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Abstract

Gluon Reggeization can significally simplify calculation of subleading terms
for parton distributions at small z, where z is the longitudinal momentum
fraction carried by a parton. We check the Reggeization in elastic scattering
processes of QCD at large energy /s and fixed momentum transfer v/—¢. For
amplitudes of these processes with gluon quantum numbers and negative sig-
nature in the ¢ channel s-channel discontinuities are calculated in the two-loop
approximation. The two-loop correction to the gluon trajectory is expressed in
terms of these discontinuities. Remarkable cancellations lead to the indepen-
dence of the trajectory on the properties of the scattered particles, confirming
the gluon Reggeization.
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1. INTRODUCTION

Quantum Cromodynamics (QCD) was accepted as a true quantum field theory of
the strong interactions (for a review see [1]) in much extent due to its successes in
discribing hard processes (for a review see [2]). An usual tool for a theoretical study of
such processes is the perturbation theory improved by the renormalization group and
combined with an operator product expansion. The applicability of the perturbative
QCD is guaranteed here by the smallness of the running coupling constant a,(Q?),
where () is the hard scale (typical virtuality).

For semihard processes [3] the hard scale is small compared to the c.m.s. energy
/s of colliding particles, so that the ratio z = Q?/s becomes an important param-
eter. The convergence of the perturbative series is spoiled by powers of In(1/z),
consequently large logarithmic terms of the type o?(In(1/z))™, with m < n (for the
scattering channel which is considered in this paper) must be resummed to all orders
in a,. ’

Investigation of the small z behaviour of parton distributions is one of the most
important problems of the perturbative QCD [4]. With the appearance of measure-
ments in the small = region performed at HERA this problem has acquired a partic-
ular phenomenological interest [5]. Unfortunately, up to now our understanding of
the small x phenomena is far from being complete. The problem of summing up the
logarithmically enhanced terms is solved [6] in the leading logarithmic approximation
(LLA) only, which means here summing up the terms with m = n. This approxima-
tion results in a power growth of cross sections with the energy. In terms of parton
distributions this means a fast increase of the gluon density g(z, @*) with decreasing
:

9(z,Q*) ~ a7 (1)
where jo = 1 4wy is the LLA position of the singularity of the partial wave with the
vacuum quantum numbers in the ¢ channel [6],

4oy,

Wy = Nln2 , (2)

T

with N = 3 for QCD. Clearly, the behaviour (1) violates the Froissart bound so
that it should be modified in the asymptotically small z region. However we will not
discuss here the unitarization problem. In the region of parameters accessible in the
modern experiments it appears that the observed behaviour of structure functions is
consistent with LLA results (1) [7]. Nevertheless, to confirm definitively that this is
the case, subleading corrections must be taken into consideration. It is all the more
clear so far as the scale dependence of the running coupling constant a; is beyond
of the accuracy of LLA, that diminishes the predictive power of LLA, permitting to
change strongly numerical results by changing a scale. Therefore, the problem of
calculating radiative corrections to LLA becomes very important now.

For solving this problem the key point can be (8] the gluon Reggeization. It was
proved [6, 9] in LLA that gauge bosons in the non-Abelian SU(N) gauge theories are
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Reggeized with the trajectory

i) =1+w(), ®)
where [6]

D~2
st Qt d” %k,
o) =0 = oy e (@)

Here g is the gauge coupling constant (as =& ) ¢ is the momentum transfer, t = ¢°
q1, and D = 4 + ¢ is the space-time dimension, different from four for regulanzatlon
of Feynman integrals. The integration in Eq.(4) is performed over the (D — 2)-
dimensional momenta orthogonal to the initial particle momentum plane.

The problem of calculating next-to-leading corrections can be reduced to calcu-
lating corrections to the kernel of the Bethe-Salpeter type equation for the t-channel
partial wave with vacuum quantum numbers [6] (which is known now as BFKL equa-
tion). The kernel is expressed in terms of the gluon trajectory and the Reggeon-
Reggeon-gluon vertex. Corrections to the vertex were calculated already [10, 11], so
the calculation of the contribution w®(¢) to the trajectory in the next (two-loop)
approximation and verification of the gluon Reggeization at this step appear to be
the most urgent problem now.

The paper is devoted to a solution of this problem. We use for this purpose the
elastic scattering processes (quark-quark, gluon-gluon and quark-gluon) in the Regge
region (s > [t| ~ m?). The correction w(®(t) to the trajectory can be determined
through the s-channel discontinuity of the scattering amplitude of any of these pro-
cesses calculated in the two-loop approximation. The coincidence of the obtained
results serves as a check of the Reggeization.

2. METHOD OF CAL(L‘ULATIOI}IBr
Let us consider the amplitude (Aa(_))AB of the scattering process A+ B —+ A'+

B’ with gluon quantum numbers and negative signature in the ¢ channel. Assuming
that it is given by the Reggeized gluon contribution, we have

g w(t) w(t)
A'B 8 s -8
(As‘ ))AB =Thas [(__t) + (—_t) } Iy (5)

where I'Y, , are the particle-particle-Reggeon (PPR) vertices. In the helicity basis
they can be presented [10, 12, 13] as

Pl = g(A/TY4) [ny00 (14 TH®) +000n, TR0 ©)

where Fffj(t) are the radiative corrections to the helicity conserving LLA vertices [6].
To calculate the two-loop correction to the trajectory w(®(t) we can consider only
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the part of the scattering amplitude (5) conserving helicities of each of the colliding
particles. Let us write the two-loop contribution to the s- channel discontinuity of
this part in the following form:

A-'Bf (+) " " . 7
[(As‘"’),w (tWO»looP)] — AT BITIB) (-5) Ay .
S

Calculating this contribution from Eq.(5) with the help of Eq.(6) we find
2 s -
w2(t) = Agp — () In (—_;) - [fRe+re]«.C0.  ®

Since one-loop corrections to the PP R vertices were calculated for the quark [13] as
well as the gluon [10, 12] case, we can obtain w(®(t) calculating the discontinuity (7)
for any of the elementary scattering processes in QCD. Of course, the trajectory can-
not depend on scattering particles; therefore, comparing the results of the calculation
we can verify the gluon Reggeization beyond LLA.

Before calculating the discontinuity A 45, let us explain unambiguosly the meaning
of é-symbols entering Eq.(6), because these symbols can have a literal sense only in
the physical case D = 4 and only for a suitable choice of relatives phases in spin wave
functions. For the quark-quark-Reggeon (QQR) vertex we adopt here the convention
of Ref. [13] (see Eqs.(27) and (37) therein), so that the vertex I‘S};(t) that will be
used in the following, is given by the sum of contributions presented in Eqs.(39), (63),
(64) and (68) in Ref. [13]. For the gluon-gluon-Reggeon vertex we use the definition
of Ref. [17] (see Eq.(9) therein). Then the vertices F(ég(t) are given by Egs. (10) -
(14) of this Ref.

3. TWQ-LOOP s-CHANNEL DISCONTINUITIES
In the two-loop approximation the discontinuity Aap is given by the sum of the
two- and three-particle intermediate states in the s-channel unitarity condition:

Aap =AF:’)3+Q§%3 . " (9)

In the case of the two-particle intermediate state only the helicity conserving part of
elastic scattering amplitudes with the octet colour state and negative signature in the
corresponding ¢ channels contribute to the unitary conditions. The reason is that the
Born amplitudes are real and in the Regge region they contain only the octet colour
state with negative signature in the ¢ channel, as well as the real parts of the one loop
amplitudes. Consequently, one can use the representation (5) for them. Because of
this circumstance, the two-particle contribution can be written in the general form

2Nt d(D—ﬁ)q 8
A@ 9 f L [w(l) 2 ln( )+F{+) 2) 4 i) 2} (10
AB = (9r)D-1 | g3(qq — q)? (a1) @ aalar) + Dpplar) (10)

129




Here and below all vectors are D — 2 dimensional and transversal to the (p4,pg)
plane.

Let us now consider the three-particle contribution. The results of the straight-
forward calculations for the quark-quark [14] and gluon-gluon [15] scattering can be
written in the form

2 (D-2)
Al = Z(Zfr)i’-l,/q;(ql q) (fal@ @) + fo(q,9) — 2falqr, @) — 2fB(q, ¢1)] -
(11)

Here the functions f4 and fp are defined by the properties of the particles A and B
correspondingly; they coincide in the case of the gluon-gluon scattering whereas one
of them can be obtained from the other one simply by the substitution m,4 +» mp in
the case of the quark-quark scattering, m, and mp being the corresponding quark
masses. Eq.(11) is valid because the three-particle discontinuity can be presented as
the sum of the contributions of the fragmentation regions of the particles A and B
respectively, and the contribution of the fragmentation region of one particle does
not depend on the properties of the other one. This leads us to the conclusion that
Eq.(11) holds for the quark-gluon scattering as well, therefore it holds for all the
elementary scattering processes of QCD.

The gluon can fragment or in two gluons (2g) or in a quark-antiquark pair (¢q).

Accordingly, we have
fola,9) = f82(q1,9) + F§(a) - (12)
For the (2¢) contribution we find

- B g:N2g? d\P-2g, 1 A 8
J¢"(an9) = 2(27)P-1 fq%(qa - g)? [2] ("(‘h - q2)2)
1 1
+o(1) —$(D-2) + (D=3)(D—4) * (D - 1)(D“2)] ’ 1

where 1(z) is the logarithmic derivative of the gamma function I'(x). In turn for the
() contribution we get

¢N p(3_2 dzydzo6( 1—::1—22)
f(qq)('?) 3] 1 {/ _/
)?

[mf 23:13:2]3

- 2
2 D(:cl +22)¢% + 2(1 — 21 — 22) (21 + 72)%¢* - me})] + 3m? 4} . (14)

We notice that this contribution does not depend on ¢;.
In the quark case we can have in the fragmentation region only the same quark

and a radiated gluon. Nevertheless, it is convenient to split the function fg(¢:,¢) into
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two terms according to their colour coefficients:

fola,a) = F2(9) + 5 (a1,9) - (15)

The first term has an abelian nature, and only this part survives in the abelian case.
It does not depend on g, as well as f . ) and reads

o A ! D - 3)(D - 4) +4) ¢* — 8m?
f(a)( ) g F(Qz 2) dr (( )( )+ )q RmQ+2m3_4 )
2(4m) 3 (D - 3) Jo 4[m3 - ?x(1-2))>"?
(16)
The second term in Eq.(15) is essentially non abelian and is given by
na) 92N2 dP- 2’?2
f( (QI: )— ZT)D =1
» 2
y q2p+(r—m2+2ﬁﬂﬂ— mp i 4m 5 an
(mg B — g3)[mg B2 — (g2 — ] = B)(mgpt—a3)? |
where
T\
Bo = —@Lfﬁ-. (18)

4. TWO-LOOP CONTRIBUTION TO THE GLUON TRAJECTORY
Using the representation (4) for w(!)(t) and Eqs.(10) and (11) respectively for the
two- and three-particle contribution to the discontinuity A,p(t) (9), from Eq.(8) we
arrive at '

d(o-2)
WP () = o 27r o 1/ “ [FA(QI:Q + Fp(q1,9) — 2Fa(q1, @) — 2Fn(q1,q1)] ,
(19)
where

Falad) = Iala) - 590 (5) -NTE@ . @

For the gluon case all the terms in the RHS of Eq.(20) are shown in Eqgs.(4), (12)-(14)
and in the Eqs.(10) - (13) of Ref. [17]. For the quark case we have the same expression
(4) for wD(¢), fo(q1,q2) is given by Egs.(15) - (18) and, finally, I‘Sg(t) is given by
Eqs.(39),(63), (64) and (68) of Ref. [13]. :

As a result of remarkable cancellations we find that Fa(gy,¢) does not depend on
the properties of the scattered particles. Therefore, Eq.(19) can be rewritten as

d(D-2

W@ (t) = gt

2n)0-1 | ¢ g q)g [F(q1,9) — 2F (g1, q1)] , (21)
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with

Plogi =L [T f d® g,
4 lem)P ) gle - 9)?

x [1:1(@-%2;55) -—2¢(D—3)—¢(3—§)+21})(€-~2)+11)(1)

2 D-2
to-3D-9 " {D-)D- 3)]

+8NF(2—-%)Z~/0‘1dm 33(1—1?) ]2_%} ) (22)

@F S h " mE - fa(l-a)

Eqgs.(21) and (22) give us a closed expression for the two- loop correction to the
gluon trajectory (for the case of massless quarks it was presented in Ref. [16]). Its
independence on the properties of the scattered particles, which appears as a result
of remarkable cancellations among the various terms in Eq.(20), sets up a stringent
test of the gluon Reggeization beyond the leading logarithmic approximation.

The two-loop correction to the trajectory contains both ultravilolet and infrared
divergencies. The former ones can be easily removed by the charge renormalization in
the total expression for the trajectory. As for the latter ones, we expect they cancel
in the total expression for the corrected kernel to the BFKL equation. We hope to
demonstrate it in subsequent papers.
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The Status of Renormalon

S. V. Faleev, P. G. Silvestrov
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

Abstract

It is shown that the series of renormalon—type graphs, which consist in
the chain of insertions to one soft(hard) gluon(photon) line is in fact ill defined.
Each new type of insertions, which appears in the higher orders of perturbation
theory, generates the correction to renormalon of the order of ~ 1. However,
this series of corrections to the asymptotics although have no small parameter
but is not the asymptotic one.

1. The renewed interest in the renormalon asymptotics[1, 2] of perturbative serie
have been demonstrated in last few years [3-11]. It results even in attempts [12] t
use renormalon for calculation of experimentally measurable quantities.

However, the accurate determination of renormalon-type asymptotics appears t.
be not so simple problem. It was recognized[6-8,10,15] that the overall normalizatio
of the renormalon asymptotics could not be found without taking into account a
all terms of the expansion of, say, the Gell-Mann-Low function. However, the usua
proof of this fact do not refer on the direct counting of the Feynman graphs.

The generally considered renormalon chain of graphs is formed by dressing o
one gluon(photon). In the present paper we would like to estimate the role of th
arbitrary high order insertions to the dressed gluon line. It will be shown both b
diagrammatic consideration and by direct analytical calculation that each new typ:
of insertions generates the correction to renormalon of the order of ~ 1. However
the k-th correction to the asymptotics for large k is not expected to have any k
enhancement. Thus at least the series of corrections to the amplitude of renormalo:
asymptotics is not the asymptotic series.

It is a tradition now to consider the renormalon for QED. In this paper we wil
also discuss only the QED-type diagrams of the perturbation theory, without the
self-interaction of gluons. The heuristic way for extending this result for QCD ma;
be given by the so called 'naive nonabelization’.

Our approach is equally valid for both infrared and ultraviolet renormalons. How.
ever, in order not to interfere with the recent results[10, 15] for ultraviolet (UV
renormalon, consider the infrared (IR) one. The contribution of the diagrams witl
exchange of one soft gluon(photon) to some ”physical” quantity has the generic form

k2dk?
R= k
k€Q (k) Q4

(1

/

The Feynman graphs corresponding to this value are shown in fig. 1. In (1) we
have written down the effective running coupling constant a(k) = aesi(k), which is
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trivially connected with the transverse part of the gluon propagator. The function
a(k) satisfies the RG equation:

da 2 3 4 2412

T = b’ +bo’ +ba’ 4. o= (Q¥k) . (2)
It is to be noted here that we have fixed the renormalization scheme by considering
the effective charge. Thus our coefficients by, bs, ... are neither the free parameters,
nor the known, say, for MS scheme, by(MS), b3(MS) . At first stage one may

Fig.1

Figure 1: The renormalon graphs with exchange of one soft gluon. The internal gluon line
will be dressed in the following figures.

neglect by, by, ... in (2)

9 -2z

- -2 o € bocp & )
R=— [ a(z)e dx =f ———2dz =Y (T) Nt . (3)

g JO o 1-— boﬂg@ N=0

Here the first equality is also the explicit definition of our renormalon. We will
consider only the asymptotics of the perturbation theory and will not concern the
issue of the nonperturbatve ambiguity of the integral (3) due to the Landau pole.
The integral (1) describes adequately the contribution of a certain chain of Feynman
diagrams only for k < @ . It is seen from (3) that the main contribution to the N-th
order of the expansion comes from &% ~ Q%e¢~"/2. Thus the renormalon contributions
to the first few terms of perturbation theory are completely irrelevant. On the other
hand, for sufficiently large @ a lot of terms of the expansion (3) come from the region
Ajop € k* < @ where the effective charge is small and the perturbative approach
for calculation of a.zs (2) seems to be useful.

2. Before passing to straightforward but rather formal manipulations with the
RG equation (2) let us illustrate the role of complicated contributions to renormalon
by the explicit estimate of Feynman graphs. The fig. 2 shows the chain of diagrams
corresponding to (3). We show only the QED-type diagrams without gluon self-
interaction. Each of the NV bubbles from fig. 2 generates the factor byog In (%2-) in
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by g’ In(Q*/k%)
by 20 InfQ"/k") "
WO\NQO\NO!.:I\-
Fig.2 F1g3

Figure 2: The simplest chain of diagrams corresponding to the renormalization of the sof
gluon line. Each bubble generates the factor byey In (Q2/5?).

Figure 3: The example of diagram with two - loop insertion into soft gluon line.

the integrand of (1),(3). The difference between QCD and QED may be thought tc
be hidden in the factor by, accompanying the single bubble.

Now let us replace two of the simple bubbles by the more complicated diagran
of fig. 3. The two loop bubbles generate the factor bjajIn ( k,) in the integrand
which has one power of large logarithm less (or one oy more) than the leading orde:
contribution (3). However, a large combinatorical factor N appears due to a numbe:
of permutations of the second order bubble among the simple bubbles, leading to

N-2
Nb]a’olﬂ( ) [boc{gln (Q )} — (b(]_za{_}) N|2bb21 . (4

Thus we see that taking into account one second order insertion into the soft gluor
line leads to the correction of the order of one to the trivial asymptotics (3).

Consider now the more complicated diagram of fig. 4 with dressing of the interna
gluon line of the second order bubble. To this end it is natural to write down explicitl;
the last integration over internal momentum of the two loop diagram

2 2 n
o [ [boaoln(g )] {; —haln (cgz)[buagln(f:)] G

Thus up to the overall factor —— +1 the contribution of diagram of fig. 4 coincides witl
that of fig. 3. Summation over n naturally leads to In(V). Taking into account
number of large bubbles of fig. 4 allows to exponentiate the correction

N 2b
(i"?) N.’exp(%l mw) (%‘ﬁ) NN (6

This is the generally recognized expression for the IR renormalon. Our argumentatios
up to this stage repeats the line of reasoning of the paper [5]. However, the argumen
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Fig.4

Figure 4: The dressing of internal gluon line of the second order bubble by n simple bubbles.

Fig.5

Figure 5: Three loop insertion with dressing of two internal gluon lines by the simple chains
of bubbles. The summation over n; and n, allows to compensate all extra a-s.

of the exponent in (6) was found with the ~ 1/In(N) accuracy and therefore the
nontrivial overall factor as well as the function of NV, weaker than N7, may appear in
(6), as we consider in the following section.

Now let us consider the three loop correction (fig. 5 with ny = ny = 0). This con-
tribution generates the factor byag In (%’-) in the integrand of (3). Thus here we have
two extra oo which at first glance could not be compensated by one combinatorical
N and hence the diagram of fig. 5 seems to generate only the ~ 1/N correction to
renormalon. In particular such conclusion was drown by Zakharov [5]. However, let
us see, what happens if one dresses the internal gluon lines of the three loop diagram.
Now summation over the number of trivial insertions ny, ny gives:

2 2
by In (%) 3. agﬁir—i;ﬁ(]\’ —ny—ny—2) ~ hagln (%) x (agN)* . (7)

N2

Here the factor (n, 4+ny+1)"" appears after integration over the internal momentum




of the large bubble, while (N — n; — ny — 2) accounts for the combinatorics. We
see that after dressing of all gluon lines the three loop (~ b;) diagram generates the
correction to renormalon of the order of ~ 1. One can easily show that four loog
(~ bs), five loop (~ by) etc. diagrams generate the corrections of the same order
of magnitude. Previously the analogous proof of the importance of the high loog
corrections was done by Mueller[13] but this result was not published.

3. Although the corrections to renormalon generated by the high order contribu
tions to the RG equation bya*, bsa®... (2) are not small, the correction induced by the
second term bya® still plays an outstanding role due to the additional enhancement
by In(N) (6). Moreover, the fractal iterations of the second order diagram of fig. 4
may be shown to have the same In(/N) enhancement. Therefore at the first stage let
us omit by, b3, bs.. . in (2) and consider the truncated effective charge:

2 : ®
an l—al— Baln(afap) ’
where 3 = 2b,/b} , a = bgcyg/2. This is the transcendental equation for e which may
be solved iteratively. It is easy to make the first iteration
e~tdt e~idt Ba i ¥
—3 = i = g
{Ba}w fl—at—i-ﬁaln(l—at) 1—at¥[la—atlr1—at} @)

=aNN!;;JlT[ﬁIn (g)] = (%E)N[ﬁ]fh,rm (1+0(ﬁ)) .

The asymptotics (9) should be compared with (6). One can see that the consistent
treatment of the diagrams of fig. 4, which in fact we have done in (9), results in the
nontrivial small factor (In N)~# as compared to the naive result (6).

Consider now the iteration of two loop correction which in terms of o means

G

(——) =1—at+ Baln(l — at + Baln(l — at)) . (10)
& / second iteration

The direct calculation with this a gives [14]

T A e R

Thus we see that making the second iteration (10) in the transcendental equation
(8), leads again to parametrically large modification of the renormalon. Moreover, all
third, fourth, etc. iterations in (8) are also of the 100% importance.

Finally, for & iterations in (8) the asymptotic formula takes the form [14]

e N1n)? g 21 ZHFL B -z
{Rk}N::(T) [F] NI‘/; da:ljo da:g.../o d:ckm (12)

(371 e mz)ﬁ—:m (3’32 = 1.3)1:1 —23 (xk—l — xk):rk—z—xk—l x:k—t-l‘k - InflnN)

IMl4az—z) (1423 —23) " D1+ a2kt — xx) T
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Looking at this result, one may even doubt, whether it has any finite limit for large
k? However, the direct integration over z; [14] shows that this limit do exists.

We see that if one performs only one (a few) iterations while solving the tran-
scendental equation for the truncated effective charge (8), the asymptotics of the
perturbation theory differs drastically (9,11) from the generally recognized renor-
malon (6). Nevertheless, after taking into account the infinite number of iterations
(12) the usual asymptotics is restored.

4. The formal solution of the RG equation (2) may be found in the form

a = a1+ pal +fcd + .. ), (13)
where «a; is the solution of the eq. (8). Coefficients B¢ may be expressed through b,

(2) with n < k. Moreover for large k by ~ n! and 8 = by /(kbo)(1 + O(1/k)).
The analog of the equation (12) now has the form

N 8
{Buky = (3"?) [%] N! joﬁd:sl (14)
2 3 2
(1 + g?:g (ﬂ - .'21)2 + ’g?_gg(/g i 371)3 + ) .fo dl‘g ey

where the part of the formula after integration over dz, simply repeats the corre-
sponding part of the equation (12). Keeping in mind the finiteness of both (12) and
(14) one can see that all 3;, f;, ... make contributions of the order of ~ 1 to the
renormalon.

On the other hand, all the high order (~ /3,) terms in (14) have appeared in the
combination f,/n! . Thus at least the series of corrections to the renormalon is not
the asymptotic one!.

To summarize, we have shown that any complication of the renormalon chain of
diagrams leads to ~ 100% correction to the asymptotics of the perturbation theory.
This result is equally relevant for both IR and UV renormalon. These large corrections
n terms of integration over the internal momentum k (fig. 1) still correspond to the
domain where the effective running coupling is small (e.ss(k) < 1). By considering
the Feynman diagrams we have shown how the loss of large log-s for more complicated
insertions to the renormalon chain is compensated by the pure combinatorical growth
of the number of diagrams. In principle this approach may be useful for finding the
most important Feynman diagrams in practical multiloop calculations.

The following promising problem will be the asymptotic estimate of the correc-
ions to the renormalon asymptotics. First of all, such calculation may be performed
for the nonleading IR renormalon. As we know the IR renormalon contribution to the
asymptotics of perturbation theory has the form Ry ~ (b0/2)N N!. The coefficients
3, in (13,14) are determined by the first UV renormalon 8, ~ (—bo)"n!. This means

' Analogous observation for the UV has been done in [10]
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that, the multiloop corrections to IR renormalon will grow up like (—2)" due to ‘inter-
ference’ between the IR and UV renormalons. Physically this huge interference of two
renormalons shows that the consistent treatment of the nonleading IR renormalon is
not possible without the explicit (Borel) summation of the UV renormalon.
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