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Novosibirsk Tau-Charm Factory Design Study
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Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia

Abstract

A method of colliding beams is developed to-study the fundamental properties
of matter in two directions. The first direction is aimed at achieving higher energies
allowing the discovery of new particles and fields. The goal of the second one is the
study of more delicate fundamental properties of quarks and fields by increasing
luminosity in crudely studied energy ranges. The study of CP violation is the most
famous example. To study the CP violation in the region of B-quarks, the project of
a B-factory as an asymmetrical electron-positron collider with a beam energy of 7/4
GeV and luminosity up to 1034e¢m—2s~! was developed at BINP. During the develop-
ment of this project, it became clear that the Institute’s economical situation, which
grew worse in the period of 1990-1993, did not allow us to carry out this project
in a reasonable time. Besides, Japan (KEK) and USA (SLAC) began to build the
B-factories. Therefore, it is hardly probable to obtain any new results on the third
B-factory. On the other hand, a beam energy region of 0.7-2.5 GeV, which still is
very interesting, is not studied completely. The interest in this field of research is
due to a great body of information obtained on a LEAR facility which is utilized to
study proton-antiproton annihilation approximately in this energy region. Studying
the cross-section of birth of observed resonances in electron-positron annihilation
noticeably increases the value and reliability of their interpretation. In 1993, as a re-
sult of discussions, the International Program Committee on High-Energy Physics of
the Ministry of Science recommended to reorientate the Novosibirsk project VEPP-5
into a Tau-Charm-factory with high luminosity [1].

1. Parameters of Colliding Beams and Interaction Points

The beam parameters for the Tau-Charm-factory should satisfy the requirements for
obtaining a maximum high luminosity of 1.010**¢m~%s57!. In addition to the maximum
luminosity regime, it is planned to obtain the beam parameters required for the so-called
monochromatization of colliding beams and polarized colliding ones. To work in these
regimes, the beam emittance control systems are needed. Thus, to obtain monochromatic
colliding beams, it is necessary that the main contribution to the vertical size be made by
energy spread at the interaction point and the vertical betatron size be substantially less.
To control and preserve polarization, rather long solenoids with a longitudinal magnetic
field are required. It is undoubtedly impossible to provide simultaneously all these regimes;
so, regime-to-regime transition will be made by replacing magnetic elements in straight
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Figure 1: Schematic layout

sections. In this case, the contribution of half-rings into emittances should be as small as
possible. The maximum luminosity of the facility is determined by the eéxpression

Ei CNma::'Y&maz, (1)
reDminoi
where Ny, is the maximum number of particles in a bunch; D, is the interbunch
distance, {nq.. is the parameters of beam interaction; r, is the classical electron radius;
7 = E/mc?, and oy is the bunch length (sigma). Assuming that a RF system is used at
a 700 MHz frequency and the interbunch distance is multiple to the RF wave length, we
can present the beam parameters for the maximum luminosity in Table 1.

It is necessary full reconstruction of the experimental stright section to obtain ultra
monochromatic colliding beams op &~ 6 keV. The strong quadrupoles and weak dipoles
should be used for beam separation and control of the vertical dispertion function at
interection point. The length of such section estimated more than 30 m.

The Tau-Charm-factory is located in a tunnel with a 3z3m? cross-section, whose floor
and ceiling are 163 and 166 m above the sea level, respectively. The underground room
consists of two half-rings, 89.58 m in radius, and strait section length 100 m, which connect
the half-rings. In this case, the length of an ideal orbit is 773.036 m, corresponding to
1805 lengths of the RF wave. With such a geometry, each 19th separatriss contains a
particle bunch; in all, the ring has 95 bunches. To install the injection equipment and
magnetic systems of emittance control, the technical gap is increased up to 3z5m?. The
gap should be widened to the side of injection channels so that to have 1.5 m to the inner
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Energy (GeV) 2.0
Number of particles in bunch | 2.010"!
Interbunch distance (m) 8.14
Beta-function at IP (cm) 1

The value of &0z 0.1
Beam radius o(pm) 33
Beam emittance €, = ¢,(cm) | 107°
Beam current (A) 112
Circumference (m) 773.036
Radius of ring (m) 89.63
Straite section length (m) 100
Luminosity (em=2s71) 1.010%

Table 1: Parameters of the TAU-Charm beams

Number of particles in bunch 1.510%
Interbunch distance (m) 16.28
Beta-function at IP (cm) 3./6, | 20 / 2

The value of £maz/ED 0.05 / 0.01
Beam emittance € /¢, (cm) 10-° / 10~°
Beam current (A) 0.4

Energy resolution oy (keV) 6
Luminosity (em~2s771) 5.010°

Table 2: Parameters of the TAU-Charm beams for monochromatic coliding

wall and 3.5 m to the external one. The nearest-to-the-surface point of the tunnel is at
a 10 m depth; the nearest-within-reach point is the bottom of a technological line, which
is 168.6 m above the sea level, corresponding to a ground thickness of 2.6 m above the
ceiling of the Tau-Charm-factory tunnel. At present, the tunnel, 200 m long, beginning
from the injection complex to a shaft, where the injection channel of the Tau-Charm-
factory begins, has been built. In the nearest future, we shall begin to build the channels
distributing the electron and positron bunches into an injection gap. The factory is built
by the firm ”Gornyak” at a pace depending mainly on the financial possibilities. Keeping
the pace, we shall need about 5 years to build the underground part.

2. Element of Magnetic System Periodicity

The Tau-Charm-factory magnetic system consists of two storage rings located over each
other and intercrossing at the interaction point. To provide collisions of longitudinally
polarized beams, spin rotators are supposed to be installed in the half-rings. As an ex-
ample of the specific magnetic system, we present a simple system which consists of a
dipole magnet, 1.5 m long, with a field of 1024 G and quadrupole lenses, each has a 0.4
m length, whose parameters are given in detail in Table 2. In the energy monochroma-
tization regime, the beams remain round, with a dispersion radius of 33 micrometers; the
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Figure 2: Magnet elements of periodicity cell

value of a vertical energy dispersion is chosen according to the spread. In this case, the
value of monochromatization is determined by the ratio of the vertical betatron size and
the vertical energy one.

3. Emittance Control Section

To control emittance, it is necessary to use special magnetic system sections where the
magnetic field can be changed. A well-known element used for this purpose is the Wiggler-
magnet which allows us to noticeably increase the energy loss for radiation. As a rule,
the y-function is small in the wiggler-magnet. As a result, introducing strong decay,
the magnet does not give a considerable increase in the emittance. Let us consider a
special magnet design which gives a strong dispersion and the introducing of which will
significantly increase the emittance. The equation for the 1-function has the form

d*y ’

7o + Gy =K. (2]
In a smoothed approximation, in the case where the frequency is assumed to be constant
along the magnetic gap and the dipole magnetic field to be modulated by the resonance
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Length (cm) | Field (kG) | Gradient (kG/cm)
Quad | 40 1.0631
Gap 30
Dipole | 150 1.042
Gap 30
Quad | 40 -1.0631
Gap 30
Dipole | 150 1.042
Gap 30

Table 3: Parameters of the magnet elements
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Figure 3: Insertion of the i-function control

frequency, the amplitude of the ¥-function beats increases linearly. To obtain the neces-
sary emittance under these conditions, the length of such a section should be several tens
meters. At the point where 1 is maximum, the Wiggler-magnet controlling the emittance
value in the given direction is placed. For two rings, the electron and positron ones, we
need four Wiggler-magnets to independently tune the beam emittances.

4. Interaction Point

The most interesting possibility of obtaining the maximum luminosity is the setting up of
the interaction point with a small S-function using a strong longitudinal field (9.6 T and
2.18 m long). Possessing symmetrical focusing in both directions, such a system satisfies
the idea of operation with round beams and can allow us to obtain the parameters for
a space charge &, > 0.1. The main problem in setting up the interaction point is a
necessity of electrostatic beam separation. The total length of separation plates with a
field of 100 kV/em is 2 m. They are located at the point where the A-function value
is high, presenting the difficulties in providing the coherent beam stability. A steady

59




obtaining of a powerful electrical field under the conditions of synchrotron irradiation of
the separation plates is also a rather serious problem.

5. Conclusion

The construction of the Tau-Charm-factory under the existing economic conditions in
Russia is not a simple problem. However, the successful completion of this project will
allow us to enter the third thousand years with an interesting machine which the world
scientific community needs to acquire fundamental knowledge.
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Synchrobetatron Beam-Beam Resonances in Long
Bunches Due to Horizontal Crossing

D.V. Pestrikov
Budker Institute for Nuclear Physics
630090 Novosibirsk, Russian Federation
pestrikov@inp.nsk.su

1. Introduction

The goal luminosities of the future electron-positron factories must reach huge values
(103 +10% 1/cm?s). As is known, the luminosity of a collider generally can be increased
rising the collision frequency, or/and simultaneously reducing the 3-function at the inter-
action point (A7) and the lengths of colliding bunches (o). In large colliders the collision
frequency is increased using the multi-bunch beams. In order to avoid, or to suppress
effects from parasitic collisions it is reasonable to use the schemes, where in the inter-
action region the orbits of colliding bunches cross each-other at some angle (2¢, see in
Fig.1). The performance of schemes with the crossing in the vertical plane is limited by
resonances between vertical and synchrotron oscillations of particles [1]. Since usually col-
liding bunches have very small vertical size the limitation, found in [1], seems to be very
severe to use the schemes with vertical crossings in the high-luminosity collider projects.
For this reason, the designs of the future B-factories mainly focus on the schemes with
the crab- or conventional crossing in the horizontal plane (see, for instance, [2, 3]). Since
the crab-crossing is a very new technique, the schemes with a conventional crossing in the
horizontal plane are presently considered as a number one for practical applications.

Present understanding of the beam-beam instability in colliding schemes with small
A-function and o, cannot be reduced to several simple recipes and generally, demands
an additional study. From one side, due to large phase advance of betatron oscillations
along the interaction region (the so-called phase-averaging effect [4]) this can strongly
suppress the beam-beam resonances [4, 5, 6]. From the other, an increase in the angular
spread of bunches due to the decrease in 3 results in the spontaneous crossings of the
counter-moving bunch with angles (¢efy ~ a./3.) and in corresponding excitation of
synchrobetatron resonances. The study of the common effect of the phase averaging and
of the crossing angle was only started in Refs.[7] and [8].

In this paper we calculate the strengths of the synchrobetatron beam-beam resonances
with the excitation of vertical betatron oscillations and tune shifts for long bunches,
crossing each-other in the horizontal plane. These resonances occur due to a nonlinear
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dependence of the beam-beam deflecting force on the transverse offsets of a particle. In
a collider with flat bunches, like B-factory, relevant instability of the vertical betatron
oscillations can limit the acceptable value of the crossing angle. In colliders with round
bunches, these resonances can result in additional limitations to those, which were found
in [9], on the position of the working point in the tune space. We assume the weak-strong
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Figure 1: Collision scheme.

beam approximation, zero dispersion function in the interaction region and neglect the
lattice chromatic effects.

2. Strengths of Resonances

The oscillations of particles in the interaction region will be described by the following
equations:

z =/J.B.(s) cos(1h. + a.(s)), z = /Juf(s)cos(r + a.(s)),

s = Rof = ct+ Rop, Rop =ascostp,, Ap= —poysgpssin s,
Ui
Ro(}éz/P) = dz/df =1 z'y  Ro(pz/p) —*2-7:’, Ap=1p p Po, (1)
= — = — ' = — = — "=
wz - VZ, dS (11[)2 + sz) BZ) 1‘/)1: u:ﬂ) d.S ("[)I + al‘) 'BI: Lb_g V-S?
[ - pd e _ pvsa? _ pJs
o 2 7 " 2Rn| 2"

| Here, IT = 27 Ry is the perimeter of the closed orbit, n = (1/4%) — a, a is the momentum
| compaction factor, and py >~ yMc is the momentum of the synchronous particle. Equa-
tions of motion of the test particle from the weak beam are generated by the Hamiltonian:

H(J,4,0) = vody + v.J. + veds — Vis(J, 9, 0), (2)



where the term Vi, describes the perturbations due to the beam-beam interaction. For
the sake of simplicity we assume that the distribution over transverse coordinates in the

strong bunch p(r,) is a Gaussian
| 2 2
exp (— (z + ¢5) e ) ; (3)

2 2
203 203

plrs) = 2roz0

Then, if A(s) is a linear density in the strong bunch, for ultrarelativistic 4 > 1 electron
and positron bunches colliding at the angle 24 (see in Fig.1) we can write Vi in the
following form ‘
4Ne*R,

pec

Vi = (4)

i : k202 + k202
/\(s—i-ct)‘/mexp {7'[k$($+2¢3)+kzz]_ xaz; zo’z}_

This equation describes the perturbation of the weak bunch as a sequence of the periodic
and very short kicks (during At ~ o,/c, where o, is a bunch length). Since without other
perturbations equations of motion read

_ e
0’

the amplitudes (v/J,) and phases (1) of oscillations get systematic variations when the
tunes (vs, v. and v,) approach the resonant values

OVis

Ja BJa ’

¢;=Va—

=, 2,9, (5)

MylVe + MoV, + Msls = N. (6)

The strengths of these resonances are estimated by the values of the amplitudes of the
Fourier-expansion of Vj; in phases and azimuth

Vip = Z Vi exp(i[mx'/)x + m, ), + meths — TLB]), m = {mz,mz,ms}, (T)

Using an expansion .

explikacosp] = Y i™ o (ka)e™,

m=—00

and Eq.(4) we rewrite V,,, in the following form

INe? Fdby _imv. T &k
= s —imais _ il
Von = 0] e [ dsx@2s = ascost) [ S5, (ke[ eBa(s)) % "
k‘l 2 k‘Z ? ¢
Imilkarf Js:(8)) exp {—L‘x—;—za"- — 1tk 2¢s + im . (s) + imxwx(s)},

where di, .(s)/ds = 1/pB.:(s). Generally, an analysis of particle motion with such per-
turbations is embarrassed by very complicated dependences of amplitudes V,,, on the
amplitudes of particles oscillations. To simplify this analysis we consider a special case,
when colliding bunches are very flat so that

0: >0, B> B,
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and when their closed orbits intersect each other in the horizontal plane at small angle ¢.
Taking into account that near the interaction point the betatron functions vary according
to

2 2

Tl
ﬂz(s) = ﬂz ¥ ﬂ:,

S

ﬂz(s) = B; ¥ 'ﬂ—;s

and
Ys(s) = arctan(s/f;), (s) = arctan(s/B;).
we find that in the region 8] >> f; the harmonics V,,, can be calculated neglecting the

variations of 3, and v, along the interaction region. Then, for a resonance m,v, + m,v, =
n we obtain (for the sake of simplicity we take J, = 0)

2Ne dzk Fd s g—im
/ﬂkz ¢ sPs / ds)\ 28 — RD(P) (9)

- Jm,(kz\/Jzaz(s»exp{ ’“L;"’— _ ika26s + imuha(s )}

In the region o, < a, < o, due to a fast convergency of the integral over k., we can
neglect in Eq(9) the variation of 1/k? with k.. Remaining integration over k, yields

fdk exp{ 20 — ik, 2:155} \£2_1rexp{_2¢232} (10)

mpe

= o3

Substituting this expression in Eq.(9), we obtain
Vi = YISV (11)

m m,n*

Here, (see in [10] and in Appendix A for more detail)

[2 7 dv J
—? z
Vngfi :26252 ;/;sz(QUVXz)e /2! Xz=4fzs

(12)

2L e, ke™X=
{ k2 1/4 (Ik( )+ k+ 1/2“" Xz) + Ik+1(Xz)])a m, =2k,
0, m, = 2k+ 1,

is the strength of the resonance calculated for the synchronous particle due to head-on
collisions with a strong bunch of a zero length, £ is the so-called beam-beam parameter

_ Neé'B;
& = 2rpcoo,’ (13)
and
2.2
Y/ =2/d‘/” ~imasks / ds/\(2s—Rogo)exp{— +z‘mz¢z(s)} ﬂ"ﬁ(f) (14)
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is the so-called resonance suppression factor [4, 5, 6]. For a Gaussian linear density in the
strong bunch we can rewrite Eq.(14) in the form

21rd¢ o0 a COS"[) $
Yn{ _ \/2—/;f Erie—zmsif’o / du exp (_2 [u - _SE-OTL]
2 202 N
2 u : :
- _¢‘££_- 4 zmz¢z(cu)) \/]_——I-_(:Tuf", C = O's/ﬂz.

Note, that this expression only by a factor exp(—2¢202u?/ o2) in the integrand differs from
similar expressions, calculated for head-on collisions of long bunches (see, for instance,
in Ref.[6]). As against the case of short bunch, Y/ in Eq.(15) generally differs from
sero for both even and odd m,. It means that the interaction with a long bunch is
accompanied by excitation of additional family of synchrobetatron resonances with m, =
9k + 1. Some impression concerning effects of the bunch length and of the crossing angle

(15)
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Figure 2: Dependence of Y, on amplitude of synchrotron oscillations; o,/0s = 0.01,
m, = 8, m, = 0. Left picture - o, = 3, 1: ¢ = 0.0, 2: ¢ = 0.0025, 3: ¢ = 0.005, 4:
¢ = 0.01. Right picture - o, = 0.13, from top to bottom (at a, = 0) ¢ = 0.0, 0.0025,
0.005, 0.01.

on the strength of betatron resonances (as an example we take the resonance v, = 1 /8)
gives Fig.2. Like in the case of head-on collisions, comparable values of o, and 3 result
in the significant suppression of betatron resonances at small amplitudes of synchrotron
oscillations (a, < o,; bunch core). Left picture in Fig.2 indicates, however, that with
an increase in the crossing angle the width of the suppression region in a, increases. As
seen from Fig.3, such a behavior of Y,/ is common for both betatron and synchrobetatron
resonances. Conversely, right picture in Fig.2 shows a very little effect of the crossing
angle on the strength of betatron resonances, if strong bunch is short. A comparison
of Figs.3 and refyfsh2 shows that strengths of next synchrobetatron resonances is not
necessarily smaller. This fact is not very surprising since for short bunches (s — 0) there
are no odd synchrobetatron resonances at all.

81




0.40 4
_iyg , 020

- 4
0.00 —

A .
-0.20 -
-0.40 —

-0.60 . , . —— ,
0.00 2.00 4.00 6.00

as/o,

Figure 3: Dependence of Y,/ on amplitude of synchrotron oscillations; o, = 8, 0,/0, =
001, m;y=8,m,=1,1: ¢ =0.0, 2: p=0.0025, 3: ¢ =0.005, 4: ¢ = 0.0].

3. Tune Shifts

Apart from the excitation of nonlinear resonances, specified by Eq.(6), the collisions of
bunches result in the tune shifts of particle oscillations, which are determined by the
average value of Vj,

Avy = ——>, a=u,2,s, | (16)

Due to nonlinear dependence of the bunch fields on the particle coordinates, these tune
shifts (Av,) generally depend on the amplitudes of oscillations. For this reason, the
resonant condition in Eq.(6) generally holds for definite combinations of amplitudes and
therefore, determines some surface in the space of variables J,, J, and J,. For our example
we have to calculate Av,(J., Js) and Avy(J;, J;). That can be done directly, using Eqs(16)
and (9). For the tune shift of vertical oscillations we write

W La /dzkfd‘b’ /dsA 25 — Row)x

mpc J wk?

(17)
k.\/B. k2 24 k252
—Qﬁfi’Jl(kz\/Jzﬁz(s))exp{ —"‘2*— =5k 2¢s}

Assuming fB; > f, we again neglect in this expression the variation of 3, along the
interaction region, as well as the variation of 1/k? with k,. Then, for a Gaussian linear
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Figure 4: Dependence of Y/ on amplitude of synchrotron oscillations; o;/0s = 0.01,
m, = 8, m, = 2. Left picture — 0, = 8, 1: ¢ = 0.0, 2: ¢ = 0.0025, 3: ¢ = 0.005, 4:
¢ = 0.01. Right picture — o, = 0.1, from top to bottom (at a, = 60,) ¢ = 0.0, 0.0025,
0.005, 0.01.

density simple transformations result in !

AVz(Jza JS) = Eze_xz[IO(Xz) + II(XZ)]YOf(anC)a Xz = z/(4fz)a

27 o 2
! ] 2620%u?
Y]/ :\/gf C;T’[)’ jduexp (—2 lu-—- = ;(;S¢] — cgﬁ;_,u )\/1+C2u2.
0 8

m

(18)

Here, I,,(z) is the Bessel function of an imaginary argument. The factor Yof describes
dependences of the vertical beam-beam tune shift (Av,) on the amplitude of synchrotron
oscillations, on the crossing angle and on the bunch length. As seen from Fig.5 with an
increase in the crossing angle the dependence of Av, on a, varies from rising (for head-on
collisions) to decreasing (at ¢ > 0.003). One also can mention that in the region ¢ ~ 0.003
(and for aspect ratio ¢,/o, = 0.01) this dependence becomes very weak. The variation
in resonant lines for betatron resonances (Av,(a.,as) = —Emny Emn = ¥; — (n/m)) with an
increase in the crossing angle is shown in Figs.6. If the beam cooling does not destroy the
resonances, a damping of synchrotron oscillations will result in the drifting of particles
along these resonant lines. Then, from Fig.6(a) we can conclude that for head-on collisions
particles can reach the bunch core region only in the vicinity of the lower border of the
resonant stopband, while at the upper border (|en| < €.) most resonant lines end outside

'From Eq.(12) we find that the resonant contribution to Av,:

7 {zke_x' [ ( k+]. k Ik+1(Xz)
(AVe)m = k2 —1/4 T(x:) 1+k+1/2+x, 2k + 1

where ,, = 9, — 8(n/m) is the so-called slow phase, is small for higher order resonances.

] cos(my, ), m =2k,
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Figure 5: Dependence of Yy on amplitude of synchrotron oscillations; o, = 8, 0./0, =
0.01, from top to bottom: ¢ = 0,0.0025,0.003, 0.005,0.01.

the bunch core. For high crossing angles (Fig.6(b)) the resonant lines have non-positive
slopes, which will result in the blowup of vertical oscillations due to longitudinal cooling

(see, for instance, in Ref.[11]).
The tune shift of synchrotron oscillations can be calculated similarly. Using Eq.(16)

we write
ol nRo Vo, ' (19)
2.a, Oas

Ay, =
Since a4 enters in this expression via the function A(2s — a, cos 1)), we can use

X cosps 0A
da, 2 0Os’

Then, after integration in Eq.(19) over s by parts, we rewrite this equation in the form

Ne? [ &k f dy, 7
Av, = — nie Ne / ] i cos 1 / dsA(2s — as cos 1)
2vsas mpc J wk? J 27 K
- (20)
d kio? kip? a* :
XE {Jo(kz Jzﬁz)exp (_T = T (1 + ﬁ) o 2%’6,(}55)}.
The calculation of the derivative over s in the integrand results in an expression

Av, = Ay + Az + Ag, (21)
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Figure 6: Resonant lines for the vertical betatron oscillations; a: ¢=0,b: ¢ =0.01. The
numbers near contour lines give the ratio emn /&, 05 = B, 0z/0s = 0.01.

where
2 [oe]
Ry Ne? o [ di,
A = 2’71/3% = E‘E J 2"[; cos 1, f dssA(2s — ascos ihy)
== (22)
d*kk? kot Kol s _
X/WJo(kz\/Jzﬂz)eXP (" 2 T 79 (1 I ﬂ:z) _23]"@‘?55):
2 2m (o]
A, = Bo Ne? [ dy, cos P, / ds\(2s — a, cos 1),)
2vsa, TpC J 2 .
(23)
d?k2i ¢k, = o2 kle? s? ,
Xf —;Tkz—JO(kz J::Bz) exp (—-2— - —'2— 1 + E — QEkEQSS y
and )
Ne2 /T, T d, Vi d
As = ;RO W; g{i ;b cos g / —\/_%.T)\(Qs—a,cosd),)
/sas C M g B 1+ s ;
0 (s/87) (20)

d*kk, kidt' kol .
x/ (k[T exp (— gt | LAy %ik,ds |.
For the case of very flat bunches (r = 0./0, < 1) these very complicated expressions can
be essentially simplified. Let us briefly discuss, for example, the calculation of A;. We
note that, if the aspect ratio r of the bunch is very small, and since the main contribution

to integral over k, in Eq.(22) gives the region |k.|o, < 1, we may neglect in this expression
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the dependence of 1/k? on k,. Then, the integration over k, results in

el
exp | —2 e

o2

z z

Remaining integral over k, can be transformed to the form
V2 X e
; f o ( ) T = e ho(xa),
TOL0, \/1 s Sz/ﬂ*z €, 0.0,
while the substitution of this expression and of a Gaussian linear density in Eq.(22) yields

nRo £.€. e
vy 46*2

Ay = Io(x:)Fy
(25)

Fi =

80’, - d't,b, ( as Cos ¢3) ? ¢2af 2
f exp u— - 2——-2 u"1.
as\/ 2w J 2T \/1 -+ Cz VITF o2 20, .

This expression can be simplified for synchrotron oscillations with small amplitudes (a, <
0s), when the leading contribution to A; reads

1Bobses g Er K (6 C) — Kolxa/ ()
v 7 vor(? (26)

Xz = Si/a_z, Ei = 0';“: 5 2 ¢’2O,52_

A=

For a short strong bunch (¢ < 1) using

e*[K1(z) — Ko(2)] ~ (22)3/2° 2] > 1
we obtain form Eq.(26)
URU ézfz (Cr:s )3
= T oxZ e z 11 s 59 1. 27
1 v, 4ﬂ:2 Ez E] X < a << g C << 7 ( )
Similar calculations result in the following expression for A
RO z€2 = i
3= n}/ fﬂ“z (Xz/2)e XS[IU(XZ) + ]l(Xz)]Fh a; = ']Zﬁz < 0Op. (28)

Note, that in contrast to Eq.(25) the contribution from Az to Av, increases o« ,/x- for
large amplitudes of betatron oscillations until @, < ¢,. This term describes an effect of
the crossings of the strong bunch at the angles due to betatron oscillations of a particle,

when ¢.;; ~ (/J./B:. Since in the region a, < o, the transverse electric field of the
bunch can be estimated like E; ~ Nel/o,, such crossings produce a longitudinal kick

6(Ap) ~ \/[? .,
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which results in the contribution to the longitudinal tune shift increasing proportional to
a.

The term A, in Eq.(21) directly describes an effect of the crossing at the angle (@)
on the tune shift of synchrotron oscillations. As seen from Eq.(23), in the region, where
r < 1 and a, < o, this term can be calculated taking in the integrand o, = 0. Then,
for a Gaussian linear density in the strong bunch the leading term of the expansion of Ay
in powers of a,/o, reads '

2r . (o] 2
nRoé.o, [ dis du as CoS P
~ s | — —2|lu— —
Ay >~ 4¢ .0, J B cos _!o o exp U %,

(29)
03 : P05\ _k2/2
x/dk sin | 2ku e il B
0 Yo
Direct calculation of integrals in this expression (see in Appendix B) results in
2 3.3
Ag nfg e 1 —exp 1% , 32 =024 02 (30)
vs mpecal 233
For oscillations with small amplitudes (a, < o5) Eq.(30) yields
2 .42
, o 10 Gote , 2, TP (31)

v, 4877 T2 62

where 0, = \/¢./B5 is the vertical rms angular divergency in the strong bunch. A compar-
ison of Eqs(30) and (27) shows that the contribution from A, will dominate, if 8, < VT
If, for example, o, = 100um, r = 0.01, o, = #; =1 cm, which is typical for B-factory
projects, we find that 8, = 10~* and that A, will exceed A; and As, if the crossing angle
exceeds ¢ = 1073,

4. Discussion

Collisions of flat bunches at the angle in the horizontal plane is accompanied by the
excitation of both horizontal and vertical synchrobetatron resonances and, generally, may
result in the blowup of the vertical beam size. These synchrobetatron resonances can
be especially important for the tail particles of the bunch (¢a, > ¥;). An accumulation
of particles in the buckets of vertical oscillations near these resonances can saturate the
luminosity of the collider, if the perturbation due to horizontal synchrobetatron resonances
is small. If the perturbation due to horizontal synchrobetatron resonances is strong, such
an accumulation will result in the decrease of the luminosity.

The dependence of the transverse beam-beam tune shifts on the amplitude of syn-

chrotron oscillations and on the crossing angle generally vary the geometry of one-dimensional

betatron resonances in the space of amplitudes of oscillations. No phase-convection is pre-
dicted for head-on collisions. However, near the upper side of the resonant stopbands the
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damping of synchrotron oscillations may result in the storing of particles in the betatron
tail region. For high crossing angles similar blowup in vertical direction happens due to
the phase-convection effect. Such a variation in the geometry of resonant lines means that
there is some optimum crossing angle, when the vertical tune shift does not depends on the
amplitude of synchrotron oscillations, and when the damping of synchrotron oscillations
has a little effect on the dynamics near betatron resonances.

The beam-beam tune shift of the synchrotron oscillations generally is contributed by
the bunch waist, by the betatron angular spread in the weak bunch and by the crossing
angle itself. The contributions from the bunch waist (A;) and from the betatron angular
spread decrease as the crossing angle increases. The contribution due to crossing angle
collisions (A;) saturates, when the crossing angle increases. For typical parameters of the
future B-factories this contribution may dominate starting from very small crossing angles.
However, until a;,a, < o, A; does not depend on amplitudes of betatron oscillations.

; This tune shift (A;) is proportional to the bunch current. For this reason, its effect must
be analyzed together with perturbations due to longitudinal bunch wake fields.

The common effect of the phase-averaging and of the crossing at the angle substan-
tially decreases the strengths of the vertical synchrobetatron resonances for flat colliding
bunches. The reason is that the drop of the resonance strength due to crossing angle
collisions compensates its increase due to mismatching between the beam-beam kick and
the reaction of the betatron oscillations, which is specific for collisions of flat bunches.

l A. Calculation of VT,(,;(Q

The integral in Eq.(12) can be calculated expanding the Bessel function Jak(2v,/X) in the
power series [10]

Tk (20/%) = (v2y)* f Xl (A.1)
=y ml(m+ k)’
which results in
T dve=v*1? ['(k—1/2)2*
= Ty = 22 kX F(k4+3/2,2k +1,2 4
[ STt = i B e 120, (A2

where F(a,7, z) is the confluent hypergeometric function. Using the identities [10]

z d 2k k!
F(a + 117)‘2) = (1 * EEZ-) F(O’,’Y,Z), F(k .3 1/212]‘: 1:2)() = Xk- exlk(X)
and -
2-1D(k + 1/2)T(k)
[(2k) =V,
we obtain

T dve—v21? ky/7/[2eX I :
f S Jz,,mv\/z):———k‘{?l o (100 + ML D S e
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B. Calculation of integrals for A,

Let us calculate the integrals in Eq.(29). After obvious substitution

s COS Py

20,

we rewrite the integrals over u and k in the form

Now, using
we obtain

As
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LIFETIME AND TAIL SIMULATIONS FOR
BEAM-BEAM EFFECTS IN PEP-II B FACTORY"

D. N. Shatilov® and A. A. Zholents®
a) Budker Institute of Nuclear Physics, 630090 Novosibirsk 90, Russia
b Center for Beam Physics, Accelerator and Fusion Research Division, Lawrence Berkeley
Laboratory, University of California, Berkeley, CA 94720

Abstract

A fast tracking technique for doing beam tail simulations
has been applied to a study of beam-beam effects in the
SLAC/LBL/LLNL PEP-II B Factory. In particular, the
dependence of beam lifetime and particle density distri-
bution due to vacuum pressure, damping times, machine
nonlinearity and parasitic crossings has been analyzed. Ef-
fects of accidental orbit separation and dispersion function
at the interaction point (IP) have also been considered.

I. BEAM PARAMETERS AND MODEL

Beam and machine parameters for PEP-II B factory are
described elsewhere [1]. For the sake of completeness, we
reproduce in the Table I all parameters we need for a dis-
cussion of beam-beam effects. Our notation for most of the
parameters has a standard and obvious meaning. Only a
few definitions need explanation. In the PEP-II B factory,
electron and positron bunches collide head-on at the IP. At-
ter the IP, beam orbits-are magnetically separated in the
horizontal plane. However, before entering its own vacuum
pipe, each electron bunch and each positron bunch expe-
riences four more interactions with other bunches of the
opposite beam. We refer to these-interactions as parasitic
crossings (PC’s). A parameter d,p defines orbit separation
at the first PC. Orbit separation at the remaining PCs is
much larger and, consequently, the effect of beam-beam in-
teractions at these PC is negligible. We will ignore them in
our model and will consider only the first parasitic crossing
on either side of the IP. Parameters Av; and Av, define
horizontal and vertical betatron phase advance, in units of
the betatron tune, from the main IP to the first PC.

A goal of our study was understanding the mechanisms
leading to a beam lifetime limitation in electron-positron
colliders. According to experimental observations (2], these
mechanisms are fairly insensitive to particle density distri-
bution in the beam core. Thus, a weak-strong model of
beam-beam effects seems adequate to our task.

All our simulations were carried out with the beam-beam
program LIFETRAC [3). This program allows the follow-
ing physics to be included in the simulation:

1. Beam-beam kick.

2. One turn, six-dimensional linear map.

3. Chromaticity up to the third order:

v = Vozt C:6 + erﬁu + C:::.uéa

*Work supported by DOE under Contract DE-ACO03-7T6SF00098
and by Budker INP of the Russian Academy of Science.

Table I
Beam parameters

weak beam (e ) strong beam (e”)
E [GeV] 31 9.09
Vo, Voy 34.57, 35.64 34.57, 35.64 )
v, 0.037 0.052%
€z, Eoy 0.03, 0.03 0.03,0.03%
Tz,y [turns] 7200, 7200 5014, 5014
7; [turns] 3600 2507 %)
Tap/p 0.80 x 10~3 0.62 x 10-3%
o, [em] 1.0 1.0
€, [mxrad] 6.4 x 10~8 48x 102
€y [mxrad] 1.9 x 10-° 1.4 x10-°9
Main crossing
Bz, [m] 0.50, 0.015 0.667, 0.02
D;, [m] 0,0 0,09
Thz) 0oy [4m] 177, 5.3% 177, 5.8
Parasitic crossing
dyep [mm] 3.5
oz, ay [um] 284, 223 243,167
Avg, Avy 0.143, 0.246 0.117,0.245%

) These parameters do not enter the weak-strong simulation

Vv = VOy + Cyé -+ Gy‘naz + Cyvyéa.

Here § = Ap/p and Cz,Czz,Cszz, Cy, Cyy, Cyyy are
parameters of chromaticity.

4. Machine nonlinearity in the form of an amplitude-
dependent betatron tune:

2
ve = Vozt+ EsﬂrzAi + Eya:yAy

- 2 2
vy, = oy +ezazyA; + s,,a,yAy.

Here A, and A, are normalized amplitudes and
zz, dzy and ay, are coefficients.

5. Elastic scattering on nuclei of the residual gas.

6. Parasitic crossings.

7. Dispersion functions at the IP and at the PC.

8. Slicing of a bunch with an arbitrary number of slices
(typically, we use 5 pancake-like slices).

9. Orbit separation at the IP.

II. SIMULATION TECHNIQUE

The fast tracking technique developed in LIFETRAC (3]
emerged from a concept proposed earlier in (4] and realized
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later in [5]. It allows a determination of beam lifetime on a
level of 10 hours with a statistical confidence of a few per-
cent by tracking only about 107 particle-turns. Along with
the lifetime, this technique is able to provide information
on the particle density distribution in the beam tails.

The idea of the algorithm is based on the presence of a
random component (such as quantum fluctuation noise) in
the particle motion [4]. It turns out that a particle’s tra-
jectory in phase space depends only on current coordinates
and momenta (and noise). A history of the particle’s mo-
tion is irrelevant for its future trajectory. After accumulat-
ing rich statistics of a particle’s motion in a certain region
of phase space, one can ignore the exact knowledge of a
particle trajectory in this region and replace it by statis-
tical information. This information could contain particle
coordinates and momenta recorded at the moment when
the particle leaves the region. Then, each time the parti-
cle’s trajectory goes inside that region, one can interrupt
tracking and begin a new trajectory from one of the pre-
recorded points. By this technique, we force actual tracking
to go on only in a region with poor statistics rather than
tediously tracking in a region with well-defined statistics.

This algorithm was recently checked against ‘brute-force’
calculations performed with the program TRS [6] and we
found excellent agreement in the results [7]. It is worth
mentioning that the ‘brute-force’ calculations took 818
minutes of CPU time on a Cray-2S, while LIFETRAC
reached the same accuracy in the tail distribution in 55
minutes of CPU time on a VAX-6610.

III. RESULTS

A result of the simulation of beam-beam effects in PEP-
II for the nominal conditions without PC’s is presented in
Figure la. This plot (and other similar plots) shows par-
ticle distribution contours in amplitude space. The first
contour corresponds to a particle density a factor /¢ be-
low the peak and all the following contours correspond to
successive reduction with a factor of e. Amplitudes A, A,
are normalized amplitudes, i.e. A; = 1 corresponds to a
physical amplitude of log, and A4, = 1 corresponds to a
physical amplitude of log,.

The particle density distribution is obviously perturbed
by nonlinear resonances fv; + myy, + ny, = k. The identi-
fied resonances are shown by arrows. On top of each arrow
we draw numbers, which correspond to the £, m,n reso-
nance identification. Particularly strong is the resonance
14y, = k. It is partly overlapped with some other reso-
nances, which we were not able to identify.

For the lifetime determination we assumed a limiting
aperture of A; = 10 and 4, = 25. With that aperture
we were not able to determine the lifetime, because it was
very long. We interrupted calculations when the lifetime
exceeded 8 years. We also did not find any blow-up of the
beam core.

A. Parasitic Crossings

Adding PC’s did not affect beam lifetime. It was still
very long to be determined. But PC’s did affect the beam

Figure. 1. Particle distribution contours: a) nominal case
without parasitic crossings; b) the same as a) plus PC; c)
the same’as b) plus elastic scattering; d) the same as c),
but with oz = oy = 0.05 and a;, = —200 m~L.

core (we found a 26% increase in the vertical beam size)
and particle density distribution (see Figure 1b). The main
factors giving rise to the effect of the PC’s are strong res-
onances: 6uy + 3v, = k and —4v; + 21y = k. At the same
time, we found that resonances —4v; + 2vy + v, = k and
14, = k became weaker. This resonance restructuring is
a result of a new beam footprint in tune space in the case
with PC’s.

B. Vacuum

Aside from beam-beam effects, the leading mechanism
defining the beam lifetime in PEP-II on a level of 23 hours
is elastic scattering on nuclei of the residual gas [1]. Since
the beam-beam lifetime defined above is much larger, one
might think that the beam-beam interaction will have no
noticeable effect on the beam lifetime, but this is not right.
The interference of beam-beam effects and elastic scatter-
ing could be significant. Imagine that the beam-beam in-
teraction creates some resonance islands in phase space
close to the aperture limit. Then, particles scattered in-
side these islands from the beam core, could be trapped
there. As a result, the growing population of particles in
the tails will decrease beam lifetime. This is exactly what
we found when we included elastic scattering (3] in our sim-
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ulation for PEP-II. The lifetime dropped from 22.9 hours
(vacuum lifetime) to 16.7 hours. We attribute this to the
elastic scattering into the resonance —v; + 4vy = k, which
perturbs the particle density distribution at large vertical
amplitudes (compare Figure lc with Figure 1b).

C. Damping Time

We compared beam-beam effects for two damping times.
First we used a damping time of 5400 turns as it is in [1];
second we took a damping time of 7200 turns, as proposed
in [8]. In Figure 2, we show the dependence of the lifetime
versus beam-beam parameters for our two cases. The dif-
ference between two cases is less than the statistical error
expected in the calculations.

30 r Lifetime, (hours)
T=5400 turns

20
0 T=7200 turns
0 L ' A A 'l s — |
0 0.02 0.04 0.06 &

Figure. 2. Beam lifetime versus £ = §oz = oy for two
damping times. Arrows indicate damping time.

D. Machine Imperfections

In order to be more sensitive to the beam-beam effects,
we did all the rest of our simulations with §oz = oy = 0.05.

Chromaticity. We did not find any significant effect of
chromaticity when we varied Cyz, Cyy in the range of £500
and Crzz, Cyyy in the range of £10%, which are larger values
than we anticipate for the machine.

Tune shifis with amplitude. In our notation, typical de-
pendence of betatron tunes from amplitudes for PEP-II
corresponds to azz=a,y~-200m~" and a., ~=1000m ™" [9].
Simulations with these coefficients gave qualitatively simi-
lar results to those with zero nonlinearity. By adjusting azz
with ay, =a;, =0 we could slightly increase the strength of
the resonance 1dv; = k at azz=-200m™! or significantly
reduce it at azz=400m~! (compare Figure 1d and Figure
3a), but both the beam lifetime and the beam core re-
mained fairly insensitive to this change. For the rest of the
simulations we used a;;=-200m™".

Orbit separation at the IP. Table II contain all results.
One can see that only the vertical beam size was sensitive
to the orbit separation Az, Ay.

Dispersion at the IP. Simulations with non-zero hori-
zontal and vertical dispersions at the IP showed that the
lifetime began to drop below 10 hours when D7 > 4 cm
or Dy > 0.5 cm. An example with Dj = 0.53 cm is
shown in the Figure 3b. Moreover, we found that a dis-
persion D = 2.2 cm already reduced the lifetime below 10
hours when combined with an accidental orbit separation
of Az/ag, = 0.4.

Figure. 3. Particle distribution contours: a) the same as
Figure 1d, but with a;;=400 m~!; b) the same as Figure
1d plus Dy = 0.53 cm.

Table II
Orbit separation

Az/ag, | Ay/ag, \/ﬁ/aat ﬁ /o5, Lifetime,[h]
0 0 1.10 1.46 18.9
0.2 0 1.07 1.71 18.4
0.4 0 1.12 1.93 18.4
0 0.2 1.07 1.99 19.9
0 0.4 1.07 2.57 18.6

IV. Conclusion

Our study demonstrated that beam-beam effects should
not affect the performance of the PEP-II B factory if oz =
oy = 0.03. We did not find significant reduction in the
beam lifetime even for larger beam-beam parameter, but
we did see in many occasions a large increase in the vertical
beam size.
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I. INTRODUCTION

We study incoherent beam-beam effects. Strong
nonlinearity of the interaction leads to resonances and
stochasticity, so that the behavior of the particles in
the phase space becomes very complicated for analyt-
ical estimations. This is the reason for a wide employ-
ment of computer simulation for studying the beam-
beam effects.

The perturbations of the equilibrium distribution
can be conventionally divided into two parts: the per-
turbations at small amplitudes (core region) and the
ones at large amplitudes (tails). The first cause an
emittance growth, the second result in the lifetime de-
crease. Both effects restrict the beam current and,
therefore, the luminosity, but the connection between
them is rather weak. This means that one can have
a strong beam size growth with a very good lifetime
and vice versa, a bad lifetime with almost an unper-
turbed core region. The lifetime determination is the
most difficult problem here, because a huge CPU time
is required to correctly determine the distribution in
the tails. Besides, almost all the CPU time is spent for
improving core distribution. Such situation motivates
the search for possibility of “CPU redistribution” for
large amplitudes. Naturally, the question of accuracy
arises since the tracking algorithm is changed artifi-
cially. Maintaining accuracy is the main problem we
shall discuss below.

The base idea of the technique described below has
heen proposed in 1989 by J. Irwin[l]. It was devel-
oped later by T. Chen, J. Irwin and R. Siemann[9]. In
INP this concept was developed independently by the
author. Actually, this paper is a simple translation of
the preprint INP 92-79 (in russian[7]). It should be
noticed, that justification and realization of Chen et
al’s and the author’s methods are rather different, al-
though recently carried out comparison indicated good
agreement between both of them and the brute force
technique.

The method was developed for the “weak-strong”
case, but this limitation is not so important and after
a simple modification it can be used for the “strong-
strong” case as well.

[I. DESCRIPTION OF THE METHOD

There are different ways to simulate the equilibrium
distribution of the beam particles. The first one, the
ensemble of N independent particles is considered. If

the simulation time is much greater than the damping
time, the initial positions of these particles do not mat-
ter. Otherwise, they will influence the results and one
has to care about correct initialization. Another way
is watching for a single particle only. If the simulation
time here is chosen N times greater than in the first
case, both of them become equivalent, but there is no
the initialization problem in the last one. For future
discussion it does not matter which way is used, but
for definiteness we consider a single particle for a long
time (hundreds of damping times).

Besides coordinates and momenta, we use normal-
ized amplitudes and phases as well:

Ts=0py Ar COS Pr z},:%Ax(sin%-i-azcoszp,) (1)
zg=0p,A; cos @, zé:%"‘—'Az(sin(pz+azcos¢pz) (2)

s=0yA, cos p; E—f:%fA, sin (3)

Here all the parameters (o, 8, a) are related to an
unperturbed beam. During simulation, the particle
moves along a very complicated trajectory within a
6-dimensional phase space. The equilibrium distribu-
tion and the density of the flows in this space are the
most complete information one can extract, but not
all of it is of equal importance. The distribution in
the space of amplitudes is much more important be-
cause the amplitudes are “slow” variables. The ampli-
tudes define the nonlinear tune shifts and, therefore,
the falling within a resonance. The distribution in the
space of phases is not so informative since the phases
are “quick” variables, but this distribution is also im-
portant for the motion within resonances. As far as the
flows are concerned, the most important one is the flow
to the aperture (which is defined as the limit values of
the amplitudes). This flow, not the distribution in the
tails, defines the lifetime, though there is a connection
between these two.

For the sake of simplicity, let us consider the two-
dimensional case (four-dimensional phase space). The
three-dimensional case will be discussed separately in
section IV. We observe the test particle and locate its
position in the plane of amplitudes at certain moments
each turn (at the Interaction Point), so its motion looks
like “jumps” from point to point. These jumps are pro-
duced by damping, noise and kicks from the opposite
beam. The lattice nonlinearity, if any, also makes a
contribution.
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Figure. 1. A plane of amplitudes is split into internal
(1) and external (I7) regions. A small piece of the
particle’s trajectory is shown by points.

Now we draw a special line, or boundary, to split
the amplitude plane into two parts: internal (I) and
erternal (II) (see Fig. 1). During the first step of the
new algorithm we record all particle’s coordinates and
momenta each time it leaves the internal region for
the external one (at once after crossing the boundary).
These points (we call them outflights) form an origi-
nal halo above the boundary (see Fig. 2). After some
time, we get enough statistics of such outflights to pro-
ceed to the next step. Let us imagine that the internal
region becomes a “black box” (or hidden region), so
that we cannot watch a particle within it. In this case,
the particle’s trajectory looks like a large number of
completely independent pieces, which starts from the
points of outflights and ends when the particle falls into
the hidden region. During the second step, we put the
test particle to one of the outflight points immediately
when it leaves for the hidden region. Such a procedure
is called restart. The points for the restarts are cho-
sen from the complete outflights statistics by using a
random number generator.

It should be noted that this algorithm violates the
course of events with time. This means that the ob-
server is able to distinguish a real trajectory from our
simulation. The reason is as follows: when the particle
falls into the hidden region, it spends some time near
the boundary and there is a high probability of cross-
ing the boundary many times in close proximity to this
place. In other words, the outflights are usually made
by local groups, before the particle goes away from
the boundary. This means that there is a correlation
between the location of outflights and the time, when
they take place. But this correlation vanishes since we
use a random number generator to choose the points
for restarts. Luckily, such rearrangement of events in
time has no influence on the motion characteristics:
we obtain quite correct distribution and flows in the
phase space during the second step. The reason is that

Ax

.

Figure. 2. The outflights are shown by points, which
form a specific halo above a boundary. In future these
points will be used as the positions for restarts.

the process under consideration is a Markovian pro-
cess (without memory). The particle’s behavior does
not depend on its history, and since we reproduce the
probability of falling into a certain cell of the phase
space when the particle leaves the hidden region, we
must obtain the correct density and flows within this
space.

Now it is easy to understand how to proceed to large
amplitudes. After completion of the first step the re-
gions change their meaning: the internal region be-
comes hidden, and the next boundary is drawn to split
the “old” external region into internal and external
ones (see Fig. 3). During the second step the posi-
tion of the particle is checked each turn. As soon as
it leaves for the hidden (I) region, a restart is pro-
duced. In case it moves from the internal region (I[)
to the external one (I11), all its coordinates and mo-
menta are registered to accumulate the statistics of
outflights across the second boundary. Later on, we
call the boundary between the hidden and internal
regions as R-boundary (boundary for restarts); the
boundary between the internal and external regions
we call C-boundary (boundary for crossings). For the
third step, the regions I and II are joined to form
the new hidden region (so the C-boundary becomes
the R-boundary), and the third boundary (it is the C-
boundary for the third step) is drawn to split region
IIT into the internal and external regions (their num-
bers are III and IV, respectively), and so on. The
reduction of CPU time can be calculated as a ratio be-
tween the number of restarts and the number of corre-
sponding outflights. Usually this value is about 5-10
for each step.

Approximately in this form this technique has been
already suggested by J. Irwin[1]. He used simple cir-
cular arcs as boundaries and the radius of the arc was
chosen so that particles spent 90% of the CPU time
in the internal region and 10% in the external one.
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Figure. 3. The particle’s trajectory during the second
step, consisting of a large number independent pieces.
I — hidden, IT — internal, III] — external regions.

This solution is very attractive due to its simplicity
and can give good result, but sometimes loss of accu-
racy 1s possible in the case where the lifetime is calcu-
lated. Maintaining accuracy is the main problem here.
The difficulties result from our wish to develop a uni-
versal method which must work correctly for systems
with very different (practically arbitrary) “phase space
portraits”.

Rigorously speaking, the only source of errors is the
incorrect (insufficient) statistics of outflights from the
hidden region. However, the accuracy of the results
depends on many factors: simulation time, damping
times, shape and location of boundaries within the am-
plitude plane. It is easy to guess that there is direct
connection between the accuracy and the decrease in
the CPU time this method provides. The accuracy can
be increased at the expense of efficiency, for example,
by increasing the simulation time for each step and
decreasing the distance between the boundaries. The
aim is to achieve an optimal compromise here: to get
high efficiency with good enough guaranteed accuracy.

The amplitude of noise measured in units of normal-
ized amplitude is defined by the damping time accord-
ing to the formula:

§a =2/a. (4)

Here a is the damping decrement and & 4 is the r.m.s.
of amplitude change due to noise after a single turn.
Without loss of generality, we can assume a Gaus-
sian distribution for kicks caused by the noise. The
damping time (in units of revolution time) is defined
as 1/a and this is a natural time scale of the system.
The damping times are different for different degrees
of freedom, but all of them are of the same order of
magnitude. The largest one is denoted by = and the
simulation time for each step, measured in units of r,
is denoted by 7' (we assume it to be approximately the
same from step to step).
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Figure. 4. An example of location of the boundary
which leads to a loss of accuracy. The most probable
way of a particle going to the aperture is shown by
dashed line.

Now let us consider the example shown in Fig. 4 to
understand the influence of the shape and location of
the boundaries. Here we can see two strong resonances
disturbing substantially the equilibrium distribution.
The first one is located at small amplitudes (it is shown
as the disturbance of lines of equal density). The sec-
ond one (shown as resonance line and resonance vec-
tors) plays a main role in the process of losing particles
at the aperture. The dashed line shows the Most Prob-
able Way of a particle going to the Aperture (MPWA):
first of all it moves to the second resonance (due to the
noise only), is captured in it, and then moves to the
high amplitudes along the resonance by streaming[2].
The first resonance leads to a very strong change in the
density (several orders of magnitude) along the bound-
ary which is chosen as a circular arc. As a result, since
the simulation time is finite, all the outflights across
this boundary are concentrated at the place where the
boundary crosses the first resonance. This means that
there are no outflights in the region where the MPWA
is located. So, we lose this path for all following steps
and the error in the lifetime determination can reach
several orders of magnitude! By increasing the simula-
tion time, we can get few outflights in the direction we
need, but the insufficient statistics of such events leads
to incorrect probability for this process and the accu-
racy of lifetime determination will not be good enough.

What is the optimal shape of the boundary? On
the face of it, the main condition is the equal linear
density of the outflights along the boundary. Indeed, a
large number of outflights under this condition pre-
vents from the above situations. Nevertheless, this
choice has some essential disadvantages. First of all,
it does not perfectly correspond to our goal of moving
to large amplitudes because there is a possibility of
forming spacious areas at small amplitudes with very
weak flows out from the core. As a result, the line of
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equal linear density of the outflights can have such a
form that these areas will be located in the external
region for several steps in spite of the high density of
equilibrium distribution within them. Such a situation
leads to the essential decrease in the efficiency of the
method. After that it is not so easy to build such a
boundary since each particle’s jump within the ampli-
tude plane can be an outflight or not, depending on
the location of the boundary which we do not know a
priori.

The other approach turns out to be more success-
ful. Instead of the line of equal linear density of the
outflights, we use the line of equal distribution density
(or level line) as a boundary. To get this distribution,
we should divide the plane of amplitudes into small
rectangular cells (it is convenient to use cells of size
84). During the simulation we will account (individu-
ally for each step) how many times a test particle falls
within each cell. After completion of the step, we will
have an array of such numbers (Np), which describe
the equilibrium distribution outside the hidden region.
The dispersion of N, along the C-boundary must be
sufficiently small since the boundary was chosen as a
level line. The mean value of N, on the C-boundary
is marked by a tilde. It can be affirmed that the main
condition, we must satisfy to get good statistics and
solve our problems, is

N, >N>1, (5)

where NV is the constant (to be defined below), while
Np can vary from step to step. Indeed, on the one
hand, this condition guarantees the representation of
all the details of the “phase space portrait” since these
details cannot be greater than d4. In other words,
this is a criterion of statistical reliability of the ob-
tained level lines. On the other hand, for the next step
we will get a high value of N, along all the border of
the hidden region (or R-boundary). This means that
we reproduce correctly the probability of any parti-
cle’s “journey” which begins inside the hidden region
and crosses the area with the high “density” Np. It

is worth of noting two important details: N, keeps
approximately the same value from step to step and
the simulation time 7', necessary to satisfy condition
N, > N, does not depend on the damping time 7 for
the two-dimensional case.

Let us consider now Fig. 5, in which the situation
similar to Fig. 4 is shown. Here the dotted lines show
the flows of phase convection, which result in almost
all the outflights located at a certain place in spite of
the boundary (bold) is a level line. The MPWA is
connected with capture in the second resonance and
streaming along it, as well as in Fig. 4. As is seen,
the short way from the core to this resonance is im-
probable. Nevertheless, even if there is a “channel”
crossing the boundary at the place where no outflights
have been obtained, during the next step we reproduce
the probability of getting to this channel correctly since
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Figure. 5. The boundary (bold) coincides with a level
line. Nevertheless, almost all the outflights are concen-
trated at a certain place due to the convective flows
(dotted). The short dashed line shows a possible (but
improbable) channel of going away. Since this channel
crosses the area with high value of N,, we correctly
reproduce the probability of getting to it.

the value of N, around the hidden region is sufficiently

high (at least several times greater than N).

It is convenient to measure the distance between the
boundaries through the logarithm of density change.
Indeed, any boundary can be defined by a single value,
i.e., the number of the corresponding level. Let us
introduce for each step an individual reference system
of levels @Q; in which they are read from the border
of hidden region. So, the level @; = 0 corresponds
to the R-boundary for the i-th step, the level Q; = k
corresponds to the density exp(k) times less than the
density at the level @; = 0, and so on. In these terms,
the distance between the neighboring boundaries j and
(j+1) (i.e. R- and C-boundaries for the (j+1)-th step)
is just a value of @; at the boundary (j+1). In future
these distances are assumed to be equal to the same
constant g for all the steps. Now we have to understand
what the values ¢ and the simulation time for each step
T must be. We should keep in mind the following:

¢+ The condition va > N must be satisfied, other-
wise we will get a wrong distribution. This means
that with the distance between boundaries ¢, the
value of T" must also increase exponentially.

+ The value of N, obtained in time T at the level ¢
depends on the shape of equilibrium distribution,
so we cannot know it a priori.

+ We need a lot of the outflights. If the boundaries
are chosen correctly, as it was described above,
the accuracy of the lifetime is determined by the
statistics of the outflights. We can estimate it
as /Cy/C , where C' is the number of outflights
and Cj is the mean number of outflights within
a group (as a rule the outflights occur by local
groups, which we can consider as the particular
events).
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+ Deviations of the boundary from the true level
line, if they are not so large (the true density data
disagreement by a factor of 2-3 along the bound-
ary), have practically no influence on the accuracy
since we keep high value of N, along the boundary.
To calculate the lifetime accuracy, we need to take
into account only the statistics of the outflights.

To estimate the optimal distance between the

boundaries, the same time T' = Tj is assumed to be
necessary for each step to achieve the number of par-
ticles per cell N, = N at the level Q; = 0 (just above
the border of the hidden region). In this case, the full
simulation time to move to m levels is as follows:

t= "?‘T(} exp(q). (6)
Here m/q is the number of steps and Tp exp(q) = T is
the simulation time for each step to achieve N, = N
at the level @; = g. We have to set ¢ = 1 to minimize
the time ¢. This means that the density falls down by
a factor of e between the boundaries. Pay attention
to that in this case we optimize ¢ without taking into
consideration the accuracy of the lifetime, which is de-
fined through the statistics of the outflights. Fixing the
final accuracy of the lifetime, we get the other expres-
sion for q. Indeed, on each step we have a statistical
error of the outflights \/Cy/C <« 1. Since we follow
the rules of building boundaries, the accuracy of the
lifetime can be estimated as (m/q)\/C,y/C. Here we
assume (for estimation only) the equal number of the
outflights across each boundary if ﬁp keeps the same
value from step to step. So, the simulation time T is
proportional to the square of the number of steps and
for the full time we get

exp(q)- - '

& (7)
In this case, the minimum is achieved at ¢ = 3.

To estimate the value of T}, let us consider an un-
perturbed beam. The equilibrium distribution den-
sity (including the phase volume) is represented by the
equation

tN

A 4+ A?
—2—)- (8)

The maximum density, which is equal to 1/e, is
achieved at the point A, = A; = 1. The number of
particle’s falling within a cell of size §,4 at the point
(1,1) is N, = 4Tp/e (we assume here the same damp-
ing decrements for both directions). Defining the value
of N = 100, we get T ~ 70.

Practically, the distance between the boundaries is
chosen as ¢ = 2.5. Under this condition, the simulation
time must be 7'~ 1000 damping times for each step.
The determination of the lifetime of several hours takes
usually 6-8 steps and even if the accuracy of the out-
flight statistics is 5% for each step, we obtain a final

plAz, A.) = Az A, exp(—

Figure. 6. The level lines obtained during three se-
quential steps (1 — solid, 2 — dashed, 3 — dotted)
are shown. Increasing of the line number by two cor-
responds to the equilibrium density decreasing by a
factor of e. Boundaries (5, 10, 15) are shown as bold.

lifetime accuracy of 50% or better, which seems to be
good enough.

An important advantage of the method is the pos-
sibility of controlling the accuracy during the simula-
tion: we can vary the simulation time T" from step to
step in such a way that the necessary value of N, and
number of outflights are achieved. Moreover, we can
get the knowledge of the accuracy of the method di-
rectly from the results (see Fig. 6). Here we can see the
level lines obtained from several sequential steps and
three boundaries. The first step actually consists of
two parts which can be called “zero” step and the first
step itself. The zero step is necessary to obtain the ini-
tial distribution at small amplitudes and to draw the
first boundary. During the first step we get the out-
flights across this boundary and improve the statistics
of the distribution, so the first.boundary will not ex-
actly correspond to the final level line @, = ¢q. The
second boundary is built after completion of the first
step and goes along the level line Q; = 2¢. After
completion of the second step, we get the new lines
(dashed, see Fig. 6) which have the statistical reliabil-
ity much better than the same lines on the first step.
Nevertheless, close to the first boundary they are in
good agreement, which means that both sets are reli-

able here. When going away from the first boundary

to large amplitudes, the differences between the two
sets of lines grow. This is a consequence of the insuf-
ficient statistics at large amplitudes after completion
of the first step. As we can see, the second boundary
has been determined well enough since it is close to
the level line Q2 = ¢ obtained after completion of the
second step, as well as the third boundary (@2 = 2q)
which was built after the second step is close to the
level line @3 = ¢ obtained after completion of the third
step (dotted lines in Fig. 6).

115




The final level lines (see also Fig. 6)
for the working point: {Q:} = 0.545, {Q.} = 0.575,
Q,=10.02, & =0.005 & =0.06, o/0,=1000,
o1/B: = 0.5. The equilibrium density changes by a
factor of e from line to line. The results of eleven se-
quential steps are used. The benefit in the CPU time
was ~ 105,

Figure. 7.

The final level lines for this working point are shown
in Fig. 7. In the core region the results of the first step
are used. Between the first and the second bdundaries
the results of the second step are used. Between the
second and the third boundaries we use the results of
the third step, and so on. As is seen, the advance
to large amplitudes takes place in the regions, where
the equilibrium density of distribution was defined well
enough during the previous step. This condition en-
sures good “sewing” of all the steps.

Obviously, the decisive test of the technique validity
can be only get from the comparison against the brute
force technique. Recently such a comparison has been
carried out for three beam-beam codes[11]:

o TRS[10] is a multiparticle strong-strong code,

which does brute force tracking.

« LIFETRACI7] is a weak-strong code, which uses
the described above tracking technique.

« LFM[9)] is a weak-strong code, which uses track-
ing algorithm similar (but not identical) to LIFE-
TRAC.

The two-dimensional amplitude distributions for PEP-
Il B-factory working point[11] are shown in Fig. 8.
The results from TRS correspond to 5 - 10° particle-
turns and took 818 CPU minutes to run on Cray-
25/8128. The results from LIFETRAC correspond to
an effective number of 4 - 10'! particle-turns and took
100 CPU minutes on VAX-6610 computer. The results
from LFM are similar to the ones from LIFETRAC
(see Tech. Note[11] for more information). The agree-
ment among the codes is quite good. We hope that the
next comparisons will be performed and will stimulate
the progress in the tracking techniques.

In conclusion we discuss what the maximum ampli-
tudes we can “climb” using this method are. Up to

Figure. 8. The two-dimensional amplitude distribu-
tion for PEP-II B-factory working point. (a): TRS,
brute force technique; (b): LIFETRAC, proposed tech-
nique.

now we assumed the uniform density within a cell of
size 6,4. However, at high amplitudes the level lines
join together so close that this condition is violated.
This means that we need the other criteria for the
necessary value of N, and the final lifetime accuracy
(maybe, the simulation time shall increase with the in-
crease in the step number). But we do not go deep into
this problem, because it is not important for practical
purposes. Indeed, the typical value of the damping
time for et e~ colliders is about 10® — 10* turns, which
corresponds to the amplitude of noise 4 < 1/30. So,
even for the unperturbed distribution the distance be-
tween the neighboring levels remains greater than d,
up to the amplitudes A ~ 30, which is usually greater
than the real aperture limit.

[II. SCATTERING ON THE RESIDUAL
GAS

Scattering has an essential influence on the equi-
librium distribution, especially at large amplitudes.
Just scattering defines the lifetime without an opposite
beam. If both the beam-beam interaction and scatter-
ing occur, the interference between these two pertur-
bations can have an effect. For example, if a strong
resonance is located on large amplitudes, the scatter-
ing can essentially increase the probability of particle
achieving it, providing particle’s falling within the reso-
nance directly from the core. So, including the scatter-
ing into simulation seems to be useful and important,
but this is not possible directly in the new method. To
clarify the problem, let us consider the elastic scatter-
ing without beam-beam effects. The scattering angle
is inversely proportional to the impact parameter, so
the probability of getting the amplitude jump AA is
inversely proportional to the magnitude of this jump.
Without scattering, the equilibrium density decreases
as exp(—A?%/2). Hence, it can be seen that, beginning
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from a certain value of the amplitude, the distribution
is defined only by a single scattering from the core re-
gion. In our method this core turns out to be inside
the first boundary, and scattering to large amplitudes
can be considered as a particular case of the outflight.
Although this process plays a main role for the distri-
bution at high amplitudes, its probability is very small
and we may get no such specific outflights in time T’
during the first step. This means that we lose the way
of going to large amplitudes for all the next steps, as
in the case shown in Fig. 4.

Nevertheless, slight modification of the technique al-
lows us to successfully include the scattering. The idea
is to simulate the scattering from the hidden region in-
dependently of the outflights statistics. We can do it
correctly because we know the distribution inside this
region.

Before discussing this technique, we would like to
consider in detail the ordinary scattering outside the
hidden region. We take into account only the elas-
tic scattering because it has a greater influence on
the equilibrium distribution (inelastic scattering is very

important for lifetime definition, but actually it does -

not disturb the equilibrium distribution since almost
all the particles lose immediately after such scattering).
The cross-section for v 3> 1 and # < 1 is classical:

2
da:4zzr—;-9%, 9)
whence #
0=2Z—. (10)
1P

Here Z is the nucleus charge, ¢ is the scattering angle,
p is the impact parameter, o is solid angle. Each act
of the scattering causes the change of momenta of the
electron which can be written in normalized variables
as follows: :

Appis ?—I—-Bcosgo, (11)
Or
Ay, '= {:—z - sin (. (12)

Here ¢ is the angle between the horizontal and scat-
tering planes. It follows that the elastic scattering, as
well as the beam-beam effects, mainly disturbs the ver-
tical distribution (for flat beams) due to the relation
B./o: > B /os. The scattering at small angles, when
repeated many times, results in small normal (Gaus-
sian) noise which can be combined with quantum fluc-
tuations of synchrotron radiation into certain common
noise defining the beam sizes. A special approach must
be applied to scattering at amplitudes comparable with
d 4 or greater, on which strong perturbations of noise
distribution arise (we can consider scattering as a spe-
cific noise with very long tails).

Thus, we simulate only the scattering at the angles
greater than a certain angle. As a border value, we

take such an angle 6, that Ap, = §4/10, and estimate .
the probability of scattering at the angle # > 6y during
a single turn. For example, we use VEPP-4 parame-
ters: ¥ = 10* , 7 ~ 3000 turns, perimeter P=366 m,
(Bz /o) ~ 10%, (B;/0:) ~ 10°, Z = 7.5, and a pressure
of the residual gas of 10~® torr. As a result, we get the
probability W, ~ 10~2. This means the following:

+ Such scatterings have no contribution to the r.m.s.
of noise § 4.

+ We guarantee correct reproduction of noise distri-
bution because we take into account the tails of
noise beginning from small amplitudes Ap < é,4.

+ We need not to consider the multiple scattering on
such angles during a single turn due to very low
probability of these events.

+ The increase in the CPU time due to simulation
of the above scatterings is insignificant.

The simulation with account of scattering (outside
the hidden region) is now as follows: first of all, the
probability of scattering at the angles § > @y is calcu-
lated using parameters of the ring. During the simula-
tion, a random number generator is used at each turn
to decide whether the scattering occurs. If yes, the
particular angle is defined according to the formula

(13)

where R is the other random number. The third ran-
dom number is used then to define the scattering plane
inclination angle ¢ and the fourth random number to
define the azimuth of the collider on which the scatter-
ing takes place. To calculate the jumps in the normal-
ized momenta, we have to multiply the obtained values
of 8, and 8, with the corresponding relations £, /o,
B: /e, taken at the scattering point. In practice, the
mean values of these relations are used, although a real
lattice and distribution of ions along the ring (it can
be quite different for different places) can be readily
taken into consideration.

0 = 0o/VR, 0<R<1,

Now we come back to the scattering from the hid-
den region. When a particle falls inside, it has exactly
three possibilities at each turn, one of them is realized
without fail:

1) The particle leaves the hidden region without

scattering (ordinary outflight).

2) The particle is scattered at the angle 8 > 6. As

a result, it can leave the hidden region (a partic-
ular case of the outflight), and can remain inside
as well.

3) The particle is not scattered and remains inside

the hidden region.

The latter case is the most probable, and the essence
of the above-described method is the consideration of
only such events, where the particle leaves the hidden
region without spending the CPU time for the third
case. Now we only should take into account one more
possibility of leaving the hidden region due to scatter-
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ing. To reproduce this process correctly, the probabil-
ity of the first case is necessary.

The algorithm of simulation is now as follows: dur-
ing the first step (see Fig. 1), in time T}, we get a
number of the outflights C; which can be divided into
two parts: the outflights with scattering (C1,) and the
ones without it (Cir). So, we have Cy = Cy, + Cyr and
only the last events are saved as positions for future
restarts. Besides, the fraction of time the particle has
spent in the external region V; < 1 is accounted. On
the second step (see Fig. 3), the probability of leaving
the hidden region without scattering during a single
turn is

Clr

AT

Here the denominator is the number of turns the par-
ticle has spent within the internal region on the first
step. The process of leaving is simulated in the follow-
ing way: using a random number generator, we decide,
according to the probabilities W, and W,, what possi-
bility (1 or 2) is realized at the moment. If it is the 1-st
possibility, a conventional restart is produced accord-
ing to the statistics of the outflights without scattering.
Otherwise, the point from which the particle is scat-
tered is chosen randomly, according to the equilibrium
distribution inside the hidden region (this has been al-
ready known), then the particular angle of scattering
is defined, and so on (see the scattering outside the
hidden region). After all, we get new amplitudes of
the particle and check whether it leaves the hidden re-
gion or not. In the last case, the whole algorithm is
repeated beginning with the choice from the 1-st and
2-nd possibilities. As a result, the “process of restart-
ing” becomes longer due to a possibility of producing
a few idle scatterings inside the hidden region without
leaving it. But this time has no effect on the simula-
tion time 7% which takes into account only the motion
outside the hidden region.

During the second step, the particle makes Ra
restarts and Cy = Cy, + Cs, outflights. At the same
time it spends the fraction of time V; < 1 in the exter-
nal region (now it is region [II). The time which is
necessary to achieve the same statistics, when a con-
ventional tracking technique is used, is called equiva-
lent time. For the 2-nd step it is as follows:

241 (14)

(15)

The benefit for the CPU time due to application of
the new method can be calculated as T5.4/72. On the
third step, the probability of the ordinary outflight (1-
st possibility) is

C2 r

Wy = .
2T -WVi Vy) Taeq' 7

(16)

The restarts are produced like on the second step, but
using W, instead of W;. In this case, the equivalent

time and benefit are:
R3

T: = Theq:  —, 17
3eq 2eq Cg ( )
T3eq Ti-Rz-Rs

= ¥ 18
Ts Ty -Cy-Cy (18)

Thus, we have the recurrent formulae to define the
lifetime and the probability of the outflight without
scattering Wi, which allows us to simulate the restart
correctly.

Here we would like to make a remark concerning the
value of Wj. At the first sight it looks strange because
only near the border of the hidden region the particle is
able to leave it without scattering. In spite of this, W
was defined by the full time which the particle spends
within the hidden region, and the most part of this
time is spent in the core, far from the border. To clar-
ify this situation, it is necessary to remember the main
condition that should be satisfied to obtain the cor-
rect distribution outside the hidden region. Namely,
we must reproduce the relations between the probabil-
ities to find the particle in a certain place of the phase
space at once after it has left the hidden region. We
are not interested in how and were from the particle
jumps, what time correlation between such events is.
We need -only the relations between the probabilities
and the value of W), was defined quite correctly for this
purpose.

Nevertheless, one more step must be done to suc-
cessfully include the scattering into simulation. The
reason is a decrease in the efficiency of the method
when moving to large amplitudes. Indeed, the prob-
ability Wj falls down exponentially from step to step
while the probability of scattering at the angle § > 6,
W,, keeps the same value for all the steps. As a result,
we obtain W, > W; for k 3> 1. On the other hand, to
leave the hidden region from the core, larger scattering
angles are necessary with the distance of the border of
the hidden region from the core. So, a lot of the CPU
time will be spent for a huge number of idle scatter-
ings within the hidden region without leaving it. To
solve this problem, we use a division of the hidden re-
gion produced by sequential boundaries. It is quite
easy to find the minimum scattering angles 0, which
can force the particle out from the region m to the
region k (i.e. outside the hidden region) on the k-th
step (k > m). Besides, we can calculate the relations
between the probabilities to find the particle within
these regions since we know the absolute probability
for each m-th region:

pm =VoVi o Vi -(1=Vi), Vo=1. (19)
This allows us to define the probability Wy, of scat-
tering from the region m at the angle 6 > fy,, during
a single turn for the k-th step. The whole probability
of scattering at the angles greater than the limit is a
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Figure. 9. Equilibrium distribution for VEPP-4 with-
out beam-beam effects. The density of the residual gas
is 1078 torr.

sum of Wy,,, and this value must be used instead of
Ws:

W= Wim. (20)

Now we get W, and Wi approximately of the same or-
der of magnitude for all the steps. Now the algorithm
of the restart must be changed a little. If the random
number generator decides to produce the scattering,
first of all we have to choose, according to probabili-
ties Wim, where from (considering the region number
m) this scattering must be done. Then we choose an
arbitrary (according to the distribution that we have
already known) point within this region and define the
particular angle of scattering as

8 = 0km/VR, 0O<R<l1, (21)

where R is the other random number. The inclination
angle of a scattering plane and the collider azimuth are
defined as usual. Finally, we obtain the new particle
amplitudes. After all, we have to check whether the
particle leaves the hidden region or not (the scattering
on the angle § > 0k, does not guarantee the leaving).

For example, the equilibrium distribution without
beam-beam effects is shown for VEPP-4 in Fig. 9. The
lifetime was 4-10'" turns for a vertical aperture of
30 while the probability of a single scattering from
the core to the aperture was 3.5- 10~''. The increase
in the CPU time because of a more complicated restart
algorithm was about 1%. The benefit in the CPU time
due to this method was ~ 10°. Fig. 10 shows the re-
sult of interference between the beam-beam interaction
and the scattering (to be compared with Fig. 7, where
scattering is turned off).

IV. THREE-DIMENSIONAL CASE

Up to now we considered the two-dimensional am-
plitude space. Evidently, all the results can be general-
ized for the three-dimensional case as well. This means

10

Figure. 10. The same working point as in Fig. 7 with
account of the elastic scattering. The density of the
residual gas is 10~2 torr. The roughness of level lines
at large amplitudes caused from statistical errors, but
anyway these are smaller than the distance between
neighboring lines.

that we have to build a distribution within the three-
dimensional amplitude space and use two-dimensional
boundaries (i.e., surfaces instead of lines). The only
problem arises from the fact that probability to fall
within a three-dimensional cell of size § 4 is much less
than in the case of a two-dimensional cell. This leads
to that the simulation time for each step 7' must be
much greater in the three-dimensional case to satisfy
the condition N, > N. Moreover, the simulation time
T depends now on the damping time 7. Besides, there
are some technical difficulties which do not allow us
to use the three-dimensional version of the method at
the presenf time. As a compromise, we use a “three-
dimensional tracking with two-dimensional distribu-
tion”. This approach has a limited range of applica-
tion, but anyway, even outside this range, one can get
the essential information.

The algorithm we use can be presented as consisting
of three independent parts: the simulation itself (out-
side the hidden region), building the level lines in the
amplitude space, and the simulation of a particle leav-
ing the hidden region (i.e. restarts). The first part rep-
resents the physical nature of the phenomenon under
investigation and must be three-dimensional because
of the important role of the longitudinal motion. Con-
cerning the second part, we can integrate the distribu-
tion with respect to the third amplitude and build the
boundary similar to that in the two-dimensional case.
This means that the boundary is a cylinder within the
three-dimensional amplitude space. Nevertheless, each
outflight includes six values: all the amplitudes and
phases (or coordinates and momenta). What is the ef-
fect of such simplification of the boundary? The finite
statistics of the outflights can lead to losing some ways
(see Fig. 4). For example, reproducing the probability
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of being captured in the three-dimensional resonance,
whose location with respect to the third axis is far from
the core, can be incorrect. Besides, the lifetime can be
determined by an aperture for the third dimension, but
we keep low third amplitude for all the steps.

Nevertheless, there are areas of parameters where
the system becomes really two-dimensional (or “al-
most two-dimensional”). Particularly, the distribution
is exactly symmetrical with respect to arbitrary rota-
tions in the plane (A, A;) for round beams. In this
case, we build the distribution in the plane (A,, A,),
where A, = \/AZ + AZ. Besides, the system becomes
“almost two-dimensional” in the case, where the dis-
persion at the IP is so high, that the synchrotron trans-
verse beam size is much greater than the betatron one
(so-called monochromatization[3]). In this case, the
horizontal displacement of the particle is mainly de-
fined by the longitudinal motion, and we have to build
the distribution in the plane (A4,,A;). The probabil-
ity of the particle going to the aperture through large
amplitude A; vanishes in this case, although the reso-
nances are really three-dimensional.

The significance of the longitudinal motion remains
essential even without dispersion at the IP due to mod-
ulation of the betatron phases. However, the betatron
motion seems to be more important and the distri-
bution must be produced in the plane (A, A;). The
case, where the synchrotron and betatron beam sizes at
the IP becomes comparable, is most difficult. Here all
three dimensions are of the same importance and the
two-dimensional distribution can result in serious er-
rors in the lifetime determination. Nevertheless, even
under such conditions the new method can be help-
ful. The thing is that all the errors caused by two-
dimensional simplification of the distribution give only
the increase in the lifetime. Therefore, we can use the
method to quickly search for “bad” regions of the pa-
rameters (i.e. the regions, where the lifetime is short),
while in “good” regions we should use a conventional
tracking technique to correctly define the lifetime. The
topology of such “bad” regions in the space of various
parameters can be an important source of information
for future investigations.

V. SOME RESULTS OF TECHNIQUE
APPLICATION

The study of beam-beam effects with monochromati-
zation for the Novosibirsk B-Factory Project has given
impetus to the development of the proposed technique.
As it was shown (see Gerasimov(3]), for flat beams the
width of the resonance [ - Q: + m - Q, + n - Q, = k de-
pends on the monochromatization parameter A (it is
defined as the ratio of synchrotron and betatron beam
sizes at the IP) as follows:

P T e (22)

This formula mathematically represents the fact that
significance of the horizontal betatron motion de-

0
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Figure. 11. Equilibrium distribution for VEPP-4M
working point: {Q:} = 0.53, {Q.} = 0.57, Q. = 0.02,
& = 0.005, &; = 0.06, 0 /0, = 80, A = 2.

10

Figure. 12. The same working point as in Fig. 11, but
monochromatization parameter A = 5. The widths of
resonances [ - Q: +m-Q. +n-Q, = k with [ # 0 are
decreasing here due to increasing of .

creases (l.e.  the system becomes “almost two-
dimensional”) in case of increasing the synchrotron
beam size at the IP. However, there were some doubts
concerning the dispersion at the IP, since a series of
strong synchro-betatron resonances arised. The sim-
ulation results obtained in 1990-1991 by using a new
technique essentially clarified the situation.

It is likely that VEPP-4M is the first collider with
big dispersion at the IP. This dispersion arises con-
structively because of a magnet spectrometer for scat-
tered electrons[4] and was considered earlier as a dis-
advantage. However, we expect now that the per-
missible tune shift parameter £ will be sufficiently
high. The simulation results for VEPP-4 are shown in
Figs. 11, 12. The only distinction between these figures
is the monochromatization parameter A = oz,/0z5.
As we can see, the widths of resonances with { # 0
really fall down with the increase in A.
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Figure. 13. The B-Factory working point with-
out PC’s: {Q;}=0.08, {@:;}=0.11, @Q,=0.02,
& = 0.01,

£ =0.05, op/0; =300, A=o},/ozB" =10. Here
asterisk (*) denotes the values at the main IP.
Resonances | - Q; +m - Q. +n-Q, = k are shown as
(I,m,n).

A large number of bunches in the B-Factory leads to
parasitic crossings (PC’s). As a rule, there are two PC
at a distance of about 2 meters from the main IP, all
the next bunches are shielded by a vacuum chamber.
In spite of considerable separation (20-40 beam sizes),
the PC can essentially disturb the opposite beam due
to high value of a beta-function (see Fig. 13, where
there are no PC’s, and compare with Figs. 14 and 15,
where they are present). The direction of the separa-
tion is also very important. The technique was used
to search for the minimum separation value which is
allowed for both horizontal and vertical separations.
The specific instability, which results in losing the par-
ticle when it achieves a certain threshold in the verti-
cal amplitude, was discovered for the vertical separa-
tion (see Fig. 14). This threshold can be several times
smaller than the separation value! In case of the hor-
izontal separation, the PC’s have much less influence
(see Fig. 15). The lifetime versus the separation value
is shown in Fig. 16 for both cases (the vertical aper-
ture is 30c;, the horizontal aperture is 100,, all the
particles were lost at the vertical aperture).

The technique was also used in simulations for the
Novosibirsk ¢-Factory Project with round beams. The
high intensity and low energy of the beams led to
strong longitudinal beam-beam effects[5]. Particu-
larly, strong flows to high amplitudes (both betatron
and synchrotron) could arise due to these effects (see
Fig. 17). In order to suppress such flows, an inter-
esting idea of negative momentum compaction[6] was
suggested by V.V. Danilov and E.A. Perevedentsev.
The simulation results for the same working point as in
Fig. 17 and inverse sign of the momentum compaction
factor are shown in Fig. 18.

10

Figure. 14. The same working point as in Fig. 13 with
account of two PC’s (vertical separation on 500;). An
instability arises, which results in short lifetime.

10

Figure. 15. The same working point, but horizontal
separation on 20c; instead of the vertical one. Pay
attention that o, and o, becomes almost equal at the
PC.

Lifetime
s =5
‘G—_&

! J
o1 2 3 4

Separation o,

= Dx/a,
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Dz/
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Figure. 16. Lifetime versus the separation value (hor-
izontal or vertical) at the PC.
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Figure. 17. Equilibrium distribution for ¢-
Factory with round beams. {Q.,.} = 0.04, @, = 0.02,
£z.: = 0.2. The strong flow to large amplitudes arises
due to longitudinal beam-beam effects. '

Figure. 18. The same working point as in Fig. 17, but
momentum compaction factor is negative.

Moreover, some simulations results were obtained
for the HERA electron beam (see Shatilov[8]). Any
suggestions concerning new fields of application of the
technique will be welcome.
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Abstract

We carry out a methodical comparison among the four beam-beam codes TRS, BBTRACK3D, LIFE-
TRAC and TAIL under a restricted set of conditions for which such a comparison is meaningful. We first
study the convergence rate of five slicing algorithms as the number of kicks goes to infinity and provide
a criterion for the minimum number of kicks required for acceptable accuracy in a given situation. We
then focus on turn-by-turn single particle tracking in 6-dimensional phase space in weak-strong mode
for a thick-lens beam-beam interaction in the absence of damping and quantum excitation effects and
lattice nonlinearities. When the codes make use of the the same thick-lens slicing algorithm, the results
agree within computer accuracy. We also compute the tune shift with amplitude and compare the results
with those from the first-order analytic calculation. The agreement is surprisingly good except when
synchrotron sidebands are prominent. We then go on to include damping and quantum excitation and
compute the 2-D particle distributions out to reasonably large amplitudes. The results, which we show
in the form of contour level plots, agree within the statistical accuracy of the calculations. This article
summarizes Ref. [1].

*Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy
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1. Introduction

It is sometimes apparent that beam-beam simulations do not enjoy the same degree of respectability in
today’s accelerator physics community that other tools, such as single-particle tracking, do. One often
hears, for example, that beam-beam simulations are better able to explain observed phenomena a posteriori
rather than to predict them. Undoubtedly, the fundamental reason for this state of affairs is the complexity
of the beam-beam interaction. A complete calculation would require the solution of Maxwell’s and Newton’s
equations simultaneously for many billions of particles for millions of turns. It is clear that such a task is
impossible with computers that are available today or that will be in the foreseeable future.

Nevertheless, much is known qualitatively and quantitatively about the beam-beam interaction in various
regimes, and several codes have been developed that embody different approximations. Although the ultimate
test of any beam-beam code is the correct and complete prediction of collider beam dynamics, it seems
important for the time being to compare these codes with each other and with analytical results, and ensure
that there is agreement whenever these comparisons are meaningful.

At its core, many of these codes have a common element: a thin-lens kick produced by a gaussian particle
distribution. In this note we carry out a comparison among four beam-beam codes that involve this thin-lens
kick. We start with the simplest case, namely the turn-by-turn tracking of a single particle colliding once per
turn against an opposing gaussian bunch, and we compare the six-dimensional coordinates of the particle
at every turn, in the absence of radiation damping, quantum excitation and lattice nonlinearities. We carry
out the comparison for thin-lens and thick-lens beam-beam interaction, for five “slicing” algorithms, with or
without synchrotron oscillations, for several initial conditions (but not in all possible combinations). When
the codes do the same thing, the results indeed agree with each other within computer precision. We also
compare the results for the calculated tune shift with amplitude with analytical results for the case of a
thin lens. In the final step, we carry out a longer term simulation and produce the two-dimensional particle
distribution in amplitude space with three of the codes. The agreement is very good, and the relatively small
discrepancies are likely due to the difference in the algorithms used at this stage of the comparisons.

In all calculations presented here we use the “weak-strong” description of the beam-beam interaction. In
this scheme the “strong” beam is passive and is represented by ‘a gaussian lens (thin or thick) that is not
altered by the other beam. The “weak” beam is dynamical, and we observe its behavior as a function of
time as it collides repeatedly against the strong beam. In most, but not all, of the simulations carried out
here, we use beam parameters that correspond closely to the PEP-II B factory [2], in which the electron
beam plays the role of the strong beam and the positron that of the weak.

The four beam-beam codes we consider here are: TRS [3], LIFETRAC [4], TAIL [5] and BBTRACK3D
[6]. The code TRS is a multiparticle strong-strong code that involves the soft-gaussian approximation. It
is geared to assessing the luminosity performance of an e*e collider. The codes LIFETRAC and TAIL
are single-particle weak-strong codes geared to assessing the beam lifetime. The code BBTRACK3D is a
single-particle weak-strong code geared to studying the dynamics of a single particle with specified initial
conditions. Among its options, it allows different forms for the particle density of the strong beam, the
gaussian being only one of them.

2. Slicing algorithms

We assume that the longitudinal distribution of the opposing bunch is described by a gaussian density

e—z’/zn';‘

fe(z) = T (1)

where the caret “*” is meant to emphasize unit normalization. For the purposes of tracking simulations, we
replace this density by a weighted superposition of N, delta functions,
L

pe(z) = fs(2) = Z wib(z — zi) (2)

k=—-L
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where N, = 2L + 1 (we assume, as is customary, that N, is an odd integer; if this is not the case, our
calculation needs slight modifications). Each delta function gives rise to a kick at a location z; weighted
by wy; these locations and weights must be determined according to a certain algorithm. The symmetry
pe(—2) = pe(z) implies that the kick locations and weights must obey the basic constraints z_x = —z; and
w_g = +wg. In addition, we require that the accumulated effects of the kicks should be the same as in the
original distribution, i.e., [dzpe(z) = [ dzp,(z) = 1, which implies

z wg =1 (3)

For the thin-lens case (N, = 1) there is a single kick at the center of the bunch with zp =0 and wo = 1.
For the thick lens case, on the other hand, there is, of course, an infinite number of possible algorithms to
decide the weights and locations of the kicks consistent with the basic constraints. Here we examine only
five possibilities. For the case N, = 5 we list the kick locations and weights for all five algorithms in Table 1.

Algorithm #1 (equal spacing). In this case [7] the kicks are equally spaced and the weights are
proportional to the gaussian density at zx, namely

X & .
2 _ 2 y N,-3 , wkiﬂ_ (k=0, %1,---, £L, N, > 3) (4)
0‘z Ng -1 12 L A

ZLpt(zm)

Algorithm #2 (equal areas). In this case the gaussian distribution (1) is divided up into N, “slices”
of equal area (implying equal charge), and the kicks are located at the center of charge of each slice. The
equality of the area of the slices implies that the weights are all equal, namely wy = 1/N,. Standard formulas
for the area under a gaussian curve imply that the kick locations are given by

2 = Va2erf (2—'“) (k=0, £1,-.., £L, N, > 3) (5)
T, N,

Algorithm #3. This case [8, 9] is similar to the previous one, except that the kick locations are given
by
z ~ ~
= = Nalpell) = pellsr)], k=1, L (6)

z

where the [;'s are the edges of the slices. By arguments similar to those in the previous case, it is easy to
see that, for k > 0,

T, N,

For k < 0, the [’s are the mirrors of those for k > 0 (note that there is no k = 0 edge, and that the
k = (L + 1) edges are at +o00). As in all cases, the central kick is at z9 = 0, and the kicks for k < 0 are
symmetrically located with respect to those for £ > 0. The weights are the same as in the previous case,
namely wg = 1/N,.

Algorithm #4. This is a modified combination of algorithms #1 and #3 in which

‘i:ﬁerrl(zk‘l) (k=1,2., L+1, N, 23) (7)

2k L o "
— = — [pe(lk) = pe(le+1)], k=1,---, L (8)
Ty Wi
where the [;’s are the same as above, and where the locations for k < 0 are the mirror images of those for
k > 0. The weights are proportional to /pe(z), namely

~

fe(zk)

7 7 m

m=—L

(k=0, +1,---, £L, N, > 3) (9)

W =




In practice, the z;'s and wy's are most easily found by iteration. It turns out that, of all five slicing
algorithms described here, this algorithm #4 has the fastest rate of convergence as N, — oo (see the
discussion below).

Algorithm #5. This algorithm consists of choosing the z;'s and wy’s in such a way that the area
enclosed by the two functions [ dz’pe(2') and Js d2'ps(2') is minimal. This requirement leads to a set of
nonlinear equations for the zx’s and wy’s which, as in algorithm #4, is most easily solved by iteration.

Table 1: Kick locations and weights for N, = 5.

Algorithm #1 Algorithm #2 Algorithm #3  Algorithm #4  Algorithm #5

-1.166667 —1.281552 -1.399809 -1.59898 -1.44156
-0.5833333 —0.5244005 -0.5319032 -0.67872 -0.63623
z's 00 0.0 0.0 0.0 0.0
0.5833333 0.5244005 0.5319032 0.67872 0.63623
1.166667 1.281552 1.399809 1.59898 1.44156
0.1368561 0.2 0.2 0.17350 0.14943
0.2280002 0.2 0.2 0.23222 0.22577
wi's - 0.2702873 0.2 0.2 0.26056 0.24960
0.2280002 0.2 0.2 0.23222 0.22577
0.1368561 0.2 0.2 0.17350 0.14943

Convergence rate of the five slicing algorithms. A reasonable requirement for any given algorithm
is that the results should converge to a limit as N, — oco. A reasonable requirement for all algorithms is
that they should converge to the same answer in this limit. It remains an open problem to establish the
optimal thick-lens slicing algorithm among the infinite number of possibilities. By “optimal algorithm” we
mean that which yields, for a given finite number of kicks, the closest answer to the N, = oo limit for a
particular problem. This is clearly a very difficult problem: one cannot even set forth a universal criterion
for such an optimization because such a criterion necessarily depends on many variables of the problem at
hand, such as the working point, beam aspect ratios, etc.

In this section we try to solve a more modest problem: we study the convergence rate of the five slicing
algorithms presented above as the number of kicks N, — oco. Although this is clearly a more restricted
problem than the one stated in the previous paragraph, the answer is still quite interesting because it shows
clear systematics. As we show below, algorithm #4 emerges as the clear favorite among the five. Within this
limited context, we also give an answer to the important practical question of how many kicks are enough
for a given situation.

We proceed as follows: we first generate a weak bunch of 1,000 particles distributed gaussianly in the
6-D normalized phase space (X1,...,Xe) = (€/004, =’ /0wy, y/oys, V' [0y, 2/0:4, Ap/opy) where the
subscript “4” is meant to emphasize that this is the weak (positron) beam. The coordinates are generated
in an uncorrelated fashion, so that we may think of the distribution as that corresponding to a gaussian beam
matched to the bare lattice at the IP. We then push this distribution once through the thick beam-beam
lens produced by the strong beam for a given slicing algorithm and for a given number of kicks, and compare
the resultant distribution with the one obtained by pushing the same initial distribution according to the
“N, = 00" case which, for practical purposes, we define to be algorithm #4 with 300 kicks. Note that our
criterion does not depend on any lattice parameter; it is designed to judge the beam-beam interaction by
itself, as an isolated entity.

We compare the algorithms quantitatively by defining a dimensionless parameter Q for each algorithm
as the sum of the rms deviations of the four transverse phase space coordinates of the final distribution from
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those obtained from the N, = oo case,

Q = E ((Xn - Xn.oo)Q) (10)

n=1

where (---) is the average over the 1,000 particles. Obviously, the smaller is Q the better is the slicing
algorithm. We present here only one case, corresponding to a flat beam with PEP-II-like parameters [2],
listed in Table 2. Other cases, with qualitatively similar results, are described in Ref. [1].

Table 2: Parameters for the convergence rate tests.

ﬁ;+/ﬂ'z+, ﬁ;-{-/gz-{- 375, 1.5
O pr By [ 4 1.333, 1.333
Oz—[Oxt, Oy—[Oyt, Oz [0y 1, 1,1
Oz—[oy— 25
Exs, Ey+ 0.03, 0.03

Figure 1 shows the results of plotting @ vs.the number of kicks N, for the five algorithms. It is apparent
that algorithm #4 has systematically the fastest convergence rate of the five. It is curious that algorithm
#1 does not converge uniformly, although it becomes competitive with #4 for 2 50 or more kicks.

Q vs. # of kicks
(flat beam)

0 10 20 30 40 50 60 70 80 90 100
Figure 1: Convergence of the slicing algorithms: @ plotted vs. number of kicks N,
for flat beams (PEP-II-like parameters; see Table 2).
A criterion for the adequate number of kicks. It is important to decide how many kicks are enough

for a given problem because, all other things being equal, the CPU time used in the calculation is proportional
to N,. We now provide a criterion for the minimum value required for N, for issues pertaining to the beam
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core (such as the beam blowup due to the beam-beam interaction, or, equivalently, the luminosity). The
reasoning is as follows: due to the effects of radiation damping and quantum excitation, the rms beam size

in the transverse dimension fluctuates by

bo L -

& T
where 7 is the damping time (in units of turn number) corresponding to the dimension considered. Because
of these fluctuations, it is not justified to increase the accuracy of the beam-beam element beyond that
corresponding to a value of Q given by

4
~— 12

Q= (12)
(the factor 4 accounts for the four terms in Eq. (10)). Thus once we know the convergence rate of a given
algorithm, the criterion is the following: the minimum value of N, that gives the correct answer (within the
statistical accuracy of the calculation) is that for which Q takes on the value given by Eq. (12).

For the case of PEP-II, with 7 = 5400, this yields Q ~ 0.05. Therefore, as one can see from Fig. 1, any of
the five algorithms gives the correct answer for N, = 3. For other situations there are big differences in the
number of slices required by each algorithm to converge to a result with a given accuracy [1]. Nevertheless,
algorithm #:4 has consistently the fastest convergence rate among the five possibilities shown here.

3. The thick lens beam-beam interaction

In all cases described in this article we make the following assumptions: (a) The particles are relativistic so
that we can neglect their self-interactions. (b) The bunch is sufficiently short that there are no nontrivial
lattice elements at the IP in a region of size comparable to the bunch length. (c¢) There is no dispersion in
this region around the IP. (d) There is no closed orbit distortion of the strong beam, intentional or accidental.
(e) There are no phasing errors and no colleetive oscillations, longitudinal or transverse.

As the particles in the weak beam move through the strong beam, they encounter the N, kicks in
sequence. For each kick there are four steps (listed below) that describe the algorithm for the beam-beam
kick experienced by a given particle in the weak beam. These four steps are repeated for each slice and must
be carried out in the actual sequence of kicks encountered by the particle. When the weak beam consists
of many particles, which is the generic case in the code TRS, one also has to repeat all these steps for all
particles.

The four steps for a single kick are the following:

Step 1: Determine the collision point. As a consequence of the assumptions listed above, the
bunch centers come together at the nominal (optical) IP. Thus we assume that they move towards each
other according to s, = =ct, so that time ¢t = 0 corresponds to the instant of the central collision. If
z4 is the longitudinal position of the positron and z_ that of the electron slice (both measured relative to
their respective bunch centers), then the azimuthal coordinates of the colliding positron (s ) and opposing
electron slice (s_) at time ¢ are

positron: s, = ct + z4; electron slice: s_ = —ct — z_ (13)

(we take the convention that z > 0 means the head of the bunch regardless of its direction of motion). The
collision point between the positron and the opposing slice is determined by setting s, = s_ = s, which
implies
collision point: s, = 3(z4 — 2-) (14)
Step 2: Determine the transverse coordinates. In all codes considered here the longitudinal as
well as the transverse coordinates of the particles are referred to the bunch center. Since the beam-beam
kick is represented by a thick lens whose strength varies during the course of the collision (due to the s
dependence of the transverse size of the opposing bunch), we have to find the actual transverse coordinates
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of the colliding particle. As a consequence of the assumptions listed above, the transformation from the
bunch center to the actual collision point is a simple drift:

T — T+ 8., y—y+ sy (15)

while the slopes z’ and 3’ remain unchanged.
Step 3: Actual kick. In this step the slopes of the particle are changed according to

' — o'+ Az (z,y,0:—(8c), 0y-(5c)) ¥ =y + Ay (2,1, 00-(8c), 0y—(8c)) (16)

while z and y remain unchanged. In computing Az’ and Ay’ we use z and y from Step 2 and the actual
beam sizes of the opposing bunch at the collision point, given by

o (8e) = 02— (0) x 1+ (s0/82-)",  oy=(s) = 0y—(0) x \/1+ (s./B;)’ (17)

In all calculations discussed here we assume that the transverse distribution of the strong bunch is
gaussian. Thus a particular slice of electrons centered at the origin and having horizontal and vertical rms
sizes (0z—,0y-) is described by the transverse particle density

2 42 2
pelz,y) = ——-—%ff —— (-553 - 2—3%:) (18)
which is normalized to the number of electrons AN_ contained in the slice (for the k-th slice, AN_ = wiN_,
where N_ is the total number of electrons in the bunch).

The electromagnetic kick (Az’, Ay’) received by a positron from a thin-slice electron bunch is written
in concise form [10, 11] in terms of the complex error function w(z)! In tracking codes it is important to
compute this function as fast as possible because this is the most CPU-intensive part of any beam-beam
simulation that assumes a transverse gaussian shape for the bunches. In Ref. [1] we describe four methods
of computing w(z). They all yield results that are accurate to better than 1 part in 106. However, there are
major differences in the computational speed of the different methods; we shall not address this issue here.

Step 4: Restore the coordinates to the reference point. This is the inverse of Step 2, namely

T — T — 8.1, y—=y—sy (19)

while the slopes z’ and 3’ remain unchanged.

Steps 2 and 4 do not cancel each other out because the slopes have changed in Step 3; therefore, in
general, the beam-beam kick alters the coordinates as well as the slopes of the particles. For this reason,
Step 4 is usually referred to as “disruption.” The only circumstance in which there is no disruption occurs
when both beams have zero bunch length. If only the strong beam has zero bunch length (e.g., if it is
represented by a thin lens), the weak beam will still suffer disruption due to the s, dependence in Step 3
arising from the synchrotron oscillations of its particles.

4. Short-term single-particle tracking results

Here we carry out turn-by-turn tracking for an individual particle at a time with given initial coordinates
for a certain number N of turns. For all cases in this section we completely neglect damping and quantum
excitation in order to eliminate numerical discrepancies arising from random number generators.

We assume that the lattice is decoupled and is described by a pair of 2 x 2 linear transport maps with
given tunes. Similarly, we also assume that the longitudinal dynamics is described by a linear 2 x 2 map with
a given synchrotron tune. We carry out a weak-strong calculation where the dynamical (or weak) beam is

1The function w(z) is not to be confused with the weights wy, of the previous section, nor is the complex number z with the
longitudinal coordinate z. ’
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Figure 2: Single particle tracking (BBTRACK3D and TRS, N = 512, N, = 5, slicing alg. #2).



LIFETRAC TAIL

z T Trri rrra LI LI z L i o= B | LI LELELELI
SARARE MG o/t st Aril== i i ARRE
- - - i B
1 o 10— -
o ] -5 ]
X f : i ]
> F 4 > F i
g 0— — g 0~ -
+ f- s + L -
Bt ; Rr :
& [ J - :
-1 — -1 —

_2 C L1 1l 1 Ll 1 I L1 11 | L1 1 1 ] _2 r 11 11 I 0 1 1 lJ 11 1 l L1 11
-2 -1 0 1 2 -2 -1 0 1 2

y/ oy y/ oy
L 0,1,0 d 100 0,10 bd
E < = ]
107! —3 10%%- L -3
1072 - ¥ E 10~2 1=
3 =
] : %
10-3 10-3 1 I 11'1 1:||1'|||:|1|
0.0 0.1 0.2 0.3 0.4 0.6 0.0 0.1 0.2 03 0.4 0.6
vertical tune vertical tune
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Table 3: Parameters used in the simulations.

weak beam (e™ ) strong beam (e”)

E [GeV] 31 90T

B2 [m] 0.375 0.500

3 [m] 0.015 0.020

0y [pum] 151.61 151.6

ay [pm] 6.0631 6.063
Vo 0.57 0571

Voy 0.64 0.641

o, [cm] 1.0 1.0

Vs 0.0372 0.05231
op/p 0.809 x 10—3 0.615 x 10731
N 5.630 x 10101 3.878 x 10101
oz 0.03 0.03%
Eoy 0.03 0.031

T These parameters do not enter the weak-strong simulation,
but we list them nevertheless for the sake of completeness.

the positron beam. The particle distribution of the electron beam is assumed to remain a three-dimensional
gaussian whose transverse size is modulated by the beta functions, but whose emittances remain fixed at
their nominal values.

The simulation data is obtained as follows: we first assign input values to all six normalized coordinates.
The particle then undergoes a linear lattice.transport, then a synchrotron map, and finally the beam-beam
kick. Immediately after the beam-beam kick, its six normalized coordinates x/0y, T [0z, yloy, ¥ [oy, 2/0:
and Ap/o, are recorded. This process is then repeated for N turns, with one line of data per turn. The
tracking data is processed with the code PORTRAIT [12], from which we obtain all three phase space plots
and their corresponding Fourier spectra. Each spectrum is produced as follows: we first compute

N
G A ZX" e2wi(n~l)k/N’ k=0,1,---,N-1 (20)

n=1

where X,, represents here either z/o, or y/a, or z/o. at turn n. We then normalize the spectrum by the
largest of the absolute values If( ks, and plot these normalized absolute values vs. k/N. We only plot the
spectrum for the modes k =0, 1, -+, N/2 on account of the well-known reflection symmetry of |J”( x| about
k= N/2.

In addition to the spectrum, PORTRAIT computes all three dynamical tunes vz, vy and v, by numerically
integrating the three phases over the N turns. We then form the linear combinations nv, + mv, +lv, where
n, m and [ are positive or negative integers? up to a certain maximum absolute value, and we plot a vertical
dotted line whenever nv, + mu, + lv; (aliased to the interval [0,0.5]) coincides with a local peak of the
spectrum that is higher than a given threshold value. In this way we can identify resonances, which are
labeled by the three integers n, m and [ on the plots.

The simulation parameters are listed in Table 3. The values in this table are like those considered for
the PEP-II B factory [2]; for the nominal PEP-II bunch collision frequency of 238 MHz, these parameters
imply a nominal luminosity of Lo =3 x 103 em=? s71.

Comparison of the four codes. We now compare the results of the four codes considered here. In
all cases we track for N = 512 turns, use N, = 5 kicks, and use slicing algorithm #2. We compute w(z)

2Except that, without any loss of generality, we choose n > 0.
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by simply invoking the IMSL® library function CERFE [13] except that the code TAIL uses the Padé
approximant method [14]. The initial values of the coordinates are g = 30, yo = 1.50y, 20 = 30, and
zo = yo = Bpo = 0.

In Figs. 2 and 3 we show only the vertical phase space and spectrum obtained from each of the codes.
We choose the vertical spectrum because, in our experience, it is more sensitive than the horizontal (and
the longitudinal) in showing differences in the results. It can be seen that the codes agree with each other
almost perfectly. The tiny differences (typically in the 4th or higher digit of the values of the coordinates)
can be accounted for by the differences in the accuracy of the input values and of the different computers
used for the tracking (codes TRS and BBTRACK3D were run on the same computer and their results do
agree to computer accuracy).

We have carried out many more simulations with different initial conditions, different number of slices
and different slicing algorithms. Ref. [1] contains but a small sample of these. The excellent agreement seen
in Figs. 2 and 3 is typical of the larger set.

Algorithms for the complex error function. In Ref. [1] we also present a systematic comparison of

four algorithms for the computation of w(z): table interpolation to 3rd and 4th order, the Padé approximant
method [14], and the IMSL library function CERFE [13]. The result of this exercise is that there are only
small differences in accuracy (smaller than 1 part in 108), but large differences in computational speed. The
table interpolation to 3rd order is the fastest of the four methods.

Effects of deliberate errors. In order to get an idea of the effects of nontrivial algorithmic errors,
we show in Fig. 4 the results arising from incorrect coding. The first set in this Figure corresponds to an
older version of TRS in which the kick from an individual slice was incorrectly modulated by the local beta
function: Step 3 of the beam-beam kick (Eq. (16)) was coded as

' — '+ (Be—(sc)/Bi_) AT, v =y + (B-(3:)/6;-) Ay (incorrect!) (21)

Other than this difference, all tracking conditions were identical to those used in Figs. 2 and 3. One can see
clear differences: the vertical amplitudes reach out to ~ 3 in Fig. 4 rather than to ~ 1.5 in Figs. 2 and 3,
and the vertical spectra are substantially different.

As discussed in Sec. 3, Step 4 (“disruption”) of the algorithm for the thick lens beam-beam interaction
makes the sequence of kicks experienced by the tracked particle noncommutative. The second set of results
in Fig. 4 shows the results of deliberately (and incorrectly) reversing the sequence of kicks experienced by
the positron for the case N, = 5. As in the previous example, there was no other difference in the tracking
conditions from those used in Figs. 2 and 3. The phase spaces are not substantially different, but the vertical
spectra are clearly different at the low end.

5. Comparison with analytic results

In this section we compute the tune shift as a function of amplitude obtained from single-particle tracking
with TRS and compare the results with first-order perturbation theory calculations. Again, we completely
neglect radiation damping and quantum excitation and we use the thin-lens approximation, i.e. we take
N, =1 slice in the beam-beam kick algorithm. Depending on the case studied, the particle may or may not
perform synchrotron oscillations.

Case with no synchrotron motion. In this case the positron that is being tracked collides at the IP
with a single-slice electron bunch. The rms beam sizes of the electron bunch at the IP o,_ and o,_ are
understood to be evaluated at the IP.

The analytic calculation we use is described in Ref. [15], except for one detail which we will clarify below.
The first step is to recall that the electromagnetic kick from one slice can be written as a two-dimensional

vector as N
re N_

E4+vyxB)=-=

T+ ( * ) Y+

re N_

(Azrv Ay’) == 2

E (22)
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where the subscripts + and — refer to positrons and electrons, respectively. The electric field per unit charge
produced by the electron beam, E(z, y,0,—,0,_), is the solution of Poisson’s equation, V - E = 4mp,, where
pe(x,y, 02—, 0y_) is the transverse gaussian density, Eq. (18) (since the bunch is represented by a single slice,
AN_ = N_). The fact that the magnetic and electric terms in the Lorentz force are equal is a consequence
of the extreme relativistic approximation used (we also assume that the positron velocity v, is antiparallel
to the electron bunch velocity).

If we define the potential V as E = —VV, then the “phase averaged beam-beam parameter” (our
nomenclature) of the kicked positron is given by [15]

re N_ dTyo ;
e = — = 23
& 27vy O ’ 1=,y ( )

where Ty is defined by

Too = /‘;—[2—” 1/2,6;+I cosO,, /282, 1, cosa,,) (24a)
0
( (,/ Lo cosb,, 282, 1, cosa,,» (24b)

Here the I's and 6’s are the amplitudes and phases of the positron, respectively. The tune shifts of the
positron Ay; are then obtained by solving the usual equations

cos (2m(voi + Av;)) = cos(2mvp; ) — 2w€; sin( 27w, ), i=1x,y (25)

where the vg;’s are the “bare lattice” tunes.

In Ref. [15] the £’s are assumed to be small enough that the approximation Ay; = €; (which follows from
Eq. (25) for small enough £) is valid. Hence in this approximation Awv; is given directly by Eq. (23). Our
approach, which involves the extra step (25), can be thought of as a different perturbation expansion that
reduces to the conventional one in the small-£ limit, but that yields the ezact result when the perturbation

force is linear.

It should be noted that /23; T, and ‘/EB; +1y in Eq. (24) are nothing but the injection amplitudes
zo and yo of the positron, respectively (we recall that in all our calculations the initial slopes vanish,
xg = yo = 0). Therefore, by using the chain rule /81, = (85 /y0)8/0yo and E = —VV we obtain

re N_By, 9
& = —ﬁ% (V (zo cos 8z, y0 cos b)) (26a)
= (2c0s? 0, £, (o cos B, yo s 0,)) (26b)

and similarly for ;. We have defined the “local vertical beam-beam parameter” £,.(z,y) as

Ay (z,y) = —Anbye(z, y) =~ (27)

A

where Ay'(x,y) is given by Eq. (22).

As an example, we have used the PEP-II-like parameters listed in Table 3. As before, we tracked the
particle with TRS for N = 512 turns, used one kick (N, = 1), and used the IMSL® library [13] to compute
w(z). Radiation damping and quantum excitation were wholly neglected. The tune was computed with
PORTRAIT. The tracked particle was injected with xg = zo = 0, and the vertical amplitude was varied in
the range 0 < yo < 100y. For the analytic calculation, we integrated numerically Eq. (26b). Results are
shown in Fig. 5. The agreement is almost perfect.

30ne of us (MF) is indebted to Etienne Forest for a discussion on this point.
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In Ref. [1] we also carried out this exercise for a round beam. In this case the phase integrals can be
carried out and the result expressed in closed form. The agreement between tracking and the analytic result
is also excellent.

Case with synchrotron motion. In case when the positron is performing synchrotron oscillations, it
collides against the opposing thin-slice electron bunch at a longitudinal coordinate s, = z/2 (see Eq. (14))
where z is the positron’s longitudinal coordinate at the time of the collision. Thus the vertical kick it receives
at the collision point (z,v, s.) is given by

el Ev (371 y)a:r—(sa':)’av—(‘gc)) (28)

Ay'(z,y,8) = =

and similarly for Az’. Here E, is computed by using the actual beam sizes 05— (s.) and o,_(s.) of the
electron bunch at the collision point, given by Eq. (17). Therefore it seems clear that the generalization to
the present case of the phased-averaged vertical beam-beam parameter is

&y = (2 cos® Oy Eye (o €08 Oz, Yo cos Oy, (z0/2) cos 0:)) (29)

where the local vertical beam-beam parameter £, is defined by

Ay (z,y, sc) = —4AnEe(x,y, s nit 18 30
y ( ) yt( C)ﬂy+(sc) ( )
with a similar expression for the horizontal counterpart. Note that the phase average (---) is now three
dimensional,
2n 1 2n 10 n "
vz avy vy
iy f —m =R 31
) / 2m _[ 2m _/ 27 () (81)
0 0 0

and that the beta function in Eq. (30) has the appropriate s.-dependence.

Case when the positron is close to the axis. Fig. 5 shows the tracking results and analytic
calculation of the vertical tune plotted as a function of the léngitudinal launching amplitude z; of the
positron (2o is normalized to the rms bunch length of the opposing bunch). The particle is tracked with
TRS for N = 512 turns, with N, = 1, using the MSL® library calculation of w(z) [13]. The particle is
launched close to the beam axis (zo = 0, yo = a,/10), with z; = yy = Apo = 0, and 2 is varied in the
range 0 < zo/0, < 20.

The three cases displayed in Fig. 5 correspond to different ratios of the beta functions of the two beams
(in all 3 cases, however, the beams have the same aspect ratio, a,/a, = 25). These are dubbed “symmetric,”
“nominal,” and “high asymmetry.” The nominal case is exactly the same as that displayed in Table 3. The
number of particles per bunch in all three cases are adjusted so that the nominal beam-beam parameters
remain fixed at 0.03. Table 4 lists the relevant parameters.

In the three cases the beta functions at the IP of the positron beam are held fixed, and so is the beta-
function ratio for each beam, namely 8;/8; = 25. Similarly, the beam aspect ratio at the IP is fixed:
040, = 25 for all cases. What changes from one case to the next is the ratio of the beta function of one
beam relative to the other: the ratio 3* /3% takes on the values 1, 1.333...and 2.666. . . for the symmetric,
nominal and high asymmetry cases, respectively. If the positron did not perform synchrotron oscillations, it
is a priori obvious that the tune shift would be the same in all three cases. However, the fact that the beta
functions of the electron beam are different makes the modulation of the positron beam-beam parameter vary
from case to case due to the differences in the hourglass effect [16]. In fact, for a flat beam, a simple analytic
calculation for the vertical beam-beam parameter of a positron oscillating longitudinally with maximum
amplitude zo and with zo =~ yo = 0 shows [16] that &4 (z0) scales like &,4(z0) ~ By+(20/2)/ v/ By=(20/2).
This scaling shows that &, (z0) grows linearly when zo 2 By Also, if 37, is kept fixed, as we do in Table 4,
the tune shift is larger the larger is 3,_. Actually, if this scaling formula (properly norinalized) is inserted
into Eq. (25), the resultant vertical tune is in good qualitative agreement with the more accurate calculations
shown in Fig. 5.
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Figure 5: Top: vertical tune ws.vertical amplitude with no synchrotron motion; bottom: vertical tune
vs.longitudinal amplitude for fixed (but small) vertical amplitude. Tracking results (crosses and diamonds)
for a single positron colliding against a thin-lens electron beam were obtained with TRS with Ny = 1. In
all cases the electron beam aspect ratio is a;/a, = 25; the differences between the three sets of data in the
bottom figure are due to the hourglass effect.
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Table 4: Parameters used in the three cases with synchrotron motion.

symmetric nominal high asymmetry

et e~ et e~ et e~
E [GeV] 3.1 9.0 3.1 9.0 3.1 9.0
A% [m] 0.375 0.375 | 0.375 0.50 0.375 1.0
ﬁ; [m] 0.015 0.015 | 0.015 0.02 0.015 0.04
o [pm] 131.3 1313 | 1516 1516 | 2144 2144
oy [pm] 5251 5251 | 6.063 6.063 | 8.574 8.574
Vo 057 057 | 057 057 | 057 0.57
Voy 0.64 0.64 0.64 0.64 0.64 0.64
o [cm] 1.0 1.0 1.0 1.0 1.0 1.0
Vs 0.0372 0.0523 | 0.0372 0.0523 | 0.0372 0.0523
ap/p [10_3] 0.809 0.615 0.809 0.615 0.809 0.615
N [1019] 5630 1.939 | 5.630 2586 | 5630 5171
€oz 003 003 | 003 003 | 003 0.03
Eoy 0.03 0.03 0.03 0.03 0.03 0.03

For the high asymmetry case, Fig. 5 shows that the tune turns over at z9/0, 2 12. This is an artifact
of the aliasing inherent in the turn-counting method used to calculate the tune. Aside from this effect, the
results are in excellent agreement with the analytic calculation.

Case when the positron is away from the axis. In Ref. [1] we have also computed the tune shift
when both the transverse and longitudinal amplitudes are nonzero. Space constraints do not allow us to
present the results here. The result is that, when zp > 0, the tracking and the analytic results agree very
well only for small values of yo. In fact, the tracking results for the tune as a function of yo do not follow a
smooth curve. In contrast, the analytic curves do behave smoothly. An analysis with PORTRAIT, however,
shows that the synchrotron sidebands v, £ v, are prominent in this region of the amplitude space. It is
virtually certain that these sidebands are responsible for the lack of agreement between the tracking and the
analytic calculations (the analytic calculation is insensitive to these kinds of resonances, hence the smooth
curves).

6. Long-term tracking: amplitude distributions
One-dimensional distributions. The one-dimensional horizontal density is defined by

2
i with A? = z? + (Bpa’ + agzx)

Fom’ = (32)

with corresponding expressions for the vertical counterparts. Here N represents the number of particle-turns
at normalized amplitude A, Ny is the total number of particle-turns accumulated in the tracking run, z and
z' are the position and slope of the particle, a; and 8, are the usual lattice functions of the weak beam and
o, is its nominal rms beam size. All these quantities are referred to the observation point, which we chose
to be the interaction point.

In this kind of simulation, damping and quantum excitation effects play important roles since the shape
of the particle distribution is a consequence of a dynamical equilibrium between these effects and the beam-
beam interaction. In Ref. [1] we present the calculation of this density for the five slicing algorithms and
for different number of slices with TRS. The result of this exercise is consistent with the discussion in Sec.
2 regarding the convergence rate of the slicing algorithms, and no new information can be extracted within
the accuracy of the calculation.
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Two-dimensional distribution. We now compare the results from the codes TRS, LIFETRAC and
TAIL for the 2-dimensional distribution in (A, A,) space. In this case, we follow the custom of dealing with
the density ’

1 dN
e Y 33
No dA.dA, (33)
which is normalized to unity,
] dA, f e (34)
) ) No dA,dA,

For any physical particle distribution, this density vanishes whenever Az =0o0r fly = 0 due to a zero of
the volume element. For reference, the nominal gaussian distribution is
N e L
No dA,dA,
For the simulation we choose a large beam-beam parameter of 0.08 in order to enhance the tails of the

distribution. We achieve this value by scaling N by a factor of 8/3 relative to Table 3. The parameters that
are different from Table 3, including the damping times, are displayed in Table 5.

(nominal gaussian) (35)

Table 5: Parameters used in the éimulations for the 2-D distributions.

weak beam (et ) strong beam (e™)

N 15.01 x 10™ 6.895 x 1077
€oz 0.08 0.08
£oy 0.08 0.08
Tz [turns] . 5400 5014
7y [turns] 5400 5014
T, [turns] 2700 2507

In these 2-D simulations we use 5 kicks (N, = 5) for all three codes. However, the other conditions are not
exactly the same: (1) TAIL uses the Padé approximant method [14] to calculate the complex error function
rather than the IMSL® library [13]; (2) TRS uses a slightly different algorithm for radiation damping and
quantum excitation from the other codes; and (3) LIFETRAC uses slicing algorithm #5 as opposed to
algorithm #2 used by the other two codes.

Figure 6 shows the contour plots for the resultant simulation from the three codes. The contour levels are
as follows: the first level is at a height 1//€ below the peak, and successive contour levels are at a constant
ratio e below each other. The agreement among the codes is quite good given the differences between them.

The code TRS does “brute force” tracking. For the particular simulation shown here, we used 1,024
particles and tracked them for 500,000 turns. Thus we accumulated a total number of particle-turns Ny =
0.512x 10°. The program took 818 CPU minutes to run on the Cray-25/8128 at NERSC. On the other hand,
LIFETRAC and TAIL use an “acceleration algorithm” [17] that optimizes the generation of the tails of the
distribution. For the simulation shown in Fig. 6, the results from LIFETRAC correspond to an effective
number Ny = 4 x 10!! of particle-turns and took ~ 100 CPU minutes on a VAX-6610 computer. The results
from TAIL correspond to an effective number Ny = 6.3 x 10'! of particle-turns and took ~ 200 CPU minutes
to run on an IBM RS6000/375 computer.

7. Conclusions

We have described a methodical comparison of four beam-beam codes with each other and with analytic
calculations. We have carried out single-particle and multiparticle tracking caleulations and have computed
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the tune shifts with amplitude and the particle density distribution. In general, the agreement is almost
perfect when the comparison is meaningful, and the tiny differences can be traced to round-off errors. We
have studied the thin and thick lens approximations for the beam-beam interaction in weak-strong mode,
different slicing algorithms, and different ways of computing the complex error function. This article is a
brief summary of Ref. [1]; more details and more cases studied can be found in there. The good agreement
exhibited by the cases shown here and in Ref. [1] are typical of a much larger set that space constraints do
not allow us to present.

A study of the convergence rate as the number of kicks N, — oo of the five slicing algorithms shows that
#4 is the most efficient. Based on the damping time and on the curves for the convergence rates, we have
provided a criterion for the minimum number of kicks that must be used in a given situation for a given
algorithm. For the case of the PEP-II nominal design, the adequate number of kicks is 3 for algorithm #4,
and 15 for #1.

We found excellent agreement between the tracking results for the tune as a function of amplitude
and the corresponding analytical calculations. These calculations were done for one slice, with or without
synchrotron motion, for round and for flat beams. We found a discrepancy only in the case when the
amplitudes of betatron and synchrotron oscillations are both large. In this case, however, the synchrotron
sidebands of the vertical tune are prominent. Since the analytic calculation does not take these sidebands
into account, the discrepancy is not meaningful.

By using the fourier spectrum of the single-particle motion as a probe, we uncovered errors in earlier
versions of the code TRS. It turns out, however, that these errors lead to only minor effects in the multiparticle
simulations carried out for PEP-II [2]. However, they might have been more important in other situations.
One of our main motivations in carrying out the detailed single-particle comparisons was to look for these
errors. It is gratifying that the spectrum of the motion provides such a useful magnifying glass through
which to look at the beam-beam interaction.

The two-dimensional particle distributions in amplitude obtained from the three codes TRS, TAIL and
LIFETRAC are in good agreement. In this case we do not expect the agreement to be perfect because the
codes use different algorithms for slicing, radiation damping and quantum excitation.

As discussed in detail in Ref. [1], there are significant differences in computational speed (but not in
accuracy) in the above-mentioned algorithms for the complex error function. In Ref. [1] we also discuss
the effects from different slicing algorithms and different number of slices in the computation of the one-
dimensional particle distributions; the conclusions from this particular exercise, however, are subsumed by
those reached from the other calculations described here.

In summary, we have exhibited results in good agreement obtained with four different beam-beam codes.
Although these codes are optimized for different purposes, it is clear that their basic “engines” are doing the
same thing. Since the results also are in excellent agreement with analytical caleulations, we conclude that
the codes are correct to the extent that they involve the same approximations used in these calculations.
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Decoherence of a Gaussian Beam
due to Beam-Beam Interaction

G.V.Stupakov * V.V.Parkhomchuk, V.D.Shiltsev
May 15, 1995

Abstract

Using both analytical and numerical approaches, we compute the decoherence
function that describes decay of the betatron oscillations of the centroid of an ini-
tially offset beam due to head-on beam-beam collisions. Based on this function, the
decoherence time is estimated for the Superconducting Super Collider. We also dis-
cuss several definitions of the decoherence time arising in different beam dynamics
problems. |

1. Introduction

When a beam is kicked transversely, its centroid experiences decaying betatron oscilla-
tions. the decay is related to the tune spread in the beam, which - depending on a
particular case — can be caused by nonlinearity of the lattice, chromaticity of the ring,
or beam-beam interaction. decoherence due to the first two sources of the tune spread
has been previously studied by Meller et. al [1]. However, for the Superconducting Super
Collider (SSC) at its full energy of 20 TeV, the main source of the tune spread in the
beam comes from the beam-beam interaction. For example, at 20 TeV an effective tune
spread is about -107* [2],2- 107° due to residual chromaticity [3], and about 5- 106 due
to the lattice nonlinearity [3]. The effect is also important in the 8 TeV Large Hadron
Collider in CERN.

In this paper, we analyze the decoherence that is produced by head-on beam-beam
collisions in the model of strong weak beams and give estimates of the decoherence time.

The importance of the decoherence phenomenon is associated with the fact that in
the course of the damping of betatron oscillations the transverse emittance of the beam
increases. Characteristic time associated with the damping determines a scale on which
coherent oscillations transform to an increment of the emittance. This time is one of
the key parameters required for the design of the feedback system needed to suppress
emittance growth of the beam [2, 3, 4, 5]. We use two approaches to attack the problem.
The first is based on an analytical consideration that reduces the problem of decoherence

*SLAC, Stanford, CA, USA
t Budker INP, 630090, Novosibirsk, RUSSIA
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to calculation of a 3-dimensional integral. In addition, we performed a computer simula-
tion in which an ensemble of particles was tracked a linear lattice subject to beam-beam
interaction. Both methods gave results that agree fairly well with one another.

2. Analytical Consideration

Let us consider two colliding proton round beams with a Gaussian distribution function
characterized by the rms beam width o. due to beam-beam head-on collisions, a particle
of a beam having the betatron amplitudes a, and a, in z and y directions, respectively,
acquires a tune shift in z-direction, equal to [6]

Avg(aq,ap) = —ﬁ]due_“(“1+°‘2)1’o(azu)[Io(aw) — Ii(equ)), (1)

where oy = a?/40?, oy = a?[40?, I,(z) is the modified Bessel function of the n-th order,
and ¢ is the usual tune shift parameter, with £ = N,r,/4me, where N, is the number of
particles in the bunch, r, is the classical proton radius, and e is the norma.hzed emittance.
Note that Av, is negative for collisions of particles having the same charge sign. Because
of the axial symmetry of the problem, all of our equations remain valid when z — y and
Yy — .

In terms of the variables o; and a3, the distribution function of the Gaussian beam
has the form

pon, az) = de~(1te), _ (2)

where p(aq, az) is normalized so that

f/p ay,az)dayda,; = 1. (3)
0 0

Using Eqgs. (1) and (2) one can find a distribution function over the tune shift, f(Awv;),
such that f(Av,)dAv, gives the probability for a particle to have the tune shift Av, within
the range dAv,. The function f(Awv,) is given by the following integral:

f(Av,) =/]p ay,02)6(Avy — Avg(ay, dag))dagda;. (4)
00

Given f(Av,.), the average values < Av, > and < (Aw;)? > are reduced to.the
following integrals

< Avy >= /Auxf (Avy)dAv, = //p ay, az)Av(ar, ag)dagda,, (5)
00

< (Av,)? >= / (Av,)2f(Avy)dAv, = / f o(a1, ) Av¥(ay, ay)dondas,  (6)
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with the rms spread év, given by

dv, = \/< (Ar)? > — < Ay, D2, : (7)

3. Decoherence Function

The most complete description of the decoherence process is provided by so-called de-
coherence function that describes evolution of the beam centroid of a kicked beam. Let
n = z./\/B, where z. is the centroid offset and J is the beta function. The decoherence
function K(N) is defined in Ref. [6] as

n(N)
K(N)=—== 8
where n is the number of turns, A# is the initial kick angle, and 3, refers to the location
of the kick. A mathematical expression for the decoherence function that corresponds to
an infinitesimally small initial kick has been derived in Ref. [7]. For our purposes it can
be written as follows:

K(N) = [ sin (27N (50 + Avs)) f(Avy)dAv, = Ime?™Nve j 2NV £ Ay )dAv,,
(9)

where v, is the unshifted tune of the beam. We restrict our attention here to considering
only the modulus K(N) of the complex integral in Eq. (9); it has a meaning of the
envelope (or amplitude) of the betatron oscillations produced by the initial kick,

4

K(N) = Lf e2™Nav: £( Ay, )dAv,

=4 . (10)

f/exp (—2(eq + az) + QNiNAuI(al,az))dall da,
D 0

In Eq.(10) we explicitly took into account that the beam-beam interaction produces
a tune shift in the range —¢ < Av, < 0. It is interesting to note that the tune spread év,
(see Eq. (7)) can be related to the second derivative of X(N) at N = 0,

1 | &K :

N=0

4. Résults of the Calculations

We computed the decoherence function K'(/N) by two methods. In the first, we numerically
integrated Eqs. (1) and (10), which together constitute a 3-dimensional integral. In
the second, we performed a computer simulation in which an ensemble of up to 2 - 10°
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particles with an initial Gaussian distribution function has been tracked several thousand
turns subject to a standard linear transfer map, followed by a kick due to the beam-beam
interaction. The distribution function f(Aw;) of the ensemble has been computed, and
with the use of the first part of Eq. (10), (V) has been calculated by means of numerical
integration. Both methods agree with one another within several percent.

The function K(N) obtained as mentioned above is plotted in Fig.l1 as a function
of the variable 27 N¢. On the same plot we also show a scale with number of turns N
corresponding to £ = 1.8 -10~2 — the nominal value of ¢ for the SSC with two interaction
regions.

Fig. 2 shows the distribution function f(Aw,) found from the tracking simulations.
This curve is not ideally smooth (as it has to be) simply because of the limited number
of particles used in the simulations. The average values characterizing this function are

< Av, >= —0.633¢, \/< (Av,)? > = 0.655¢, 6v, = 0.167¢. (12)

For comparison, we have also computed decoherence curves for large amplitudes of the
initial kick. These curves are plotted in Fig.3 (together with IC(/N) from Fig.1) for initial
kicks equal to ¢ and 40. They demonstrate the general trend of slower decoherence for
stronger kicks.

5. Decoherence Time

Having found the decoherence curve we are now in a position to estimate the decoherence
time for the decay of an initial kick. Notice that there is no unique, rigorous definition of
the decoherence time. In this section, we present several definitions that arise in different
beam dynamics problems.

One can simply define the decoherence time (number of turns) Ny, as the time
needed for the amplitude to go down to half of its initial value, K(Ngeeon = 0.5. From
Fig.1, one finds the following estimate for Ny, so defined:

1
Nfiecoh ~ E (13)

For the SSC collider, where ¢ = 1.8 - 1072, this gives Nyeon = 600 turns.

For a feedback theory, a more relevant definition is associated with the behavior of
K(N) in the region of small N. This is easy justify if one takes into account that a
strong feedback systems damps the beam oscillations much more quickly before they de-
cohere.This implies that the only an initial phase of the decoherence process is involved in
the residual emittance growth of the beam [4]. Because K'(/N) has a quadratic dependence
in the limit N — 0, an adequate definition of Ny, in this case is

| 1
V=K"|y s C 2méy, (14)

so that A{(N) =1 = 1/2(N/Nyeeor)? for N € Nyeeon. Our calculations give

Nrier =
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0.95 :
Ndecoh = —f_’ (15)

which results in Nyeeon = 530 for the SSC. ‘
Yet another Ny, is related to the effect of external noise acting on the beam (without

feedback). Assume that at each turn the beam experiences random, uncorrelated kicks of
amplitude a;,. Its displacement after N turns is given by

Az AN) = i K(N —m)an. (16)

m=1

Let us find the average square of the displacement:

N N
< (Az.)? >= Y K*N —m)<al >=<a®> > K*(m), (17)
m=1 m=1
where we have employed the condition of uncorrelated kicks < a,,a, >=< a* > §,1,. Now
we define the decoherence time Ny..,; so that

1
< (Az.)? >= §Ndmh "y (18)
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2 Offset equal to o
0.8~ 3 Offset equal to 40 ]
0.6 =
K
0.4 =7
3
1
0.2 =
2
0 1 .
0 1000 2000 3000 4000 5000
Turns

TIP-04750

Figure 3. Decoherence curves for various initial offsets.
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This gives us the relation,

N o0
Nieooh =2 3 K*(m) » j K2 (m)dm. (19)
m=1 0

In Eq. (19) we have considered that K(m) is rapidly oscillating (with the betatron fre-
quency) function, so that the average its square is equal to half of its amplitude squared.
Our calculations give

0.81

Ndecoh == T) (20)

with Nyecon = 450 for the SSC. Our computer tracking confirmed Eqs. (18) and (19)
within an accuracy of the statistics of the calculations.

6. Summary

In this paper, we have calculated the decoherence function for the head-on beam-beam
collisions. This function gives the most complete description of the process, allowing,
for example, calculation of the tune spread associated with the beam-beam interaction
(see Eq.(11)). Via the Fourier transform, it is directly related to the distribution of the
particles over the tune shift Av,. What is more important, this function gives us a natural
characteristic time scale on which an initially driven betatron oscillation damps out. We
have shown that, depending on the exact definition, the expression for Ny has a form,
Nyecon =const /€, where € is the beam-beam tune shift and consta2 1. Our result generally
agrees with the numerical study of the SSC beam decoherence [8].
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COUPLING CORRECTION FOR THE BEAM-BEAM EFFECTS OPTIMIZATION®
D.V. Parkhomchuk
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e-mail: D.V.Parkhomchuk@inp.nsk.su

1. Introduction

It is the well-known fact that beam-beam effects on the flat beams increase
mainly vertical size of the beams. In the absents of beam-beam effects vertical size
is generated by betatron coupling, and the horizontal size by quantum excitations.
So while the horizontal beam size is defined by magnetic structure and RF
acceleration parameters, we have a plenty of methods of placing skew-quadrupoles
to generate the same initial vertical beam size. The question is what configuration
of coupling should we choose (or avoid) to optimize beam-beam effects.

2. Simulation technique

It’s clear that one cannot solve this problem analytically, so the simulation
program was written. The program makes the tracking through linearized
accelerator structure (VEPP-4M was taken) with variously placed skew-
quadrupoles and one interaction point, where beam-beam kick was calculated by
complex function Erf, assuming that the beam is short (thus kick doesn’t depend
on longitudinal motion). Longitudinal motion and beam profile tilt angle were
taken into account. Quantum excitation is defined as a random horizontal kick for
turn, that produce the calculated horizontal beam size. The excitation of the
vertical beam size occurs in skew-quadrupoles.

3. Checkings

The comparison with analytical estimates [1] of vertical beam size was made, to
ensure that simulation mechanism is adequate.

<x;>
B 2 : ’
<X _;’ > a."AV +(a.\' + a,v)|Q‘ ZaJ'QIAV (ax + ay)|Qi H‘n’
ﬁf:ﬂf‘ =D a,Q,sv 2a, +a,)Q} —-a,Qav H,
I‘J g (a,\: + ay)IQ|2 _ZaJQIAV aJAVz + (ax + a.")lle Hyy
< y;i > ‘
B,
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Where:
Q= Ql +iQ2 -

e \\/ﬂ,ﬂ{ CSuR(B. B i 1\}
[

L UL e R i O
H,=C 27:R4|p| \/—[rr,n, ( n;—%ﬂ:m)(ﬂ,n}-%ﬂ;mﬂ

with i,j = x,y; f,, the betatron function; R,the average machine radius; p,the
radius of curvative in a bending magnet; y, the beam energy in units of rest
energy; and C, =55r,h/48\3m, =216-10"°m’/s. S,(0)=(dB,/&)R*/Bp and

S,,(6) = B,R/ Bp, strength of skew quadrupole and solenoid fields; Bp, the

particle rigidity.

In this terms a skew-quadrupole generate a certain Q. So having a basis of a pair
of skews we can suppress any coupling by making Q=0. The example of such
compensation is given in the picture.
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On the picture is shown the behavior of vertical beam size when there is the
coupling error in the ring, and we rotate the correction vector Q with the same
modules as error by the pair of skews. In one point we see the compensation, there
correction vector is opposite to error vector.

So we can partly compensate the random coupling error or coupling caused by
detector’s solenoids by pair of skew. The picture shows rather well agreement
tracking with analytical formulas for vertical size in coupled lattice without beam-
beam effects.

4. Results

The different skew placement at different working point was treated to find out
the “bad” and “good” type of coupling. It was not find out any preferable
coupling configuration, when the coupling produced by each coupling element is
less than total coupling (‘no compensation’ case). But when there is the
compensation (the total coupling is less than the coupling of some elements) one
can notice the difference. Let us look at the graphs:

6E-3 —
4E-3 —|
E
2
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N
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=
1))
>
2E-3 —
Be
0 e ]
| | W 1
0.00 0.04 0.08 0.1

153



Here we can see the dependence of the vertical beam size on the strength of
beam-beam effects with different coupling configuration. Three of them are
slightly different, but the fourth is extremely bad - the vertical size blow up at
relatively low linear tune shift. As I mentioned above it is a case of ‘coupling
compensation’. Presently such a situation takes place on VEPP4-M, and to
improve it, the localization of coupling errors is investigated now.

5. Conclusion

So one can extract the useful advice from here. It’s obvious that beam-beam
effects cause the shifts of coupling vectors of elements. So if one makes the
compensation by elements whose coupling is more than final coupling, the shifts of
them produce large shift of final coupling and compensation is destroyed.

If there are coupling errors or solenoids, coupling must be corrected by skews or
solenoids which are close to the place of error and have the collinear (opposite) to
the error coupling vectors, because in that case the shifts of those vectors don’t
produce large shift of total vector.
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The program of the beam-beam effects study
on the VEPP-4M

G.M.Tumaikin

Budker Institute of Nuclear Physics (BINP),
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The program of the beam-beam effects study on the collider
VEPP-4M, that was put into operation after reconstruction, is
discussed. There are two motives for this work: first, the increas-

ing of the VEPP-4M luminosity and, second, getting the necessary

experience for the @ -, ¢~ 7- and b -factories future projects.

INTRODUCTION

The study of the beam-beam effects in BINP was begun about 30 years ago on electron
beams collider VEP-1, when for the first time the influence of nonlinear resonances on
beam size and lifetime was investigated. Then experiments were continued on electron-
positron colliders VEPP-2, VEPP-2M and VEPP-4 in Novosibirsk, as well as in
facilities of .other physical centers: ACO (ORCE), Adone (Frackati), SPEAR
(Standford), DORIS (Hamburg) etc. The review of results of these experiments was
submitted in series of papers!. '

Simultaneously with experimental researches for expired 30 years the large work on
theoretical study of beam-beam effects is conducted. Two approaches are here
allocated: analytical, based on Hamiltonian formalism, and computer simulation. In the
few last years the computer simulation was more successful.

Nevertheless, the wide circle of problems for experimental and theoretical study is
marked. The decision of these problems is necessary as for increasing of luminosity on
existent collider generation, as for building of the future one.

The program of work on the VEPP-4M discussed below has by purpose the study of
small part of unsolved problems.

1. DESCRIPTION OF THE VEPP-4M

The VEPP-4 accelerator facility includes the injection facilities and the collider
VEPP-4M. The collider after stoppage in 1985 was considerably modernized2. First, the
optics of the experimental insertion was considerably changed for the conducting of the
experiments on two-photon physics, that permits now to measure energy of scattered
electrons (positrons) in process e‘e” —e'e” + X with high accuracy. Second, the
B-function in collision point is reduced, and the multibunch mode with orbit
separation in parasitic crossings (PC’s) is arranged to increase the luminosity. In the
interaction point (IP) the new detector KEDR is placed, enabling carry out the wide
program on b-meson physics and two-photon physics.
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The main parameters of the VEPP-4M are represented below.

Energy, GeV 6
Circumference, m 366
Bending radius, m 45.5
Betatron frequencies Q,,0, 8.53,7.57
Compaction factor 0.017
Horizontal emittance, mm * mrad 0.3
Vertical emittance, mm * mrad 0.001
Energy spread, % 0.1
SR loss, MV/turn 4
Synchrotron oscillation damping time, msec 2
Harmonic number 222
Bunch length, cm 4
Space charge parameters &, &, 0.005, 0.05
Number of particles per bunch 2%10n
Number of bunches per beam 2
Beam current, mA 50
Luminosity 7*103
The interaction point
A number of collision points 1
Vertical g-function,.cm 5
Horizontal £-function, cm 70
Dispersion function, cm 80
The parasitic crossings
Type of separation - vertical electrostatic bump.
A number of crossings 3
Vertical S-function, cm 1200, 290
Horizontal g-function, cm 460, 1400
Dispersion function, cm 78,-125
Parasitic

RFCavities  €rossing  RFCavities

Parasitic
crossing

Parasitic
crossing

Injection
Focilities

DETECTOR
KE‘BR

:*_

e
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Fig.1. Interaction points on the VEPP-4M.
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2. PROGRAM OF EXPERIMENTS

It is assumed to do the work in following directions which are briefly stated below.

2.1. COUPLING OPTIMIZATION FOR THE ACHIEVEMENT OF THE
UTMOST SIGNIFICANCE OF SPACE CHARGE PARAMETERS ¢&

Usually in electron-positron colliders in the IP’s the following equations are valid:
o.>>0,, & >>& , where * denotes “in the IP”.

Hence, beam-beam effects mainly increase the vertical beam size, that conducts to

reduction of the luminosity and the lifetime.

It is known, that the initial vertical beam size at small currents is basically defined by
the magnetic field distortion. It is possible to allocate the following main causes of
excitation of initial beam size: ,

- quantum fluctuations of synchrotron radiation in locations with large ver-
tical dispersion function,

- coupling resonances nv, tmv, =k,
- vertical dispersion in collision point,
- vertical distortion of the orbit with presence of the chromaticity.

It is expected, that the displacement of these elements concerning IP strongly influences
the dynamics of counter beams even in the case of the same initial vertical beam size.

Thus, the goal is to find such a way of achieving initial vertical size at which the beam-beam
effects will be minimal. To resolve this problem it is necessary to reduce the coupling, and
then to find the optimum parameters of skew-quadrupoles.

2.2. INFLUENCE OF LARGE RADIAL DISPERSION

The other goal is the study of the beam-beam effects in the mode with a large dispersion
function in the IP. It is important to understand which value of & can be obtained and

how the beams will behave in the case where the betatron horizontal beam size is
substantially less than the synchrotron one.

This study is necessary for the projects of the - and ¢ - r- factories with mono-
chromatization of the interaction energy, where the particles are distributed by energy
over the interaction region. The modern optics of VEPP-4M allows us to change the
betatron-synchrotron size ratio at the IP within wide limits.

2.3. PARASITIC CROSSINGS

The third goal is the study of the PC’s influence and determination of the optimal orbit
separation. This task is connected with the arranging of the multibunch mode in the
VEPP-4M. It is known, at present time the arranging of the multibunch mode is the
main method of increasing  the luminosity in existing and future colliders.
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3. RESEARCH DESIGN AND METHODS

3.1. SIMULATION

The program of research work comprises three problems. They are the investigation of
the beam-beam effects in the high dispersion function mode and the study of coupling
and PC’s influence.

All problems will be solved by numerical simulation which in the first place includes
the calculation of the beam size, luminosity, and the lifetime. The simulation will be
mainly performed in the weak-strong model. To fulfill this research work, we have a
series of programs used earlier. We are going to use the fast tracking technique emerged
from a concept proposed earlier by J JIrwin’. It has been developed later by D.Shatilov*?
for calculation of the lifetime and for beam halo determination. This technique allows us to
reduce the required CPU time by several orders of magnitude against the brute-force
technique.

The conditions of the problems require new programs, in particular, to study the
strong-strong beam regime. The program for study of influence of various methods of
vertical beam size generation on beam-beam effects in the weak-strong model is
prepared. The first results show that the beam-beam effects dynamics depends on the
method of generation of initial size’. The program for study of coherent interaction of
counter bunches (strong-strong model) in view of PC’s influence’ is developing.

3.2. EXPERIMENT

The appropriate techniques and apparatus have been developed. They comprise:
a) luminosity monitoring by single and double bremsstrahlung and by the
small angles scattering;
b) beam size measurement by synchrotron radiation;
¢) equilibrium orbit measurement;
d) measurement of optic parameters ( #-function and y -function);
e) automatic measurement of betatron oscillation frequency;
f) dynamic aperture measurement.
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Invariants for Nonlinear Accelerator Optics
and Round Colliding Beams
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Abstract
A model accelerator lattice composed of cells each consisting of a thin nonlinear lens
and a drift space is studied. The corresponding one-dimensional nonlinear map of the

“accelerator” type is proved to have an exact invariant, provided that the nonlinear kick
function(s) are of a special form.

The proposed 1- and 2-cell lattices have invariants expressed as polynomials up to the
sixth order in momentum. The results obtained for one-dimensional motion are partially
carried over to the two-dimensional case, particularly, to the systems preserving angular
momentum. Among those the round colliding beams are considered. :

An example of elimination of chaotic trajectories in the motion by adding one lens
is presented supporting interest in using integrable systems for improving the dynamic
aperture and raising the threshold of the beam blow-up due to the beam-beam effects.

1. Introduction

Recent studies in mathematical physics show a growing interest in integrable systems. In
accelerator physics, an integrable system means a oné-turn map with the necessary number
of commuting and independent integrals of motion. If the manifold of particle motion in the
phase space is closed (the motion is finite), we can describe this motion in terms of invariant
Liouville tori.

This integrable system is an analogue of a linear system, but its frequencies depend on
the values of the integrals of motion. No chaotic trajectories will appear in this map.

It was shown in paper [1], that an accelerator lattice composed of cells consisting of thin
nonlinear lenses and drift spaces can have a map with simple (polynomial) integrals.

This paper contains all the results of [1] re-derived by means of a new approach, and fur-
thermore new one-dimensional integrable systems are obtained. Using this approach, we can
“cure” certain nonlinear maps from chaos. In other words, we can modify certain nonlinear
maps by adding one lens of the special form (which depends on the initial map), such that
the stochastic trajectories disappear. The new map is still nonlinear, but integrable. As an
example, the Hénon map is “cured” from chaos. This new approach gives a possibility of
obtaining integrable systems even for the beam-beam effects.

The results are then extended to the two-dimensional case, and a lattice is presented
which can be used as a prototype lattice for a real accelerator.
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2. Basic Cell Map

In this paper we construct model accelerator lattices consisting of one or two cells with a
drift space and a nonlinear lens. In the map considered, we put p = z’, where z’ is the
particle trajectory slope, and take the drift length I = 1 to simplify formulas. The map
corresponding to one cell is:

z = z+p,
p = p+f(@). (1)

Here z, p are the initial values and Z, p are the final values of the coordinate and momentum.
f(7) is the kick function of the nonlinear lens to be found jointly with the desired invariant.
The equation for an invariant I is:

I(z,p) = I(z +p,p+ f(z +p)). (2)

It is more or less evident that it is too difficult (or impossible) to find a general solution
of this functional equation, so we have to look for invariants with simple dependence on the
coordinate and momentum (see, for example (2, 3]).

Let us fix some general properties of an invariant of 1-cell map (assuming that it exists).
For this purpose it is convenient to use the variables z,7 = z + p instead of z,p (7 means
the coordinate at the end of drift space).

The first remarkable property of an invariant of one cell is that it is a symmetrical
function of z and T i.e. it does not change when permuting z and Z. Let us prove this.

At the beginning of the drift space we have the coordinate z while 7 is the coordinate at
the end of it. If we start the motion from the end of the drift space in backward direction
(with the reversed sign of p), we have the same motion (because this transformation is
equivalent to reversal of time) with the initial coordinate Z and the final one z =7 + (—p).
This reversed motion starts from the beginning of the drift space (we mean that the end of
the drift space is the beginning of it for motion with time reversal), so this reversed motion
has the same trajectory in the phase space and the same invariant (but the initial and final
coordinates are permuted), hence we get:

I(z,7) = I(T,z) . (3)

Let us note that this property holds only if we take the beginning (or the center) of the
drift space as the initial point for the map. In the linear case this property is related to the
symmetry of the optical functions about the center of the drift space in such a cell.

Let us obtain the second important property of this invariant. Directly from definitions
of the invariant and variables we have:

I(z,%) = Kz, x4 p)= KZ,T+P),
I(LE,E):I('I_,J’J)ZI(E,E—}J). (4)

After comparison of the first and second lines in (4) we have:
I(E1E+ﬁ):1’(f')f—p)a (5)

here p = p+ f(T) is the momentum after kick.
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Thus, we can obtain the invariant behind the lens from the invariant before the lens by
changing p to —p. In other words, transformation of the invariant on the lens (adding
its kick to the momentum) is equivalent to sign reversal of the momentum argument
in this invariant.

These two properties are necessary and sufficient for a function I to be an invariant.
It means that if we can find a function with these two properties, we have an integrable
system automatically, while the kick of the nonlinear lens is no more arbitrary, its coordinate
dependence is determined by the second property (5) of our invariant).

The theory just developed will now be illustrated by an example, which is significant in
itself.

Note that an arbitrary function quadratic in momentum has the second property (5). Let
it be H(z, p):

H(z,p) = A(z)p” + B(z)p+ C(z) .
For the new p = p + B(z)/A(z),
H(z,p) = A(x)p" — B(z)p + C(z) .

We can see that this function expressed in the new momentum has the same form but with
the opposite sign of the momentum.

Let us make a very important notice: substitution of p + g(z) instead of p (where g(z)
is an arbitrary function of the coordinate) does not change the second property (5) of the
invariant, but we have to change the kick function of the lens.

So if we have the second property (5) for p, we have the same property for the variable
T = p+ z, and the quadratic invariant in p is also quadratic in Z (it comes from the
definition of 7). Finally we come to a very simple conclusion: every function quadratic in #
and symmetrical in z and Z yields an invariant.

A general form of this function is:

I(z,%) = az’z* + baZ(z + T) + caZ + d(2% + T%) + e(z + T), (6)

here a, b, c,d, e are arbitrary constants.
Let us obtain the lens kick from I. We have to change z to T — p to obtain the invariant
at the end of the drift space in the form:

I = A(@)p* - B(Z)p + C().
From the second property (5) of our invariant we have:
I(z,7 - p) = I(Z,7 + p), (7)

where p = p + f(7) is the momentum after the kick. After substituting p = p — f(Z) into
the invariant at the end of the drift space and using the previous equation we get:

A@) (P - (@) - B@)(P - f(7)) + C(z) = A@)(p)* + B(F)F + C(3). (8)
This equation yields:
f(@) = -B(7)/A(3). (9)
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So we have got the general rule: if we take the invariant after the lens, the kick of this
lens is equal to the certain function whose addition to the momentum is equivalent to the
sign reversal of the momentum in the invariant. _

In general, the second property (5) holds for all functions of the form:-

fo(z) + fi(z)(p* — F(z)p) + fo(z)(p® — F(2)p)* + ..., (10)

here fo, fi1, fa, - .. are arbitrary functions of the coordinate.

Let us introduce a notion which will often be used later: F' in (10) will be called a Sign
Reversal Function (SRF). We can check the second property of the invariant in (10) by
substituting p + F'(z) instead of p.

As we noted earlier, if we put p in the form p = p’ + G(z), this property remains for p’
too, but the new F in (10) now is:

Frew(z) = F(z) — 2G(2) .
For the variable 7 = p + « the Sign Reversal Function [ is:
Frp=F(z)+2z. (11)
For the invariant (6) the SRF for 7 is:

P bz’ +cx+e
T ar?4 bz +d’
So the perfect kick of the lens must be:
bz + cx +e
Flz)=-22 — ——— . 12
(<) 4 ax?+br+d W3

The same formulas were obtained in [1] in other way’.
Now we can present one more system with a new invariant:

I(z,%) = (azZ(T — z) + b(z + T)(T — z) + (T — 1))?, (13)

here a, b, c are arbitrary constants.
This invariant has the form (10) and it is a symmetrical function of z, . The kick of the

lens for this case is:

azr®—c

ar +b

It was shown in [1], that the invariants of the third degree in momentum cannot appear
in 1-cell maps. Now one can be assured that polynomial invariants with odd highest powers
in momentum do not exist at all. We can note that such functions do not have the second
property (5) of one cell invariant, because we can never reverse the sign of the highest odd
power of momentum by adding any function of coordinate to the momentum. It proves the
above statement about polynomial invariants with an odd highest power in momentum.

Moreover, after investigation of invariants of higher order in momentum, a preliminary
conclusion can be drawn: it is doubtful that other invariants with finite order in momentum
exist, besides (6) and (13).

F(z) = 22 + (14)

'Recently we became aware of previous work by E.M. McMillan et al. [4], where the rational nonlinear
kick (12) and the symmetric form of the invariant (6) were studied in certain particular cases. We are
grateful to B.V. Chirikov for this reference and for the useful discussion.
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3. Two-Cell Map

Let us take the function J(z,Z), which has the form (10) for  and 7 (or, in other words, this
function has only the second property of the invariant for a 1-cell map for both variables z
and 7, and is allowed to be non-symmetrical). The Sign Reversal Functions can be different
for z and 7.

Let us transform this function over the two cells. Transformation over the drift space
means just simply expressing the new z,p in terms of the old ones. Transformation over
the lens again means expressing the new momentum p via p, and we require that this
transformation be equivalent to replacing p by —p (it follows from the definition of the SRF
F).

)Now we have to use the indices of variables which mean the cell number for example, 7,
means the coordinate at the end of the first drift space. It is evident that the coordinate
at the end of the drift space is equal to the coordinate at the beginning of the next cell
(To = 21, etc.).

Let us start from the beginning of the first cell and transform J to the beginning of the
second one:

J(xo,fg) = J(-fg —pg,fo) = J(fc +p1,fg) = J(El,xl) . (15)

So the transformation of the function J over one cell is equivalent to interchanging of the
variables z,7. If J happens to be a symmetric function of z, T then it is an invariant for the
map of the first cell alone.

Now we transform it over the second cell in the same way (as we have seen, it means just
interchanging the variables):

J(_fl,a’,f]) = J(Iz,fg) = J(.TQ,EO) s (16)

The last relation shows that J is an invariant function for the 2-cell map.

Thus, an arbitrary function of two variables which has the form (10) in both
variables generates an integrable map for the 2-cell lattice.

This transformation over two cells was made in [1] in a direct way for quadratic polyno-
mials in p (for them the property (10) is satisfied automatically). It was found there that
the transformation of coefficients of these polynomials is the identity transformation for the
2-cell map. Now it is proved in the general way.

Let us consider an example. From the previous section we know that an arbitrary quadrat-
ic function in ¥ has the second property of the invariant of 1-cell map. So any function,
quadratic in z and 7, generates all the simplest integrable 2-cell maps. The general form of
this invariant is:

I(z,7) = az’7® + baT* + c2’T + daT + ex? + fZ° + gz + h7, (17)

here a,b,c,d, e, f, g, h are arbitrary constants.
Taking here the Sign Reversal Function for Z and subtracting 2z (see (10,11)), we obtain
the kick of the first lens:

cx’®+dz + h

i ey

2z . (18)
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Figure 1. left) The Hénon map with f; = —0.15z% — 0.6z, f, = 2—0.63:.
right) The map corrected by (19) with the same f; and f, = %.

For both examples a,b,h =0, e, f = 1 in (17).

The same function for the variable z, minus 2z, gives the second kick:
br?
22 LCE N0 o g (19)

falz) = “azltczte

There is an intersting combination of parameters for this case. If we set a,b,h = 0, we
have a combination of the sextupole and the quadrupole as one of the lenses (namely, the first
one). If we put another lens in this 2-cell lattice as the quadrupole, we obtain a particular
case of the Hénon map with two identical linear cells and a superimposed sextupole in one of
them. We can “cure” this non-integrable map by changing the second lens so that it would
take the form (19). In Fig. 1 one can see three phase space portaits: the Hénon map on the
top and the integrable one on the bottom left as resulted from this correction. The difference
of the second lens for these two cases begins from the second order in the coordinate.

Now let us assume that we have two arbitrary lenses in two cells. Can we make the
corresponding map integrable by varying one of the lenses? If we know the solution to such
problem, we notice that it is close to the problem of the “beam blow-up” due to the beam-
beam effects: we can make the whole map, including the nonlinear kick from the opposite
bunch, integrable (without elimination or cancellation of nonlinearities).

Some combination of parameters in the map related to the invariant (17) gives an example
of elimination of overlapping resonances by means of small correction in one of the lenses,
so as to bring it to the form (19) (see Fig. 2).

It is easy to obtain a formal series for solving the problem, mentioned above.

Let us consider the 2-cell lattice where one of the two lenses has an arbitrary kick function
f(z). The Sign Reversal Function F for the variable Z = p + z in (10) is equal to f + 2z.
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Figure 2. left) A globally chaotic map with f; = ‘“ﬁz:;ibz_:;:f-]%x knd

f _ —0.82%40.1412240.85z
2= 0.422—0.34z+1  °

right) The map corrected by (19) with with the same f; and f, = ‘U'gfz‘,‘_’_'g%’j;"fiss".

So, for the reasons discussed above, our invariant must have the form (10):
I(z,%) = fo(z) + fi(z)(@ — F(2)7) + fa(2)(@ - F(2)2)* + ..., (20)

here fo, fi, f2,. .. are still arbitrary functions of the coordinate.

Let us choose f; such that the invariant becomes a quadratic function in z in the coeffi-
cients of all the powers of Z. The coefficient of zeroth power of T is equal to fo(z), so this
function must be quadratic:

fo(z) = quo(z).
Then, the coefficient of T is — fi(z)F(z), so we put:
~h(@)F(z) = qui(2),
here qu, is an arbitrary quadratic function. Then from the next step we can find fy(z):

fi(z) + fo(z) - F(z)? = quy(z) .

Now we can solve for f(z) the above relation(s). We can perform this step-by-step operation
for all powers of T so that from each relation for the i-th power we get f;.

If this series converges, we have the second property of the invariant for z automatically,
because it is constructed as a quadratic function. The analysis of convergence of this series
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is not completed, it is more or less evident, that we have some freedom in choosing functions

qu; for better convergence®.

There is an interesting case when this series takes the form of a finite sum. It gives a new

integrable 2-cell system:
I(z,7) = g2* + hx + (e + f)((az + b)7* — (cz + d)T) + ((az + )7 — (cz + d)T)*, (21)
where a, b, c,d, e, f, g, h are arbitrary constants.

The kicks of the two lenses can be obtained from this invariant in the same way as in the

case of invariant (17).
Finally, we present one more integrable 2-cell system. The corresponding integral is:

I(z,7) = [((az + b)T — %(ca: +d)) - ((az + b)F — (cz + d)T + ez + f)]*, (22)

here a,b,c,d, e, f are arbitrary constants. The squared expression is a quadratic function
in z, so I(z,Z) has the second property for z automatically. One can check, that the Sign

Reversal Function for 7T is: !
_az+ b

F(x)_cx+d'

So, expression (22) gives the invariant of one more family of integrable 2-cell systems.

4. Invariants Quadratic in Momentum

Previous sections dealt with the systems where the time dependence was represented by
delta-functional non-linear kick functions, and the invariants were quadratic in momentum
only at the kick moment. Here we construct a family of continuous time-dependent 1D
Hamiltonians which have a quadratic invariant, and thus the respective motion in 1.5D is
integrable. Starting from a Hamiltonian which is independent of the time variable T (with

the particle mass m = 1):
p?
H(X,P)= T 4+ U(X), (23)

we can apply a time-dependent (canonical) transformation of the dynamic variables along

with a relevant transformation of the time variable T'(t): X(T'), P(T') ki z(t), p(t), so that
the Hamiltonian will take the form:
2

Hm%n=%+me (24)

Transformation 1° is additive, use is made of any (differentiable) coordinate displace-
ment function of time D(t):

t = T,
r = X+ D(t), (25)
p = P+D0).

2There is a great difference between the algebraic approach presented here and the algorithm by J.R. Cary
et al. [5] for iterative elimination of resonance islands by introducing nonlinear corrections into a known
map of one period. Convergence of this procedure is also problematic.
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here ‘dot’ stands for the time derivative. The time-dependent Hamiltonian of the new system
has the form (24):

2

M= % +U(z — D@t)) — z- D(2). (26)

Apparently, the invariant of this 1.5D system is given by the function H(X, P) of Eq. (23)
where X, P should be expressed in terms of the new variables z, p:

H'= %(p — D(t))* + U(z — D(t)) = const. (27)
Transformation 2° applies an arbitrary time-dependent coordinate normalization func-

tion A(t) and involves a corresponding transformation of the time variable T' — t:

dt = AT,
g = AX, (28)
p = AX+AX=-§-+AX,

where ‘dot’ denotes differentiation with respect to the new time ¢ and use is made of the
Hamiltonian equation dX/dT = P in the last line. By its definition, p = &, while the second
Hamiltonian equation:

go B oz A L
p—Z—PE'FAX-FAX —'A—‘f'AX
yields the desired time-dependent Hamiltonian function:
p? . z A ¥

Again the invariant of this 1.5D integrable system is available from (23): using (28) we
express X, P via z,p and obtain:
H= %(Ap — Az)? + U(%

This expression is a generalization of the Courant-Snyder invariant of the linear systems3.

Any combination of transformations 1° and 2° also provides an integrable system of the
form (24), we present in Appendix an expression of the invariant combined from (27) and
(30). Note that any integrable system produced with this technique involves three arbitrary
functions: U(X), D(t) and A(t). One can prove directly that they form a complete set
of freedoms for a 1.5D integrable system with the invariant quadratic in momentum, see
Appendix.

Transformation 2° will be applied in the following section to the 2D systems preserving
angular momentum, in particular to the problem of round colliding beams.

) = const. (30)

*Indeed, Hill’s equation & + g(t)z = 0 implies & = g(t)z?/2 in (24). Taking U(X) = X?/2 in (23) we
immediately obtain from (29): A + g(t)A = A™%, i.e. the well-known equation for the betatron amplitude
function, hence A(t) = /7, and (30) takes the usual form of the Courant-Snyder invariant. We see that z, p
correspond to the conventional betatron variables, ¢ is the machine azimuth, while X, P are the normalized
betatron variables and T" stands for the betatron phase advance.
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5. 2D Systems with Conservation of Angular Momen-
tum

It is generally known that two-dimensional motion in the central force has an additional

integral in the form of angular momentum M = z p, — y pz, and thus is reducible to the 1D

problem in the polar coordinates. The equivalent 1D Hamiltonian can be expressed in terms

of r = \/z% + y2, p. = 7 with addition of the fictitious ‘centrifugal’ potential Uz = M?/2r?:
2 M2

e i<l 1
H= 5 +U(r,t) + 572 (31)

Aiming at integrable two-dimensional systems of physical interest we need an invariant which
exists for any value of M, i.e. for all particles with different angular momenta. In particular,
our system must be integrable at M = 0.

Let us carry the results of Section 2 over 2D systems preserving angular momentum. The
mapping consisting of the drift space and any kick force in the form (12) corresponds to the
integrable 1D motion and fits to the case M = 0. However, integrable 2D systems with any
M # 0 can be sought as a subset of these 1D systems, namely the two-dimensional kick
(12) must be radial in order to preserve angular momentum. If we now interprete (12) as
a radial component of a two-dimensional vector, then we can directly check that among all
the rational forms (12), those with b = e = 0 correspond to integrable motion with M # 0,
hence: i -

So the 1D case is partially extended to the 2D motion with axial symmetry. The obtained
force (32) is interesting for the round colliding beams problem in that it corresponds to the
kick from infinitely short opposing bunch in both limiting cases r — 0 and r — oo.

Turning back to the continuous Hamiltonian systems, we seek possible extensions of the
integrable 1D systems to the 2D systems with conservation of angular momentum. We can
write an analogue of the time-dependent Hamiltonian (29) of the integrable 1D motion for
these effectively one-dimensional systems in terms of r, p,, M, ¢:

H=&+—ch(—‘)—~—-‘— . (33)

M2
withUpg=U+U;=U + ot

Note the remarcable property of the centrifugal potential U.;: being proportional to
r=2, it keeps its form irrespectively of the normalization transformation R = r/A with any
function A at any value of angular momentum M!

Thus we conclude that all the 1D formalism in Section 4 is immediately applicable to
the 2D systems preserving angular momentum; the only modification is in addition of U
to U(R), but this has no effect on the decision whether a system in question is or is not
integrable, namely, whether its Hamiltonian has the form (33).
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6. Round Colliding Beams

Consider the particle motion in the fields of opposing bunch* with the Gaussian density dis-
tribution in all the three dimensions, 0,y = /B, y€z,y, 01 are the transverse and longitudinal
r.m.s. bunch sizes, respectively. The concept of Round Colliding Beams [6] envisages equal
B-functions B, = B, = # and equal emittances ¢, = ¢, = € in both degrees of freedom. Let
us show how the appropriate arrangement of the machine optics may bring this problem
closer to integrability. :

The radial force F; from the strong bunch should account for its variable cross-section
(due to variable §-function) and for the relative speed of collision which is twice the speed
v & ¢ of individual motion of the bunch and the test particle®:

2 1 — exp(—2= exP[—L%gﬂi]
Fh=hi—k g ”J- ¢§' —g(t)r, (34)
" VB

here k is proportional to the strong bunch intensity, s is the longitudinal position of the test
particle in the weak bunch with respect to its centre, g(t) denotes an (optional) axisymmetric
focusing in the Interaction Region (IR). The time ¢ = 0 corresponds to the moment when
the central test particle (s = 0) meets the centre of the strong bunch.

On the other hand, the Hamiltonian of integrable system (33) yields the certain form of
the force to be compared with (34):

M? ,ro 1l A
f=m-V@E+ar %)
Using the free functions A, g we can make these two forms identical for the central particles
with s = 0. From the radial dependence of F,;, A must be proportional to the optical

function in the IR: A(t) = \/B(t)/B:. Then the conventional equation for y/7 yields the

equation for A: )
“ }
At+gt)A= s (36)
i
The longitudinal modulation of F,; can always be packed into the proper definition of the
B-function:
o
B(t) = foexp( ), (37)
i
and the needed focusing g(t) in the IR will result from substitution of A(t) = \/B(t)/ B into
(36). The potential function U(R), R = r/A can be found from: :

R2
e

ey R I

“We treat here the head-on collision in the weak-strong model, and disregard the synchrotron motion of
the test particle and the longitudinal beam-beam effects (7).

5To simplify the formalism, we will use scaling of lengths and time units corresponding to ¢ = 1.

U'(R) (38)
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Thus the exact invariant for this problem is available, and the beam-beam dynamics with
round colliding beams in the weak-strong model is reduced to an integrable motion for central
test particles (s = 0) by means of the appropriate focusing in the interaction region.

The focusing function g(t) is determined by the longitudinal distribution profile in the
strong bunch. The longitudinal Gaussian in (34) was inessential in the above consideration®,
we may take any other reasonable longitudinal distribution and adjust to it the form of the
B-function imposing the appropriate focusing g(t) in the IR. Specifically, the Lorentz bell
(72 4 ¢2)~" in the longitudinal profile with 8, = fo = 7 will result in g(t)=0.

Since the Gaussian longitudinal profile is the most natural, we draw some practical rec-
ommendations for this case. Apparently, the case g(0) = 0 is attractive, and from (37)
we find a relation between the bunch length and the minimum B-value: o} = v28. This
provides for integrability of motion of the central test particles (s = 0). For the off-centre
particles the exact invariant is not available, however for s < oy we can expect an “almost
integrable” system where the perturbative analysis is possible.

The integrable single-pass system just considered is relevant to linear collider problems.
For circular colliders the opposing beam force should be transformed into a periodic func-
tion of time with the account of optics in between the repetitive passages through the IR.
Although this difference may result in small deviation from integrability (the obtained exact
invariant will be lost), the perturbation can always be done practically negligible and the
beam-beam dynamics will be almost integrable.

7. 2D Case

It was shown in [1], that we can carry over all the results of 1D case to two dimensional
motion by introducing the 2D map in complex variables:

zm = z+4p", (39)
p, = P+ F(z),

here z = z + 1y and p = p, + ip, are composed from the horizontal and vertical coordinates
and their respective momenta. The complex kick function F' = f, —if, is combined from the
components fz, f, of a potential force corresponding to the symplectic two-dimensional kick.
Moreover, F is assumed to be an analytic function of z which corresponds to the (paraxial)
Lorentz force from the fields satisfying the Maxwell equations in free space. This case of
Laplacian fields is the most interesting in accelerator optics applications.

The transformation between lenses in this map (39) does not correspond to the drift
space. From the first line of (39) we have:

r, = I +P:: 3 (4{])
Un- == PPy
Of course, we can construct this transformation by means of linear optics.
We have to substitute z instead of z and p* instead of p in the 1-cell invariants of 1D

case and we obtain two invariants of the 2D case, namely, the real and imaginary parts of
the complex invariant.

6Note that the Gaussian profile in the transverse distribution was essential.
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Let us prove that the real and imaginary parts Iy = Rel, I = Im/ of the complex
invariant I(z,p*) are functionally independent and have a vanishing commutator.

Then for the function I(z, p*) which is analytic with respect to its both complex variables
the Cauchy-Riemann conditions’

o, o0, 085 oI, 05 oI, 0L 0l

e g v Y MEESR . Bt = 41
dr Oy’ Oy dr’ Opg: dp,’ Opy Ops (41)
yield the relation between the gradients of I; and I5:
oI, oI, oI, 0 oI, 0I, dI, I,
=== —|=|=— -5 -5 7| =TVLL. 42
VII (61’ L] ap;;’ ay ’ apy) (ay’ apy’ 8.’1: ] apz 2 ( )

The real matrix 7 in (42):

001 0
000 —1
s P R
010 0

has only imaginary eigenvalues and eigenvectors. If we assume that the two gradient vectors
are “parallel”: VI, o< VI3, then from relation (42) we see that either of them should be an
eigenvector of 7. But they are real by definition, hence the gradient vectors can never be
parallel. Thus we conclude that I, and I; are independent functions.

Now let us calculate the commutator of I, I5:

oL on _onol  ohol_oho,
dp, 0z  Op, Oz  p, dy  Op, Oy

Substitution of (41) into (43) yields: [I;, 5] =0, Q.E.D.

All maps of the form (39) have an essential fault: at small amplitudes their z- and y-
frequencies are on the sum resonance. This fact results from the special form of the linear
transformation of coordinate and momentum between lenses (see (40)).

One can use multi-cell lattices with larger number of lenses and with various linear trans-
formations between them. More examples can be found in [8]. Such systems can be taken
as a prototype of an “integrable accelerator”.

(11, 2] =

(43)

8. Conclusion

The canonical theory can provide a general solution for a map preserving a given invariant
(by means of separation of variables in the equation for the generating function of the
desired transformation). However it is a problem to find the maps which correspond to the
accelerator optics among all those maps.

The main result of the present paper is the construction of feasible 1D maps of the accel-
erator lattice type having invariants of simple form. Since these solutions can be extended to
the 2D case, an implementation of the integrable lattices in practical lattice design is possible

"The relations between the partial derivatives w.r.t. the momenta have opposite signs because the complex
invariant depends on the complex conjugate variable p*.




in order to improve the dynamic aperture and, it is hoped, to cure resonance overlapping
and global stochasticity. An integrable 2D lattice is constructed in view to give a guideline
for designing an “integrable machine” optics.

An important special case of 2D systems with conservation of angular momentum is
considered in detail and applied to the beam-beam problem with round colliding beams.
This system is shown to be integrable with the appropriate arrangement of linear focusing
in the interaction region.
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Appendix: General Form of the Invariant Quadratic
in Momentum

Consider a general form of invariant quadratic in momentum p, assuming that the coefficients
A, B, V are arbitrary functions of time ¢ and coordinate z:

I=%(Ap—B)2+V,

A # 0. Equating its total time derivative to zero, we account for the Hamiltonian equations
of motion & = p, p = f, where the unknown force f depends on ¢, z

dl 5

== (Ap—B)(A:p" + (A~ Bo)p + Af = B)) + Vep + Vi =0,
the subscripts here denote the respective partial derivatives. The vanishing coefficients of
each power of p yield a set of equations in partial derivatives for the four unknown functions:
f is to be found along with A, B, V.

First of all, A, = 0, and A = A(t) is an arbitrary function of time. Then we take

A; — B, = 0, whence: _ -
B(z,t) = Az + A*D,

with an arbitrary D(t); dots denote the time derivatives. We choose here the special form
of arbitrary additive function of time for future convenience.
The last two equations form a set of equations specifying the unknowns f and V:

A(Af—-B)+V, = 0
—-B(Af-B)+V, = 0
The force f is thus expressed via V, B, A:

V. By
Y + a1 : (44)

and V is determined by the homogeneous equation in partial derivatives of the 1st order:

f =

BV;+AV;=0

[ts characteristic curve z(t) is then obtained from the equation:

—

ol el 5

dr B Az+ A’D

dat A A
Integration gives the lines of constant level of V:

X= ol D(t) = const.

Hence,
%

V(z,t) = U(A(t) - D(1)),

where [/(X) is an arbitrary function.




Thus we conclude, that the general solution to our problem of integrable system in 1.5D
with quadratic invariant is generated with three arbitrary functions: A(t), D(t), U(X). The
corresponding force f is then found from (44):

iy s 4 R
| f &= A3U+A(Ax+(AD)).
The Hamiltonian of this system can be found from the expression for f:

_A_’a(i
2 A

o &L
i

2
P 1 -

)2 — (A’D)
and the final form of the desired invariant is:

T %(Ap—Ax - 4D +U(5 - D).
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1. Introduction

The main purpose of the C-TAU factory project is attaining high luminosity for a beam
energy ranging from 700 to 2500 MeV. To carry out this project, it is planned to construct
two intersecting rings, the lengths of which should provide a sufficiently high bunch
collision frequency, on the one hand, and allow us to place on a track the systems required
to control the colliding beam sizes, on the other hand. Such a storage ring allows us to
pass easily to the colliding beam energy monochromatization regime by introducing the
vertical dispersion and creating the vertical size mainly at the expense of pulse spread
with a small betatron vertical size. .

To perform the experiments with the longitudinally polarized beams at the interaction
point, we need special optics. Beam polarization in the storage ring at this energy using
radiation polarization is inefficient because of high values of the perimeter of the storage
ring and current. That is why in the polarized beam experiments we are going to inject
the polarized beams from a special storage ring with short polarization time. The injected
electrons and positrons will be vertically polarized. Spin rotators installed in the arcs will
provide the electron and positron beams of arbitrary spiraling at the interaction point.

To obtain the maximum luminosity, the most interesting possibility is the organization
of the interaction point with a small A-function by a powerful longitudinal field. The
symmetrical focusing in both directions satisfies well the idea of operating with round
beams and allows us to obtain the space charge parameter £ > 0.1.




Energy (Gev) 2:1
Circumference (m) 773.036
Ring radius (m) 89.63
Interbunch distance (m) 8.14
Straight section lenght (m) 100
Beam radius at IP (¢ m) 33
Number of rings 2
Number of bunches per beam 95
Number of particle per bunch 2 x 101
b-function at IP (cm) 1
Beams emittance ( ¢; = €,) (cm/rad) 1 g
RMS bunch length (cm) 0.8
Compaction factor 0.001 = 0.0017
Betatron tune v, 29.077
Betatron tune v, 31.077
Vertical damping time (s) 0.11
RF voltage (kV) 1000
RF frequency (MHz) 700
Energy loss per turn (keV) 100
Energy spread 5x 10~
Harmonic Number 1805
Tune shift parameter {; = &, 0.1
Design Luminosity (cm=2s7!) 10%

The C-TAU factory beam parameters should meet the requirement for maximum high
luminosity of 1.0 - 10**em~2¢™!. In addition to such a maximum luminosity regime, it is
intended to obtain the beam parameters required for the so-called monochromatization
and longitudinally polarized colliding beams. To operate in the mentioned regimes, we
need the systems of beam emittance control.

In the energy monochromatization regime, the value of a vertical energy dispersion is
chosen according to the energy spread. In this case, the value of monochromatization is
determined by the ratio of the vertical betatron size and the vertical energy one.

It is necessary to completely reconstruct the experimental straight section to obtain
the ultra monochromatic colliding beams o &~ 6 keV. The strong quadrupoles and weak
dipoles should be used for beam separation and control of the vertical dispersion function
at the interection point. The length of such section is estimated to be more than 30 m.
The beam parameters in this case are presented in table:
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Number of particles in bunch T
Interbunch distance (m) 16.28
Beta-function at IP (cm) 3./, | 20 / 2

The value of &,..2/éD 0.05 / 0.01
Beam emittance €, /¢, (cm) MR f 3070
Beam current (A) 0.4

Energy resolution o (keV) 6
Luminosity (em=?s~!) 5.010°"

2. Storage Ring Magnetic System
T—-CHARM FACTORY

e e RF cavities

rotators

A magnetic system of the C-TAU factory comprises two storage rings of the same perime-
ter, which are placed one above another and intersecting at the interaction point. The
magnetic system of each storage ring can be divided into four parts: two arcs consisting
of the same periodicity elements and one spin rotator, and experimental and technical
sections. Several bending magnets responsible for setting the dispersion function Dg to
zero are in the experimental and technical sections.

In the experimental section, only the magnets and lenses focusing the beams at the
interaction point and providing the optics matching with the arcs are placed. The beam
collision is a head-on collision. After collision, the beams are separated by the electrical

et e S e

& Bl 5

B Uty L b e
A SEW AN oo od

R o
g



field in the horizontal and the magnetic one in the vertical. The monochromatization
is achieved by creating the vertical dispersion function at the interaction point (this is
achieved by changing the lens gradients between the magnets separating the orbits in
the vertical) and decreasing the vertical emittance. Since the Dg-function rotation by
7 is taken into account, the magnetic field distribution in the final focusing soleniods is
made to be symmetrical with respect to the interaction point. This results in that the
beam trajectory becomes S-shaped and the beams exchange the places after collision.
The beam from the upper half-ring goes to the lower one and vice versa.

The inlet systems accelerating the resonators and the systems of control of the vertical
and horizontal emittances are placed in the technical section, where the inverse beam
transition occurs: from the upper half-ring to the lower one for one beam and vice
versa for another. The emittances are controlled by the Dg-function at the sites of
superconducting wiggler-magnets.

To obtain the small emittance, the rings have a very rigorous focusing (v =~ 30),
giving a small value of the orbit compaction coefficient. The latter is necessary to obtain
short bunches (=~ 1 cm) and should be accurately controlled to provide the stability of
synchrotron oscillations.

To perform the experiments with the longitudinally polarized beams of arbitrary spi-
rality at the interaction pont, spin rotators are supposed in the arcs.

3. Experimental Section

The experimental section suggested forms the f3- and Dg-functions at the interaction
point for operation in two regimes:

e round beams (the same f-functions of about 1.0 cm and the zero Dg-function at
the interaction point);

e monochromatization (the same B-functions of 1.0 cm and the Dg- function of &5
cm at the interaction point).

The final focusing is supposed to be made by the solenoids (2.18 m long, with a 9.6 T
field, and at a 2.1 GeV energy).The focusing solenoids and a detector solenoid (1m long,
with a 1.0 T field) turn the beam axis to one side exactly by = total, without introducing
the coupling into the betatron oscillations at an equilibrium energy. The experimental
section is symmetrical relative to the interaction point, except the separating magnets
with the opposite-sign fields. This is required in the monochromatization regime to obtain
the Dg-functions of different signs at the input of the focusing solenoids which turn the
Dg-function by 7 .

The plates of electrostatic separation in the horizontal (2.0 m long, with a 100 kV/cm
field) are supposed to be installed immediately after the focusing solenoids. The beam
separation at the first spurious interaction point (which is immediately after the plate
ending) is about 1.0 cm or has the order of 3¢ . Prior to the second spurious interaction
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Figure 1: The experimental section with the zero Dg-function (from the left) and Dg =
5 cm (from the right)

point, the beams are separated in the vertical by a septum-magnet. Since the betatron
oscillation phase advance between the spurious interaction points (before and after the
main interaction point) is close to m (rotation in the solenoids of final focusing and
detector), their interaction is compensated. On a magnet knife, the separation is equal
to +5 cm, allowing its thickness of 3 cm. The beam size in the magnet is about 1 mm,
and the separation system has the acceptance of 100 . The septum-magnet, the vertical
magnet restoring the orbit plane, and the three lenses between them are responsible for
the parallel transfer of the orbit plane by 0.5 m. Thus, in the regular section the orbit
structures are separated by 1.0 m. In the monochromatization regime, the two additional
lenses between the magnets help to obtain the required Dg-functions at the interaction
point. Setting the vertical Dg-function to zero occurs in the magnet restoring the orbit
plane in both regimes. The plates of the electrostatic separation can be replaced by an
RF cavity, which forms a transverse electrical field of 500 kV /cm, 20 cm long. As an
alternative to the variant with the solenoids of final focusing, we consider the variant at
which the final focusing is made on the superconducting lenses placed inside the detector
as close to the interaction point as possible. However, in this case we fail to keep the
control of the Dg-function at the interaction point. From the viewpoint of optics, the
field increase in the solenoids up tp 20-25 T is more attractive.

All the lenses of the experimental section have the same aperture as the lenses of
the periodicity elements, except the lens splitting the Dg-functions after the focusing
solenoids. A substantial change in the focusing force is achieved by changing the lens
length.

4. Periodicity Element

A magnetic structure is determined by the following requirements:

e emittance minimization,

e minimization of the orbit compaction coefficient,
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e compensation of high final-focusing chromaticity and A-function chromaticity at
the interaction point with sextupole correctors, and

e efficiency (aperture minimization).

Based on these requirements, we chose the FODO structure with the phase ad-
vance (60°;60°) and the gradient force reserve in order to change to one of the variants:
(60°;90°), (90°;60°), and (90°;90°) or the intermediate one. As shown in [2], the final
focus chromaticity can be compensated by the half-ring sextupoles for the phase advance
between 60° and 90° at a correct arrangement of sextupole families. This means that
with the change in the phase advance, we ought to recommutate the sextupole power
supply polarities or they should be supplied separately.

35 - r T 38 .
~_] T I e
- e oXTem] |- il I | S ax fem] -
25 : 28 1 t
I I I e | | | |
o T » t W i ! {
15 : . } | 15 } | —
| | | I | | | | |
e e e e et o e
s o U T e =, RNt T s M * s
bl o e e e e [ U s — TP
0  5Easd 4 e
| | !
ittt Ve sraer s W wlca il | fe— ol
o T iy o
18 L 1 L i I I I I i A5 i I i L I il
o o5 1 15 2 28 3 35 4 45 0 2 4 6 s 10 12 14

Im] ml

Figure 2: Periodicity element (from the left) and section of setting the Dg-function to
zero (from the right)

5. Section of Setting the Dg-Function to Zero

The section of setting the Dg-function to zero consists of three periodicity elements with
one "forgotten” magnet. By changing the gradients, we can provide the matching of optic
functions for the phase advance on the periodicity element ranging from 60 deg. to 90
deg. without changing the ring geometry.

6. Technical Section

In the technical section, the following problems are solved:

e injection into the storage ring;
e control of horizontal emittance;

e dispersionless section with a set of the RF cavities;
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e achromatic parallel orbit-plane displacement; and

e control of vertical emittance.

Injection into the storage ring is performed in the vertical. The electrons and positrons
are injected by the same schemes, each of them includes the Lambertson magnet and two
kicker magnets for prekick and correction. The kick is made in the vertical by the magnet-
ic field. The front and decay duration exceeds several times the gap between the bunches
in the storage rings. Therefore, both the bunch, into which a new portion of particles is
injected, and several neighbouring ones are kicked during injection. The kicker-magnets
with a ferrite filler and a metallized (for impedance decrease) glass or ceramic chamber
are supposed to be used.

The magnetic structure is optimized to minimize the angle created by the kicker-
magnet. The injection sections are at the inputs of the half-ring. The correction kicker-
magnet is placed in a vacant gap of the section of setting the Dg-function to zero so that
the vertical betatron phase advance from the kicker-magnet of the prekicker be exactly .
The injected bunch is carried over the orbit by the Lambertson magnet, 1 m long, with
a 8 cm aperture, and the C-shaped magnet, 1.5 m long, around a preceding lens at a 30
cm distance in the horizontal. An approximate phase advance equality by 7/2 between
the Lambertson magnet knife and the correctors is attained automatically.

The emittance control is supposed to be made by using two analogous sections (all
the elements of one section are turned by 7/2), which are mirror-symmetrical relative to
the superconducting wigglers installed in the middle. The field direction in the wigglers is
vertical for both sections and coincides in the main pole with that in the bending magnets.
This is necessary for operation with the polarized beams, makes easy the manufacture of
similar wigglers, and does not produce a vertical "fan” of rigorous synchrotron radiation.
The structure of each section allows us to control (in the vertical and the horizontal)
the Dg-function in the wiggler from 0 to 1 m, making possible the emittance control
independent of the synchrotron losses. This solution allows us to minimize the adverse
increase in the emittance at the expense of a large dispersion function in the deflecting
magnets, which is substantial in the monochromatization regime in the case, where the
vertical emittance minimization is required.

Each structure has four FODO cells with eight magnets of the same length from
each side (Fig. 3). The magnets deflect an equilibrium-orbit wave with the amplitude
of no less than 5 cm:(H,—H,—2H,2H,2H, —2H,-2H 2H). The dispersion function is
controlled by changing the gradients of the lenses (phase advance between the magnets).
The magnet fields are unchanged, so the orbit distortions remain constant. The field in
these magnets is due to a compromise between a desire to obtain a high value of the Dg-
function and the one to minimize the contribution of the dispersion function deflecting
magnets. 777

The sign alternation and setting the field integral to zero in the deflecting magnets
keep the spin vertical in the wiggler, minimizing the beam polarization distortion during
the vertical dispersion function deflection.

189



/“:>
-,
wll

P B

nl

0 2 4 L L]

10
Im]

12

14

16 18

O

B R

8 10
im]

Figure 3: A half of a dispersion function control insertion for the maximum value of Dg
(from the left) and zero Dg (from the right) in the superconducting wiggler

The dipole and quadrupole magnets are as those in the periodicity elements of the

arcs.
The RF cavity sections and the section of achromatic parallel orbit-plane displace-
ment by 1 m are approximately in the middle of the technical section. The section of

displacement compensates the analogous effect in the experimental section.

7. Spin Rotator

The spin rotators are optimized for minimization of orbit disturbance in the regime of
operation with the nonpolarized beams. The spin rotators turn the spin orientation by
7 /2 relative to the longitudinal axis. Their position in the arcs is chosen so that the
remaining magnets turn the spin relative to the vertical axis by 7/2 at the experimental
energy. Thus, depending on the sign of the first turn the spin either parallel to the
velocity vector or antiparallel to it at the interaction point. With a substantial change
in the energy of the polarized beam experiment, the spin rotators should be rearranged.
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Figure 4: Optical functions for the switched-off (from the left) and switched-on (from the
right) spin rotator
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The spin rotator scheme is analogous to that proposed in [3], with a transport matrix
of the form ( g __D A ), where A = ( (1) f ) and L is the length occupied by the
rotator. To realize this scheme, we need two lenses surrounding each solenoid and turned
by 7/4(1 + ag), and a powerful (probably, superconducting) quadrupole between the
solenoids.

The length L is chosen to be equal to that of the periodicity element. At the ON/OFF
regime of the spin rotator, the horizontal phase does not change and the vertical one
increases by 1/2 (by 1.0 on two rotators).

Two periodicity elements on each side supplied separately of the other elements of
the half-ring provide the matching of the optics and geometry (the magnets additionally
turn to obtain a required angle).
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