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Complete analysis of polarization effects in γγ ↔ e+e−
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Abstract

Formulae for the cross section of the process γγ ↔ e
+
e
− with all four particles

polarized are obtained in the lowest order of the perturbation theory using REDUCE.

Polarization effects in the quantum electrodynamics process γγ ↔ e+e− were discussed
in many works (see e.g. [1, 2]), but formulae with all four particles polarized are absent
in the available literature. These polarization effects may be important for interaction of
high energy electron beams with intense laser beams and some other applications. Here we
obtain a complete set of formulae in covariant notations using REDUCE [4]. For photon-
electron scattering (Compton effect) this was done in [3]. We follow the method of [1]
and [3].

We start from the process γγ → e+e−. The particles’ momenta are k + k′ = p + p′;
the Mandelstam invariants are t = (k − p)2 = m2(1 − x), u = (k − p′)2 = m2(1 − y),
s = m2(x+ y). The cross section has the form

dσ

dt dϕ
=

α2

2s2x2y2
ρ′µαρνβ Tr ρ

′QµνρQ
αβ

,

mQµν

xy
=

γµ(p̂′ − k̂′ +m)γν

x
+

γν(p̂′ − k̂ +m)γµ

y
,

(1)

where ϕ is the azimuthal angle in the plane transverse to the line of collision of the initial
particles. All density matrices are defined as in [1].

It is convenient to use the basis

n0 =
Q

v
, n1 =

K

v
, n2 =

v

2w
P⊥ , nµ

3 = − 1

2vw
εµαβγQ

αKβP γ , (2)

where Q = k + k′ = p + p′, K = k − k′, P = p′ − p, P⊥ = P − PK
K2 K; v =

√
x+ y,

w =
√
xy − x− y. The particles’ momenta are

p =
(x+ y)n0 − (x− y)n1 − 2wn2

2v
, p′ =

(x+ y)n0 + (x− y)n1 + 2wn2

2v
,

k =
v

2
(n0 + n1) , k′ =

v

2
(n0 − n1) .

(3)
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The vectors ~n1, ~n2, ~n3 form a right-handed system.
The vectors n2 and n3 can be used as polarization vectors of both photons. For the

photon with momentum k, the vectors ~n2, ~n3, ~k form a right-handed system (in the c. m.
frame); therefore, its density matrix is expressed via the Stokes parameters ξj in the stan-
dard way: ρνβ = 1

2

∑3
j=0 ξjσjνβ, where ξ0 = 1 has been formally introduced, and

σµν
0 = nµ

2n
ν
2 + nµ

3n
ν
3 , σµν

1 = nµ
2n

ν
3 + nµ

3n
ν
2 ,

σµν
2 = −i (nµ

2n
ν
3 − nµ

3n
ν
2) , σµν

3 = nµ
2n

ν
2 − nµ

3n
ν
3 .

(4)

For the photon with momentum k′, the right-handed system is ~n2, −~n3, ~k
′. Therefore,

ρ′µα = 1
2

∑3
j′=0 δj′ξ

′

j′σj′µα, where δ0,3 = −δ1,2 = 1.
The tensor Qµν in the n2–n3 plane also can be expanded in σ-matrices:

Qµν =

3
∑

k=0

Qkσkµν , Qk =
1

2
Qµνσ

νµ
k . (5)

Using the Dirac equation, we obtain

Q0 = −(x+ y) , Q1 = −i(x + y)γ5K̂/2 ,

Q2 = −(x+ y)γ5 , Q3 = −(x+ y) + (x− y)K̂/2 .
(6)

The conjugate tensor Qµν =
∑3

k=0 δkQkσkνµ, because Qk = δkQk, σ
∗

kµν = σkνµ.

The e± density matrices are ρ = 1
2
(p̂ − m)(1 − γ5â), ρ

′ = 1
2
(p̂′ + m)(1 − γ5â

′). Let’s
introduce two bases

e0 =
p

m
, e1 =

(x+ y − 2)p− 2p′

muv
, e2 =

2wn1 − (x− y)n2

uv
, e3 = n3 ;

e′0 =
p′

m
, e′1 =

(x+ y − 2)p′ − 2p

muv
, e′2 =

2wn1 + (x− y)n2

uv
, e′3 = n3 ;

(7)

where u =
√
x+ y − 4. Then a =

∑3
i=1 ζiei, where in the c. m. frame ζ1 is the longi-

tudinal polarization, ζ2 is the transverse polarization in the reaction plane, and ζ3 is the
transverse polarization perpendicular to this plane. Introducing formally ζ0 = 1, we have
ρ = 1

2

∑3
i=0 ζiρi, where ρ0 = p̂ − m, ρi = −ρ0γ5êi. Similarly, ρ′ = 1

2

∑3
i′=0 ζ

′

i′ρ
′

i′ , where
ρ′0 = p̂′ +m, ρ′i = −ρ′0γ5ê

′

i.
Finally, the cross section is

dσ

dt dϕ
=

α2

4s2x2y2

∑

ii′jj′

F ii′

jj′ξjξ
′

j′ζiζ
′

i′ , (8)

where

F ii′

jj′ =
∑

kk′

δj′δk′εj′
1

2
Tr σj′σkσjσk′

1

4
Tr ρ′i′QkρiQk′ (9)
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(here the factor ε0,1,3 = −ε2 = 1 appears, in contrast to the Compton case [3], because
the photon with the momentum k′ is now initial instead of final, and its density matrix
has indices in the opposite order). The right-hand side of (8) depends on ϕ because the
polarizations are defined relative the reaction plane. The final particles’ polarizations
ζi, ζ

′

i′ describe probabilities of their registration by the detector; when they are absent,
dσ = 1

4
dσunpol [1]. The cross section summed over the final particles’ polarizations is

dσ

dt dϕ
=

α2

s2x2y2
F , F =

∑

jj′

F 00
jj′ξjξ

′

j′ . (10)

Polarizations of the final particles themselves are

ζ
(f)
i =

1

F

∑

jj′

F i0
jj′ξjξ

′

j′ , ζ
(f)′
i′ =

1

F

∑

jj′

F 0i′

jj′ ξjξ
′

j′ . (11)

The four-vectors of the final particles’ polarizations are evidently a(f) =
∑3

i=1 ζ
(f)
i ei, a

(f)′ =
∑3

i′=1 ζ
(f)′
i′ e′i′ . The components F ii′

jj′ with i 6= 0 and i′ 6= 0 describe the correlations of the
final particles’ polarizations.

We have calculated F ii′

jj′ using REDUCE. All nonzero components F ii′

jj′ are presented in

the Appendix (where the notation F
ii′

jj′(x, y) = F ii′

jj′(y, x) is used).
Repeating the derivation for the inverse process e+e− → γγ, we can express its cross

section via the same F ii′

jj′ (9):

dσ

dt dϕ
=

α2

4s(s− 4m2)x2y2

∑

ii′jj′

F ii′

jj′εjεj′αiαi′ξjξ
′

j′ζiζ
′

i′ , (12)

where α0 = −α1,2,3 = 1. This means that for the inverse process one has to substitute
ξ2 → −ξ2, ξ

′

2 → −ξ′2, a → −a, a′ → −a′. These substitutions follow from the change of
signs of all the momenta for the inverse process. The cross section summed over the final
photon polarizations and the final photon polarizations are

dσ

dt dϕ
=

α2

s(s− 4m2)x2y2
F , F =

∑

ii′

F ii′

00 αiαi′ζiζ
′

i′ ,

ξ
(f)
j =

εj
F

∑

ii′

F ii′

j0 αiαi′ζiζ
′

i′ , ξ
(f)′
j′ =

εj′

F

∑

ii′

F ii′

0j′αiαi′ζiζ
′

i′ .
(13)

Comparison of the obtained functions F ii′

jj′ with the corresponding functions for the
Compton effect [3] is more complicated because of the different choice of fermion polariza-

tion unit vectors e
(′)
1,2. However, for i, i

′ = 0, 3 they are related by

x̃ = −x , ỹ = y , ṽ = iv , w̃ = iw , F ii′

jj′ = −iεjF̃
i′j′

ij , (14)

where the quantities of the Compton effect are denoted by tilde, and the sign factor εj
corresponds to the substitution ξ2 → −ξ2.
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Now we discuss some limiting cases. The first one is the threshold behavior (x, y → 2).
In this limit, the e+e− pair is produced with the orbital angular momentum l = 0. Since the
initial photons can’t have the total angular momentum J = 1, the e+e− pair is produced
with the total spin S = 0, and hence with the negative parity. For pseudoscalar initial and
final states, the matrix element has the factorized form M ∝ ~k · (~e × ~e ′)u(p′)γ5v(p), and
|M |2 ∝ (1 + ξ1ξ

′

1 + ξ2ξ
′

2 − ξ3ξ
′

3)(1 − ~a · ~a ′) (where the last factor is 1 + ζ1ζ
′

1 + ζ2ζ
′

2 − ζ3ζ
′

3,
because ~e ′

1,2 = −~e1,2).
In the ultrarelativistic limit (x, y → ∞), dσ

dt
= O

(

1
s2

)

, and hence F ii′

jj′ = O(x4, y4).
However, if e+ and e− have equal helicities (ζ1 = ζ ′1 = ±1, all the other components are
zero), then their production is suppressed due to helicity conservation, and

∑

i,i′ F
ii′

jj′ζiζ
′

i′ =

O(x3, y3) for all j, j′.
If e+ and e− have opposite helicities (ζ1 = −ζ ′1 = ±1, all the other components are

zero), then the projection of their total angular momentum onto their direction of motion
is ±1. Projection of the total angular momentum of the photons onto the collision axis
is ±1 ± 1 = 0, ±2. Therefore, the reaction is forbidden at any energy, when both the
initial and the final particles move along the same line in the c. m. frame. This means
that

∑

ii′ F
ii′

jj′ζiζ
′

i′ vanish at the kinematical boundaries w = 0 for all j, j′. Similarly, if e+

and e− have equal helicities (ζ1 = ζ ′1 = ±1, all the other components are zero), and the
photons have opposite helicities (ξ2 = −ξ′2 = ±1, all the other components are zero), then
the reaction is forbidden at the kinematical boundaries, and

∑

ii′jj′ F
ii′

jj′ξjξ
′

j′ζiζ
′

i′ vanishes
at w = 0.

Our results satisfy all these properties. They are also consistent with the results of six
independent calculations, when the photons are either unpolarized or e = e′ = ±n3, and
e± are unpolarized, have a = a′ = ±n3, or a = −a′ = ±n3.

We are indebted to the International Science Foundation for partial financial support
of V. N. B. (grant RP6000) and A. G. G. (grant RAK000).

Appendix

F 00
00 = F 33

33 = x3y + 4x2y − 4x2 + xy3 + 4xy2 − 8xy − 4y2

F 00
03 = F 00

30 = F 11
03 = F 11

30 = −F 22
03 = −F 22

30 = F 33
03 = F 33

30 = 4v2w2

F 01
02 = F

01

20 = F
10

02 = F 10
20 = −F 23

13 = −F
23

31 = −F
32

13 = −F 32
31 =

−
(

x2y − 2x2 − xy2 − 2xy + 4x+ 4y
)

v3/u

F 02
02 = −F 02

20 = F 13
13 = −F 13

31 = −F 20
02 = F 20

20 = −F 31
13 = F 31

31 = 4v2w3/u

F 00
11 = −F 33

22 = −2(xy − 2x− 2y)xy

F 03
12 = −F

03

21 = −F
12

03 = F 12
30 = F 21

03 = −F
21

30 = −F
30

12 = F 30
21 = 2v3wx
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F 00
22 = −F 33

11 = −(x2 + y2)(xy − 2x− 2y)

F 01
23 = F 01

32 = F 10
23 = F 10

32 = −F 23
01 = −F 23

10 = −F 32
01 = −F 32

10 = 4v3w2/u

F 02
23 = −F

02

32 = F 13
01 = −F

13

10 = −F
20

23 = F 20
32 = −F

31

01 = F 31
10 = −2(y − 2)v4w/u

F 00
33 = F 33

00 = −2
(

x2y2 − 2x2y + 2x2 − 2xy2 + 4xy + 2y2
)

F 11
00 = −F 22

33 = −
(

x4y − 2x4 + x3y2 − 8x3y + 8x3 + x2y3 − 20x2y2 + 40x2y − 16x2 + xy4

− 8xy3 + 40xy2 − 32xy − 2y4 + 8y3 − 16y2
)

/u2

F 12
00 = F 12

11 = −F 12
22 = F 12

33 = F 21
00 = F 21

11 = −F 21
22 = F 21

33 = 4(x− y)vw3/u2

F 11
11 = F 22

22 = 2
(

x3y2 − 2x3y + 2x3 + x2y3 − 2x2y − 2xy3 − 2xy2 + 2y3
)

/u2

F 11
22 = F 22

11 =
(

x4y + x3y2 − 4x3 + x2y3 − 8x2y2 + 4x2y + xy4 + 4xy2 − 4y3
)

/u2

F 11
33 = −F 22

00 = 2
(

x3y2 − 2x3y + x2y3 − 8x2y + 8x2 − 2xy3 − 8xy2 + 16xy + 8y2
)

/u2
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