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EQUATIONS OF MOTION OF SPINNING RELATIVISTIC
PARTICLE IN EXTERNAL FIELDS

I.B. KHRIPLOVICH AND A.A. POMERANSKY
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

The talk is based on the article gr-qc/9710098. We consider the motion of a spinning
relativistic particle in external electromagnetic and gravitational fields, to first order
in the external field, but to an arbitrary order in spin. The correct account for the
spin influence on the particle trajectory is obtained with the noncovariant description of
spin. Concrete calculations are performed up to second order in spin included. A simple
derivation is presented for the gravitational spin-orbit and spin-spin interactions of a
relativistic particle. We discuss the gravimagnetic moment (GM), a specific spin effect
in general relativity. It is demonstrated that for the Kerr black hole the gravimagnetic
ratio, i.e., the coefficient at the GM, equals to unity (as well as for the charged Kerr hole
the gyromagnetic ratio equals to two). The equations of motion obtained for relativistic
spinning particle in external gravitational field differ essentially from the Papapetrou
equations.
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INSTRUCTIVE PROPERTIES OF QUANTIZED GRAVITATING
DUST SHELL

A.D. DOLGOV
Teoretisk Astrofysik Center
Juliane Maries Vej 30, DK-2100, Copenhagen, Denmark

I.LB. KHRIPLOVICH
Budker Institute of Nuclear Physics
630090 Novosibirsk, Russia

In this talk based on! we investigate quantum dynamics of self-gravitating spherical dust
shell. The wave functions of discrete spectrum are not localized inside the Schwarzschild
radius. We argue that such shells can transform into white holes (in another space). It
is plausible that shells with bare masses larger than the Planck mass loose their mass
emitting lighter shells.

Thin dust shell is one of the simplest models of collapsing gravitating bodies.
The classical dynamics of this system was considered in?~®. This model was quan-
tized in various nonequivalent ways with physically different results in 6-9  The
most natural in our opinion approach proposed in ® reduces the problem to the
usual s-wave Klein-Gordon equation in a Coulomb field. Curious effects arising
here may turn instructive for more realistic situations.

Let us present the basic steps leading to the Klein-Gordon equation for this
system. Two classical equations of motion for the shell radius r have first integrals

V1472 —2km/r + V1+2 =Cy; (1)

V1472 =2km/r — V1+72 =C —-’i—”. (2)

Here p is the "bare” mass of the shell, i.e. the rest mass of each particle of the
dust times their number, k is the Newton gravitational constant, and # = dr/dr
where 7 is the proper time of the dust. Multiplying these two expressions we see
that the two integrals are compatible only if C; = 0 and C; = 2m/u. Under these
conditions the equations of motion are consistent and equivalent to
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Eq. (3) has the following first integral
k 2
m=ul+#—%% (4)

This expression will be taken as a classical Hamiltonian of the system (after going
over from the velocity 7 to the canonical momentum p). Formally any function of
a first integral can be chosen as a Hamiltonian. The choice is by no means unique,
but eq. (4) is singled out because this Hamiltonian corresponds to the total energy
of the shell, and this energy m has an explicit and simple expression.




One can easily recognize in the rhs of eq. (4) the energy of a relativistic particle
in a Coulomb-like field, —ku?/2r, written in proper time 7. It is convenient to go
over from 7 to the world time ¢ inside the shell:

dr =dt\/1—v?, v =dr/dt.

We obtain now: 2
2 p
= —_—_— -, 5
- VvV1i-v2  2r (5)
Clearly in this case the canonical momentum equals p = pv/v/1 — v? and the Hamil-
tonian has the well known form:

k 2
H=+/p?+p? - % (6)

The quantum-mechanical wave equation corresponding to this Hamiltonian is
derived by the standard procedure, taking the square of the root, i.e., rewriting (6)
as:

(H + kp?/2r)? = p* + 12

Thus one obtains the usual Klein-Gordon radial equation for s-wave:

kp*m  kp? o o\
r +Z;3-+m —-u )y =0 (7)
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The discrete spectrum of this equation is well-known 1%:11:

-1/2
K2t

(2n+1+\m)2

The radial quantum number n is an integer and runs from 0 to infinity.

The spectrum has a singularity at kp? = 1. At larger values of u the r—?
potential becomes so strong that the ”fall to the center” takes place, i.e., there
are no stationary states. It looks natural that for heavy pressureless matter (with
p > mp; = 1/v/k) naive quantum mechanical effects cannot stop the collapse.

The curious property of the states belonging to the discrete spectrum should
be pointed out. Even in the most tightly bound ground state for ku? = 1 the wave
function is not localized inside the gravitational radius of the shell. The probability
to find the shell outside it is 3/e?> =~ 0.4. Here we naively use r as the operator
of coordinate. In the relativistic case a more refined definition of the coordinate
should be used®. It is clear however that any reasonable definition of the coordinate
operator would not change the localization considerably.

Let us consider now the continuous spectrum. Though we assume as above that
ku? < 1 or in other words u < mpy, the total energy m can be arbitrarily large.
The wave function of such a state is a superposition of incoming and outgoing
spherical waves with equal amplitudes. It is evidently non-localized. To consider
the quantum analogue of the collapse of the classical shell we have to turn to wave

(8)

my=u|l1+
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packets. As was noted in ref. ® the gravitational radius of this object will be as
smeared as its energy. Let us assume that the initial radius of the maximum of the
incoming spherical wave packet is much larger than its average gravitational radius
ry. From the point of view of a distant observer this packet moving towards the
center freezes at 7 = r,. However, in its proper time it reaches the center in a finite
interval d7, bounces back and then after the same time interval returns to its initial
position and form. Certainly, it returns not to ”our” space, but to a quite different
one. This is a possible realization of the white hole phenomenon %13,

The considered realization of a white hole based on quantum scattering differs
essentially from the classical examples of white holes. In the classical case the very
existence of the phenomenon depends crucially upon the presence of singularity at
r = 0, while in our case the transformation of an incoming spherical wave into an
outgoing one takes place even for nonsingular potentials.

Finally let us return to the case of a large bare mass, g > mp;. This problem
formally coincides with that of a charged scalar particle in the field of a point-
like nucleus with a supercritical electric charge, Za > 1. It is known that the
vacuum around a supercharged nucleus is unstable and this nucleus discharges by
emitting positively charged particles (see e.g. '#1%). A similar scenario is plausible
for our problem: the collapsing shell loses its bare mass u by emitting light shell-
lets till it reaches the subcritical mass. This phenomenon would resemble quantum
evaporation of usual black holes. On the other hand, in the subcritical situation,
i < mpy, the emission of shell-lets does not take place (even if the physical mass
m is larger than mp;). It can be considered as a hint that small black holes do not
evaporate, though at m > p they form white holes in another universe.
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SUPERLUMINAL VELOCITIES OF PHOTONS IN
GRAVITATIONAL BACKGROUND
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The talk is based on Ref.!. The influence of radiative corrections on the photon propaga-
tion in a gravitational background is investigated without the low-frequency assumption
w < m. The conclusion is made in this way that the local velocity of light can exceed
unity.

The question addressed in the talk was raised many years ago by Drummond
and Hathrell 2. They noted that tidal gravitational forces on the photons, induced
by radiative corrections, alter in general the characteristics of propagation, and
therefore, due to it photons may travel in some cases at local speeds greater than
unity. To be more precise, in a local inertial frame the induced curvature terms
in the Maxwell equations survive and modify the light cone in different way for
different polarizations.

The approach of Ref.? consisted in expanding the contribution to the photon
effective action from one-loop vacuum polarization to the lowest order in the inverse
electron mass squared 1/m?. Therefore, their result by itself refers strictly speaking
to low-frequency photons with w < m only. Meanwhile, the velocity of the wave-
front propagation in a dispersive medium is determined by the asymptotics of the
refraction index n(w) at w — oo (see, e.g., Ref.?). It is argued however in Ref. 2
that due to the dispersion relation for the refraction index n(w), its high-frequency
asymptotics n(oo) is related to the low-frequency one n(0) as follows:

n(oc) = n(0 ——/ —Imn (1)

Then, since Im n(w) is nonnegative,
n(oo) < n(0),

and this would guarantee the superluminal propagation of the wave front. The
shortcoming of this argument, as pointed out in Ref. 4, is that the sign of Im n(w)
in the problem of interest is not fixed, generally speaking. Indeed, the physical
meaning of the condition

Imn(w) >0

is that in a homogenious medium without instabilities (i.e., without particle cre-
ation) the wave amplitude can decrease only, due to the loss of particles from the
beam. However, in an inhomogenious medium (and this is the case of a gravita-
tional background) the processes of the beam focusing and bunching are possible,
leading to the increase of the wave amplitude, which corresponds to

Imn(w) <0.
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Even if the superluminal propagation takes place indeed in this way, it does not
violate causality 2. Still, the effect discussed is quite unexpected and interesting,
and it is certainly worth efforts to find out whether the predicted phenomenon
is a true one or just a result of an inadequate approximation. We address the
problem without the low-frequency assumption w < m, and in this way arrive at
the conclusion that in a gravitational background photons can propagate indeed
with superluminal velocities.

We derive first of all the general structure of the photon-graviton vertex yyg at
any frequencies and momentum transfers g*:

1 1
- '2' hyv [FL,\FVA + F;,\Ful - 5 Jqu;)\FnA]fl (qZ)

+Ruy,‘AF,',,,anf2(q2) +RF;AFHf3(q2). (2)

Here h,, is the deviation of the metric from the flat one; R,uuxx and R are the Rie-
mann tensor and the scalar curvature, respectively; FL , and F, ) are field strengths
of the outgoing and incoming photons. The lowest order QED contribution to the
form factors f;(¢q?) was calculated in Refs. 3. The first nontrivial terms of the form
factors expansions in g2 are (see?)

11 o
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20r w2 2= T 3g0mmz BT T Tddmm? (3)

Let us emphasize that the form factors in the amplitude (2) depend on the
momentum transfer ¢g? only, but not on the photon frequency w itself. Of course,
‘this property is in no way confined to the lowest order loop calculated in Refs. >,
but refers to a general vertex with two on-mass-shell particles. Moreover, when
light propagates in a gravitational field of a macroscopic length scale L, the typical
impact parameters ~ L are large as compared to the Compton wave length m™!
(or any other dimensional parameter possibly involved in the radiative corretions),
and therefore one can confine to the values of the form factors f; at g2 = 0.

The lowest order correction discussed modifies the Maxwell equations in the
region where R,, = R =0, and at wL > 1 as follows?:

a
D, P L ERD, " =0; &= g (4)
The structure £¢R%Y in this expression can be considered obviously as an anisotropic
contribution to a refraction index, which in general leads to a superluminal photon
velocity.

However, the photon interaction with a strong gravitational field, induced by
radiative corrections, contains terms of higher order in curvature. How will they
influence the photon propagation?

As distinct from the g vertex discussed, the diagrams generating the terms
nonlinear in R (from now on R is a generic notation for Ry xx, Ruw, R) have
more external lines and therefore certainly depend on the photon frequency. But
by dimensional reasons it is quite natural to expect that it is R/w? which serves
as a parameter for the high-frequency expansion of the photon interaction with
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background. Such a behaviour in the high-frequency limit is much more natural
than the expansion in R/m?, with mass singularities in the asymptotic region. In
this sense the yyg vertex considered above is an exception: being w-independent
(kind of a subtraction constant in the dispersion relation), it has no choice at q?/m?
but generate linear terms of the type R/ m?. Thus, the terms nonlinear in R die
out as w — oo and do not influence the wave-front propagation. On the other
hand, there is a case when those nonlinear terms are certainly inessential at any
frequency: that of a weak gravitational background.

The low-frequency limit being now abandoned, we get rid also of the following
difficulty pointed out in Ref. 2. If the curvature length scale is L (R ~ L~?), then
according to Eq. (4) the velocity shift caused by the radiative correction is

o

v~ o7E

(5)
The time of the signal propagation is also ~ L. So, the corresponding position shift

for the signal is
a 1

"L > m ©)
It is not exactly clear how such a distance can be resolved with frequencies w < m.
Of course, going beyond the low-frequency approximation in principle removes this
difficulty.
The presented arguments give strong reasons to believe that the effect of su-
perluminal propagation of photons in a gravitational background does exist.

ds ~ Lév ~
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