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Recent progress on HQET lagrangian
A. G. Grozin
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

HQET lagrangian up to 1/ m? terms is discussed. Consequences of reparameterization invariance
are considered. Results for the chromomagnetic interaction coefficient at two loops, and in all
orders in the large—3; approximation, are presented.

1 HQET lagrangian

QCD problems with a single heavy quark staying approximately at rest can be conve-
niently treated in the heavy quark effective field theory (HQET) (see [] for review and
references). We shift the energy zero level: E = m + w, and consider the region where
residual energies w and momenta p’ are not large: w ~ [p] ~ A < m. The effective field
theory is constructed to reproduce QCD on—shell scattering amplitudes expanded to some
order (A/m)™. This is achieved by writing down the most general effective Lagrangian
consistent with the required symmetries, and tuning the coefficients to reproduce QCD
on-shell amplitudes. Terms with D) can be eliminated by field redefinitions.

The most general lagrangian up to 1/m? is [P]-[d]
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where () is 2—component heavy—quark field. Here heavy-light contact interactions are
omitted, as well as operators involving only light fields.

HQET can be rewritten in relativistic notations. Momenta of all states are decomposed
as p = muv + k where residual momenta k ~ A. The heavy—quark field is now Dirac spinor
obeying $Q, = @Q,. The lagrangian is

— Ck —~ Cin—s Y
Lv = QUZU : DQU - %QvDin - %QvGuuau Qv (2>
iCy — ) Ca= i)
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where D, = D—wv(vD). The velocity v may be changed by an amount dv < A/m without
spoiling the applicability of HQET and changing its predictions. This reparameterization
invariance relates coefficients of varying degrees in 1/m [[]]-[[J].

At the tree level, there are easier ways to find the coefficients C; than QCD/HQET
matching: Foldy-Wouthuysen transformation [I4, [[5], or using equations of motion [{]
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(or integrating out lower components [[{, [7]) followed by a field redefinition. The result

1S

Ck:Cm:Cd:Cs:Ck2:Cw1:Calzcblzlv (3)
Cw2:Cp’p:CM:Oa2:Ca3:Ca4:Cb2:O~

However, these algebraic methods don’t generalize to higher loops.

At 1/m level, the kinetic coefficient Cj, = 1 due to the reparameterization invariance [[].
One-loop matching for the chromomagnetic coefficient C,, was done in [J; two—loop
anomalous dimension of the chromomagnetic operator in HQET was obtained in [[[§, [9],
and two-loop matching was done in [[J]; in [20], all orders of perturbation theory for C,,
were summed at large f;.

At 1/m? level, the spin—orbit coefficient C; = 2C,, — 1 due to the reparameterization
invariance [2I]-[4]. The Darwin term reduces to a contact interaction. One-loop match-
ing for the heavy-light contact interactions was done in [P4]. The one-loop anomalous
dimension matrix of dimension 6 terms in the HQET lagrangian was obtained in [[[7],
2.

At 1/m? level, one-loop matching was done in [f] for the terms involving the heavy—quark
fields twice and the gluon field once. The one-loop renormalization of dimension 7 terms
in the HQET lagrangian was recently considered [Pg].

2 Matching quark—quark vertex

Renormalized QCD on-shell quark—quark proper vertex

—u(p—m)u (4)

gets no correction in the on—shell renormalization scheme. QCD spinors are related to
HQET spinors by the Foldy—Wouthuysen transformation

u:(uiﬁ_ﬂ-.-)uv, Py = 1y (5)

2m  4m?

Expressing QCD proper vertex via HQET spinors, we obtain

i2
Uy —— Uy & - - - 6
o5yt + (6)
Let’s denote the sum of bare 1-particle-irreducible self-energy diagrams of the heavy
quark in HQET at 1/m° as —z'l%’éZ(w), w = kv. At the 1/m level, self-energy diagrams
with a single chromomagnetic vertex vanish. Let the sum of bare diagrams with a single

kinetic vertex be —i%iz’éilk(w,ki). Consider variation of ¥ at v — v + dv for an

infinitesimal dv (vdv = 0). All factors # can be combined into a single one, and the
variation 09 in it provides the variation of the y—matrix structure in front of 3. There
are two sources of the variation of . Terms from the expansion of denominators of
the propagators produce insertions ikdv. Terms from the vertices produce igt®ov*. Now

consider variation of ¥, at k| — k| 4+ 0k, for an infinitesimal dk . Quark—quark kinetic



vertices produce i%k‘ék 1; quark—quark—gluon kinetic vertices produce z% gt oK' ; two—
gluon vertices produce nothing. Therefore,

)% 0%

This is the Ward identity of the reparameterization invariance first derived in [I(]]. Taking

; 03, __ 0% 1.1 0¥ _ d¥pm ;
into account g = 281{ K| and 5= = 9=k', we obtain

0¥y dX

it ———— 8

ok dw ®)
The right-hand side does not depend on k2, and hence

Sio(w, k2) = dflf:")ki + o(w). 9)

This result can also be understood in a more direct way. Only diagrams with a quark—

quark kinetic vertex contain k% ; its coefficient is is iSe The sum of diagrams with a unit

2m
insertion is —i%. Note that diagrams with a quark—quark—gluon kinetic vertex vanish
because there is no preferred transverse direction.
On the mass shell (w = 0), the renormalized HQET quark—quark proper vertex is %ZQUU
(k3 + 550, k) Juy = =55 Zg [1 — 2] _ k3 TUyu,. On the mass shell, only diagrams with
finite-mass particles in loops contribute (e.g., c-quark loops in b-quark HQET) (Fig. [l]).
s

Taking into account Zél =1— 9%:|,_, and comparing with (), we finally obtain

C(p) =1. (10)

This argument works for an arbitrary u; hence, the anomalous dimension of the kinetic—
energy operator in HQET vanishes exactly. In a similar way, it is not difficult to prove
that

Cio=1. (11)
7, o=t =t e Lh+§~i teen|=
I k> k k 1
#C‘y 2
ZQl-l- +“.Ck%
A dy R N
Zy=1- = =1+ -

Figure 1: HQET quark—quark proper vertex on the mass shell



3 Matching quark—quark—gluon vertex

QCD on-shell proper vertex is characterized by 2 form factors:

()t (e(f)M " u<q2>M) u(p), (12)

2m 4m
(2)—1+’q_2_|_... (¢*) = pu+ ’q_2+...
e(¢’) = 1+¢—5 @) =

The total colour charge of a quark £(0) = 1 due to the gauge invariance. Ward identities
in the background field formalism [7] are shown in Fig. fl, where the large dot means
convolution with the gluon incoming momentum ¢ and colour polarization e*, the second
equalities are valid only for an infinitesimal ¢ (or in the case of an abelian external
field), and (#*)* = i fo in the adjoint representation. Therefore, the QCD proper vertex
Ac(p,q) = Aut® obeys Algte® = —X(p + qet®) + X(p) for infinitesimal ¢, or A, (p,0) =
—%ZTL’)). The form factor is projected out by (0) = Zg[1+ 1 Tr A,v#(14%)]. On the mass
shell, iTrgp% = (1= Z;")v,, and hence £(0) = 1.
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Figure 2: Ward identities in the background field formalism

Let’s denote the sum of bare vertex diagrams in HQET at 1/m° as igt“v“# [1+A(w, A,
where A = qv = W' — w. The Ward identity for the static quark propagator is the same
as for the ordinary one (Fig. f]). Therefore, Ae*t®A(w, A) = —=X(w + Aet®) + X(w) for
infinitesimal A, or
dX(w)
dw

It is interesting, that for an abelian external field A(w, A) =
total colour charge of a static quark Zg[1 + A(0,0)] = 1, as expected.
The 1/m HQET bare proper vertex has the form

Cp 149

" ta‘
omIt T

A(w,0) =

(13)

_W exactly. The

(14 M) (0 + 1)+ (Ako + Axap? + ApupT + Apag? )v"]
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where all A; depend on w, A; A (w, A) = Apr(w + A, —A); Ap(w,A) = Ap(w + A, —A),
and similarly for Ay, Ago. Similarly to the previous Section, we can see that variation of
the leading vertex function at v — v+ dv coincides with that of the kinetic—energy vertex
function at p; — p, + dpy, if dv = %5]@. This requires

OA(w, A)

Ap(w,A) = Aw,A), Aj(w,A) = oA (15)
(and hence Agi(w,A) = (£ — 5%) A(w,A)). The Ward identities of Fig. J result in
ay
Mol 0) = =) 00 =0 (10
(in an abelian external field, Ago(w, A) = —Z’“O(“JFAA)_E’“O(W), Apa(w, A) =0).

Reparameterization invariance relates the spin—orbit vertex function to the chromomag-
netic one, but we shall not discuss details here.

The on—shell HQET vertex at the tree level is

(k4 k)" 4, "] ¢ £, 4]

4 n By ‘ 1
T +Chn i +C’d8m2v +Cs8m2v + )uv(k) (17)

ﬂv(k‘/) (UM + Cy

As we have demonstrated above, there are no corrections to the first two terms. Other
terms have corrections starting from two loops, if there is a finite-mass flavour (such as ¢
in b—quark HQET'). Expressing the on—shell QCD vertex via HQET spinors, we obtain

om Sm?2
+u(q”) (MA’IZ:] L0 Zn[jj’g] v .)]uv(k).

Therefore, the coefficients in the HQET lagrangian are
Cv=1, Cpo=pu, Cy=8"+2u—-1, Cy=2u—1. (19)
The first one has no corrections ([[(). The coefficients ([[9) are not independent:
Cy =20, — 1. (20)

Probably, reparameterization—invariance Ward identities yield relations among corrections
from finite-mass loops in HQET which ensure the absence of corrections to (B(). However,
we shall not trace details here.

Similarly, at the 1/m? level, the coefficients in the HQET lagrangian are

Cor=4'+5u+5, Cox=4'+3u—5, Cyy=p—1, Cy=—4—gu+3. (21)
They are not independent:
Cuor=Cip1—1, Cpy=Cp—1, Cy=3(Cpn—Cy). (22)

Calculation of C,, C} requires matching amplitudes with two gluons. Calculation of
contact terms requires matching amplitudes with light quarks.
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4 Chromomagnetic interaction at two loops

As we know, the kinetic coefficient Cy(p) = 1, and the only coefficient in the HQET
lagrangian up to 1/m level which is not known exactly is the chromomagnetic coefficient
Vin(p). It is natural to find it from QCD/HQET matching at p ~ m where no large
logarithms appear. Renormalization group can be used to obtain C,, at p < m:

as ()
_ _ ’Vm(a)d_a
Con(1) = Con(m) exp / et (23)
as(m)
asm 0og Lim 2 1
where Cy(m) = 1+ 0,2 4 ¢ (22)° o Y = e = gt 2 () o s the

anomalous dimension of the chromomagnetic operator in HQET, and the [—function is

og &'s Qg Qs 2 — —_ 1
8= —%ddlloggu =i+ B (E) + -+ (where ) = 1—31C'A — %Tpnf). If L =logm/u is not
very large, it is better to retain all two—loop terms and neglect higher loops:

as(m)
47

+ [02 —(Cim+v)L+v (1 —5) Lﬂ <%)2 . (24)

Cn(p) =1+ (Cr = L) e

This approximation holds up to relatively large L because C5 is numerically large. If L is
parametrically large, then it is better to sum leading and subleading logarithms:

o) = (jj((f,?) ) " {1 ie “i,fjf) - m%%m ay(p) ;ﬁs(m)] )

In this case, we cannot utilize Cy without knowing ~3. In general, the solution of (3) can
be written as

2
Cnp) = CuK (1), Con = a(m) i (1460), 00 = 2 <%<m>) e (26)
47 47
where (), is scale- and scheme—independent.
As a simple application, we consider B—B* mass splitting [B8, P]fi

20 () 2

() + # [Con (1) P (1) + C2, (1) P (1) = Cs ()02 ()] 5 (27)

mpx —mp =

where p2, (1) and p2(u) are local matrix elements of chromomagnetic interaction and spin—
orbit one, while p? (1) and p3  (p) are kinetic-chromomagnetic and chromomagnetic—
chromomagnetic bilocal matrix elements (in the later case, there are two y—matrix struc-
tures, 1 and o,,; the coefficient of the second one is implied here). Introducing renormal-
ization group invariants

fio, = K2 (1) s P = K (1) (1) + [1 = K (10)] p3 (1)
Do = K2 (1) P+ P2 = P2(1) (28)

we can rewrite it as

N

2C,, . 1 A .
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Figure 3: Diagrams for the QCD proper vertex
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In order to obtain C),, we should calculate the heavy—quark chromomagnetic moment u
(Fig. B). All on—shell massive integrals can be reduced to 3 basis ones

I = ., L = I, = (30)

Pt
R

using integration by parts [B0-[B2]. 12 and I; are expressed via I'-functions of d; I is
expressed via I3, I}, and one difficult convergent integral [B2

[ = n2log2 — gg(s) +0e). (31)
The result has the structure
—2e
gim
p=1+ (Z e (Cp,Ca) x I (32)
gom”

(C}%,CFCA,Ci,CFTF”[,CATF”L[,CFTF,CATF) X (137[17[2) .

(47)4

Now we express it via a,(p) and expand in €. The coefficient of 1 /¢ gives the anomalous
dimension

2
—QCA —I— CA (17CA—13TFTLf) (ZS> + - (33)
m
The chromomagnetic mteractlon coefﬁment at p=m is

Con(m) =1+ 2(Cp + C) O‘ﬂ)

20 4.4, 269 4 17 , 805
+ [C}; (—8] + 37# — 31) + CrCa (— ng + —) +C5 (—I — '+ —)

3 9 3 9 27
100 4 299
—|—CFTFTL1 ( 9 ) + C'ATpnl <—§7T2 — 2—7> (34)
16 476 298 g 2
Tp | ——n? 4+ — T, S —
+CFF< 37T 9)+CAF<7T 27)}(%)
13 as(m )

g\ 2
=1+ = +(21.79 — 1.91n) (-)
T

6

The coefficient of (a,/m)? is about 11 for n; = 4 light flavours. It is 40% less than the
expectation based on naive nonabelianization [B3]. The contribution of the heavy quark
loop to this coefficient is merely —0.1.

5 Chromomagnetic interaction at higher loops

Perturbation series for C,, can be rewritten via §; instead of ny:

co L—-1

p) =14 30D anfial =1+ o f(ﬁlas)+0<ﬁl) (35)

L=1 n=0
lin 2], p3,,, is missing; in [29], the leading logarithmic running of Cy, (1) has a wrong sign.
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There is no sensible limit of QCD in which $; may be considered a large parameter
(except, may be, ny — —oo). However, retaining only the leading /31 terms often gives
a good approximation to exact multi-loop results [BJ]. This limit is believed to provide
information about summability of perturbation series [B4]. At the first order in 1/4,
multiplicative renormalization amounts to subtraction of 1/e" terms;

gy . B _ pros 1

m?2 " 118/ =" = 2log 11/ Mg (36)
The perturbation series (BJ) can be rewritten as
1 OOF(a,La)( i )L . (1)
Con(pt) =1+ — — (subtractions) + O | — | . 37

Knowledge of the function F'(e,u) allows one to obtain the anomalous dimension

_ 28 1
= 26,040 5 ) (39)
and the finite term

0 00
Cn(p) = 1—|—51_éd5 . +ﬁl O/due ” +0 5 (39)

(this method was used in [BJ]; see references in this paper). Renormalization group
invariant (R@) is

1 [ e, 1 s, F(0,u) — F(0,0
5C:E/o due” Pos S(u)—l—O(ﬁ—%) , Su)=e73 ( u)u (0.0) . (40)
(here ay is taken at ;= m in the V—scheme, exp(—ﬁu) = (%’)_2“)
[ L-1-1 [ L-2-1]
L-1
a b C

Figure 4: L-loop diagrams with the maximum number of quark loops.

The function F'(e,u) is determined by the coefficient of the highest degree of ny in the
L-loop term, which is given by the diagrams in Fig. fl. Calculating them, we obtain

D(e) =6"T(1+¢)B2—¢6,2—¢)=1+2c+--- (41)

2—u—c¢
N(e,u) = Cpdu(l 4+ u — 2¢cu) —i—C’Am

9
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This gives the anomalous dimension

o B+20)T(5+28)
T = CAg 20 + BT + BT = B) (42)

Ol 13610, 1 [ frag\’
— 0= 1+ = _Z o
CAQW[+647T 2(47r)+
This perturbation series is convergent with the radius 1 |as| < 47. The Borel image of dc
[(u)'(1—2 C
S(u) = (2;)(3(_ ) v) [4u(l 4+ u)Cr+ $(2 — w)(2+ 3u)Ca] — e 3u=4 (43)

u
has infrared renormalon poles at u = 5. They produce ambiguities in the sum of the

perturbation series for dc¢, which are of order of the residues ~ (Ay/m)™. The leading

ambiguity (u = 1) is

AC, = <1+ 7%) am

8Crp
where Am is the ambiguity of the heavy—quark pole mass [B1, Bq.

Physical quantities, such as the mass splitting (R7), are factorized into short-distance co-
efficients and long—distance hadronic matrix elements. In regularization schemes without
a hard momentum cut—off, such as MS, Wilson coefficients also contain large-distance
contributions which produce infrared renormalon ambiguities. Likewise, hadronic matrix
elements contain small-distance contributions which produce ultraviolet renormalon am-
biguities. In other words, the separation into short— and long—distance contributions is
ambiguous; only when they are combined to form a physical quantity, an unambiguous
result is obtained. Cancellations between infrared and ultraviolet renormalon ambiguities
in HQET were traced in [B7)].

Ultraviolet renormalon ambiguities in matrix elements p? don’t depend on external states,
and may be calculated at the level of quarks and gluons (Fig. [l). Note that there is

, (14)

an ultraviolet renormalon ambiguity in the wave function renormalization AZy = %%”
(Fig. Bd). The result is
2 CA 19 CA 1 CA
Apd = 274 2 A Ap? =22 A Apd=—==212 Am. 45

The sum of ultraviolet ambiguities of the 1/m? contributions to (7) cancels the infrared
ambiguity of the leading term.
The requirement of cancellation of renormalon ambiguities in the mass splitting (2§) for
all m allows us to establish the structure of the leading infrared renormalon singularity in
S(u) at u = % beyond the large ; limit. The ultraviolet ambiguity of the square bracket
in (B§) should be equal to i, times

Ay =me Bosa, 1

1+ O(ay)]. (46)

In order to reproduce the correct fractional powers of a, S(u) in ([f(]) should have the

branch point at u = % instead of a pole:

_ 1 1 19 CAKg 1 C1A[(4
S(u) = (1 - u)“'ﬁ?/zﬁ% 20p K, — §CAK2 + E( )—71/261 T 2 (l B u)71/261 ’
2

1
3 u

(47)
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Figure 5: Diagrams for p3; quark loops are inserted in all possible ways.

b ¢

where omitted terms are suppressed as % — u compared to the displayed ones. Normaliza-
tion constants are known in the large 5 limit only: K; = 1+ O(1/5;). The large-order
behaviour of the perturbation series for dc is

Copr = 0l (281)" 02125 [ACE K — 204Ky + RO Kan™ /20 4 CuKn™/?0] | (48)

where omitted terms are suppressed as 1/n compared to the displayed ones.
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