a.(p)) o (_T(PJ) ' ¥

for MS scheme ¢; = 2e%/6/n?, ¢3 = 1.511, c3 = 0.292, ¢ — c3 = 2In2 — 1/6 [15, 17].
We will also use the well known two-loop formula:

f%:bln (-K—z)-i—%’ln (ln (%))-}- ' (10)

where for Ny = N, = 3 one has b = 9 and ' = 64.

In order to reduce the integral (8) to the Borel one, we have to integrate over all collective variables
T1,Z4,pI,Pa, U, and, also, over z at fixed action (3), that is to say, at fixed value of the combination £h.
This problem may be divided into two parts. The integration over z and z; is rather tedious algebraical
problem due to the complicated form of the correlation function of quark currents in the instanton field.
But from physical point of view, the main problem is the integration over size p4 and position R = z4—2z;
of the large anti-instanton. There are two competing effects here. First, the factor d(ps) ~ p% tends to
make the integral over p4 divergent. Second, the almost zero fermion modes A2N# ~ pﬁN’ / p:N’ (6) tend to
suppress the contribution of large anti-instantons. As a result, the value of the integral (8) depends strongly
on the number of light quarks Ny. The simple dimensional analysis (let us note, that the integrations over
dps and d*z 4 are not independent and p4 ~ z4 — z1 owing to the constraint £h = const (3)) shows that
the critical value is Ny = N... If Ny < N, the integral (8) diverges at large p4. Nevertheless, just in this
case the well defined instanton induced asymptotics of perturbation theory may be extracted from (8).
For calculation of the integral (8) beyond the perturbation theory at Ny < N, the new physical income
is necessary. The most favorable case is Ny = N.. In this case, the integral over p, in (8) diverges only
logarithmically. As a result, we are able not only to obtain the asymptotics of perturbation theory, but
also to calculate the finite nonperturbative instanton—anti-instanton pair contribution to R, hadrons-

If Ny > N, the attraction of pseudoparticles which appears owing to fermionic zero modes prevails.
As a result, the integral is saturated by ps ~ R ~ pr and the approximation of almost noninteracting
pseudoparticles does not work.

With the use of (9), (10) let us extract the p, dependent part from (8):

b _s
aGiy = sty (2 ) ey = [ 40t (1)
PA 4

Here and below a, = a,(g) ~ a,(pr1).
The integral over p4 and R = z4 — z for a fixed value of £ gives:

[ o106 (s ~ €) dpad*R = i LA (12)
PPN P\t 2y ) T T - @

In fact here we have not integrated over p4, but only have replaced this integral by that over d§.
The integration over the rest collective variables is straightforward but tedious (see [21]). Finally
formula for I1(¢g?) may be written in the form of Borel integral over the new variable ¢ = 1 — h¢:

—4x

8/31716112 12 1 ~-4z, 0o ix
Y e L. i 0.510/ dte——¢+0.054f a4 (13)
[s3 0 1—1t 1 t—1

216! s

Here the averaging over SU(3) group was performed numerically.
Both integrals in (13) diverge at £ = 1. In the configuration space these divergences are related to
the integration over almost noninteracting instanton and anti-instanton. Since the divergence is only




lozarithmic one can try out the physical intuition in order to restrict the range of integration in (13). The
natural cut-off for pa is p4a € 1/Agcp, or, in terms of ¢

2 2
, PrI A
t — llmin ~ < —= . 14
I Imm (pAma:r) 92 ( )
The use of this cutoff allows to find the finite result
8/3[716112 12 00
2 e3/3[716!] (4#) 48 4r R
=N d 12D ) 4 e .
Ie') 36 Nan) \COOEL D+ 3635 a (33)

Here P means the principal value integral. The factor a;! ~ In(g/A) in the last, nonperturbative, term
appears after integration over p4 over the wide range ¢! <« p4 € A™1.
4. Now, integrating over s (1), one can find R-_yhadrons

4 _ 33¢%3 [1161]? (4m\M
TT 740 15! \a, ‘

where ¥(z) = (1 + 9e,In(z)/87)(1 + 9a, In(z)/47)*/°. The expression (16) leads to the following
asymptotics of the perturbation theory :

636 4r _
~t)+ 35085 o, ) (16)

n 'ﬁ
Rrabadrons = Z Rns (%) ) Rpr = ﬁl(ﬂ -+ 10)' (94ﬂ) § (17)

The last factor (9%n)~3%/2" here accounts for the sum of some ~ 1/n corrections to the asymptotics.
The more detailed discussion of the ~ 1/n effects may be found in [21]. In (17) we have taken into
account only the corrections which are enhanced like In(n)N2/n and In (3N;)NZ2/n. Unfortunately, the
unknown corrections also may be huge ~ N2 /n. Therefore, our final conclusion concerning the asymptotics
of perturbation theory is rather contradictory. On one hand, the instanton induced asymptotics may
even exceed at n < 15 the renormalons [10, 11, 13]. On the other hand, it may be calculated only at
n 3 N2 ~ 10. The only hope may be that at n ~ 10 expression (17) is a reliable order of magnitude
estimate.

In order to compare our result with the experiment, let us consider in more detail the pure nonperturb-
ative R™ ~ e~ term in (16) (note that this correction in terms of Aqcp (10) behaves like (A/m,)*8).

The quantities R?? for popular values of a,(m,) are shown in the first column of the Table. One has
to compare these values with the experimental value Ry hadrons — Ne = 0.56 & 0.03 [4] (here we have
subtracted the trivial part R, ~ N.). As we can see, the nonperturbative correction turns out to be
dramatically large.

There exist, however, the procedure (used also in the work [8]) which allows to reduce the huge
discrepancy with the experiment. The regular way to improve the nonperturbative correction (16) is to
calculate the ~ a, corrections to it. Since, as will be shown below, the result is going to be deceased by
30 — 50 times, one has to sum an infinite series of the corrections. Undoubtedly, the exact calculation even
of the first correction ~ a, to (16) is beyond our abilities. All we can do is to use the dependence of the
coupling constant on the instanton size a,(p), which is known from the renormalization group-invariance
principle. Rather weak justification for taking into account just these particular corrections is the fact
that they are enhanced as In(3N.) compared to the other ones. The explicit expression fr the improved
nonperturbative correction which has been found in [21] has the form:

9e8/3 ar \2 4r
*np - _
R haarons = Bmy oy (a,(m,)) °xp( a,(m.,)) (18)

9a, 8\¥ (12— e)[(9—e)[(B—e)’T(5-¢)
x (1+Trr—§) sin(e) S%T(18 — %)

Note, that the leading term here, corresponding to (8/8¢)°, is vanishing. This leads to loss of one factor
1/ay(m;) in Rrhadrons compared to the correlation function. Coefficients of the expansion of (18) in
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powers of a, were found numerically. The resulting quantities RI™P, irons aT€ shown in the last column
of the Table. As we can see, taking into account of the two-loop dependence of as(p) allows to reduce
the nonperturbative correction almost by two orders of magnitude. Moreover, passing from a, = 0.28
to a, = 0.29 our correction changes the sign. Such rich behaviour provides us one more evidence that
effectively we work at very low energies and listed in the table result is, at best, only the estimate on the
order of magnitude.

Table
as (m'r) R‘:-’:umdum_ R,
0.28 5.65 -0.0229
0.29 17.44 0.0507
0.30 49.23 0.476
0.32 311.1 6.70
0.34 1514.1 44.79
0.36 5943.4 190.1
The full nonperturbative contribution of the instanton—anti-instanton pair to the hadronic decay width R}™7, Larone

and the contribution accounting for only the leading over a, term in the sum (18) R7%, , drons 3t various values
of a,(m-,-).

One should remember that the obtained results should be compared with the experimental value
(Rr—hadrons = 3)exp = 0.56 +0.03. We see that, in spite of all our effort, even for a, = 0.29 the instanton
contribution to Rr—yhadrons still remains large. In this situation the only way out may be to ignore
completely the instanton contribution to Rr_hadrons - FOT example, one may say that the series of the
power corrections ~ 1 /m? is also asymptotic, and it is natural to cut off it somewhere at n ~ 4 — 8 (the
instanton contribution behaves like ~ 1/m7®). Nevertheless, we do not know to what extent this point of
view is justified and we consider our result as indication of the impossibility to extract the reliable value
of a, from Rrhadrons -
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