Recent progress on HQET lagrangian

A. G. Grozin

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
HQET lagrangian up to $1 / m^{3}$ terms is discussed. Consequences of reparameterization invariance are considered. Results for the chromomagnetic interaction coefficient at two loops, and in all orders in the large $-\beta_{1}$ approximation, are presented.

1 HQET lagrangian

QCD problems with a single heavy quark staying approximately at rest can be conveniently treated in the heavy quark effective field theory (HQET) (see [1] for review and references). We shift the energy zero level: $E=m+\omega$, and consider the region where residual energies ω and momenta \vec{p} are not large: $\omega \sim|\vec{p}| \sim \Lambda \ll m$. The effective field theory is constructed to reproduce QCD on-shell scattering amplitudes expanded to some order $(\Lambda / m)^{n}$. This is achieved by writing down the most general effective Lagrangian consistent with the required symmetries, and tuning the coefficients to reproduce QCD on-shell amplitudes. Terms with $D_{0} Q$ can be eliminated by field redefinitions.
The most general lagrangian up to $1 / m^{3}$ is [2]- [6]

$$
\begin{align*}
L & =Q^{+} i D_{0} Q \\
+ & \frac{C_{k}}{2 m} Q^{+} \vec{D}^{2} Q+\frac{C_{m}}{2 m} Q^{+} \vec{B} \cdot \vec{\sigma} Q+\frac{i C_{s}}{8 m^{2}} Q^{+}(\vec{D} \times \vec{E}-\vec{E} \times \vec{D}) \cdot \vec{\sigma} Q+\frac{C_{d}}{8 m^{2}} Q^{+}[\vec{D} \cdot \vec{E}] Q \\
+ & \frac{C_{k 2}}{8 m^{3}} Q^{+} \vec{D}^{4} Q+\frac{C_{w 1}}{8 m^{3}} Q^{+}\left\{\overrightarrow{D^{2}}, \vec{B} \cdot \vec{\sigma}\right\} Q-\frac{C_{w 2}}{4 m^{3}} Q^{+} D^{i} \vec{B} \cdot \vec{\sigma} D^{i} Q \tag{1}\\
& +\frac{C_{p^{\prime} p}^{3}}{8 m^{3}} Q^{+}(\vec{D} \vec{B} \cdot \vec{D}+\vec{D} \cdot \vec{B} \vec{D}) \cdot \vec{\sigma} Q+\frac{i C_{M}}{8 m^{3}} Q^{+}(\vec{D} \cdot[\vec{D} \times \vec{B}]+[\vec{D} \times \vec{B}] \cdot \vec{D}) Q \\
& +\frac{C_{a 1}}{8 m^{3}} Q^{+}\left(\vec{B}^{2}-\vec{E}^{2}\right) Q-\frac{C_{a 2}}{16 m^{3}} Q^{+} \vec{E}^{2} Q+\frac{C_{a 3}}{8 m^{3}} Q^{+} \operatorname{Tr}\left(\vec{B}^{2}-\vec{E}^{2}\right) Q-\frac{C_{a 4}}{16 m^{3}} Q^{+} \operatorname{Tr} \vec{E}^{2} Q \\
& +\frac{i C_{b 1}}{8 m^{3}} Q^{+}(\vec{B} \times \vec{B}-\vec{E} \times \vec{E}) \cdot \vec{\sigma} Q-\frac{i C_{b 2}^{3}}{8 m^{3}} Q^{+}(\vec{E} \times \vec{E}) \cdot \vec{\sigma} Q+\cdots
\end{align*}
$$

where Q is 2 -component heavy-quark field. Here heavy-light contact interactions are omitted, as well as operators involving only light fields.
HQET can be rewritten in relativistic notations. Momenta of all states are decomposed as $p=m v+k$ where residual momenta $k \sim \Lambda$. The heavy-quark field is now Dirac spinor obeying $\psi Q_{v}=Q_{v}$. The lagrangian is

$$
\begin{align*}
& L_{v}=\bar{Q}_{v} i v \cdot D Q_{v}-\frac{C_{k}}{2 m} \bar{Q}_{v} D_{\perp}^{2} Q_{v}-\frac{C_{m}}{4 m} \bar{Q}_{v} G_{\mu \nu} \sigma^{\mu \nu} Q_{v} \tag{2}\\
& +\frac{i C_{s}}{8 m^{2}} \bar{Q}_{v}\left\{D_{\perp}^{\mu}, G^{\lambda \nu}\right\} v_{\lambda} \sigma_{\mu \nu} Q_{v}-\frac{C_{d}}{8 m^{2}} \bar{Q}_{v} v^{\mu}\left[D_{\perp}^{\nu} G_{\mu \nu}\right] Q_{v}+\cdots
\end{align*}
$$

where $D_{\perp}=D-v(v D)$. The velocity v may be changed by an amount $\delta v \lesssim \Lambda / m$ without spoiling the applicability of HQET and changing its predictions. This reparameterization invariance relates coefficients of varying degrees in $1 / m$ [7]-[|3].
At the tree level, there are easier ways to find the coefficients C_{i} than $\mathrm{QCD} / \mathrm{HQET}$ matching: Foldy-Wouthuysen transformation [14, 15], or using equations of motion [5]
(or integrating out lower components [16, [17]) followed by a field redefinition. The result is

$$
\begin{align*}
& C_{k}=C_{m}=C_{d}=C_{s}=C_{k 2}=C_{w 1}=C_{a 1}=C_{b 1}=1 \tag{3}\\
& C_{w 2}=C_{p^{\prime} p}=C_{M}=C_{a 2}=C_{a 3}=C_{a 4}=C_{b 2}=0
\end{align*}
$$

However, these algebraic methods don't generalize to higher loops.
At $1 / m$ level, the kinetic coefficient $C_{k}=1$ due to the reparameterization invariance [7]. One-loop matching for the chromomagnetic coefficient C_{m} was done in [3]; two-loop anomalous dimension of the chromomagnetic operator in HQET was obtained in [18, 19], and two-loop matching was done in [19]; in [20], all orders of perturbation theory for C_{m} were summed at large β_{1}.
At $1 / m^{2}$ level, the spin-orbit coefficient $C_{s}=2 C_{m}-1$ due to the reparameterization invariance [21]-24]. The Darwin term reduces to a contact interaction. One-loop matching for the heavy-light contact interactions was done in [24]. The one-loop anomalous dimension matrix of dimension 6 terms in the HQET lagrangian was obtained in [15], [22] 25].
At $1 / m^{3}$ level, one-loop matching was done in [6] for the terms involving the heavy-quark fields twice and the gluon field once. The one-loop renormalization of dimension 7 terms in the HQET lagrangian was recently considered [26].

2 Matching quark-quark vertex

Renormalized QCD on-shell quark-quark proper vertex

$$
\begin{equation*}
-\bar{u}(\not p-m) u \tag{4}
\end{equation*}
$$

gets no correction in the on-shell renormalization scheme. QCD spinors are related to HQET spinors by the Foldy-Wouthuysen transformation

$$
\begin{equation*}
u=\left(1+\frac{\not k}{2 m}+\frac{k^{2}}{4 m^{2}}+\cdots\right) u_{v}, \quad \psi u_{v}=u_{v} . \tag{5}
\end{equation*}
$$

Expressing QCD proper vertex via HQET spinors, we obtain

$$
\begin{equation*}
\bar{u}_{v} \frac{\vec{k}^{2}}{2 m} u_{v}+\cdots \tag{6}
\end{equation*}
$$

Let's denote the sum of bare 1-particle-irreducible self-energy diagrams of the heavy quark in HQET at $1 / m^{0}$ as $-i \frac{1+\gamma}{2} \Sigma(\omega), \omega=k v$. At the $1 / m$ level, self-energy diagrams with a single chromomagnetic vertex vanish. Let the sum of bare diagrams with a single kinetic vertex be $-i \frac{C_{k}}{2 m} \frac{1+\phi}{2} \Sigma_{k}\left(\omega, k_{\perp}^{2}\right)$. Consider variation of Σ at $v \rightarrow v+\delta v$ for an infinitesimal $\delta v(v \delta v=0)$. All factors $\frac{1+\psi}{2}$ can be combined into a single one, and the variation $\delta \psi$ in it provides the variation of the γ-matrix structure in front of Σ. There are two sources of the variation of Σ. Terms from the expansion of denominators of the propagators produce insertions $i k \delta v$. Terms from the vertices produce $i g t^{a} \delta v^{\mu}$. Now consider variation of Σ_{k} at $k_{\perp} \rightarrow k_{\perp}+\delta k_{\perp}$ for an infinitesimal δk_{\perp}. Quark-quark kinetic
vertices produce $i \frac{C_{k}}{m} k \delta k_{\perp}$; quark-quark-gluon kinetic vertices produce $i \frac{C_{k}}{m} g t^{a} \delta k_{\perp}^{\mu}$; twogluon vertices produce nothing. Therefore,

$$
\begin{equation*}
\frac{\partial \Sigma_{k}}{\partial k_{\perp}^{\mu}}=2 \frac{\partial \Sigma}{\partial v^{\mu}} \tag{7}
\end{equation*}
$$

This is the Ward identity of the reparameterization invariance first derived in 10]. Taking into account $\frac{\partial \Sigma_{k}}{\partial k_{\perp}}=2 \frac{\partial \Sigma_{k}}{\partial k_{\perp}^{2}} k_{\perp}^{\mu}$ and $\frac{\partial \Sigma}{\partial v^{\mu}}=\frac{d \Sigma}{d \omega} k_{\perp}^{\mu}$, we obtain

$$
\begin{equation*}
\frac{\partial \Sigma_{k}}{\partial k_{\perp}^{2}}=\frac{d \Sigma}{d \omega} \tag{8}
\end{equation*}
$$

The right-hand side does not depend on k_{\perp}^{2}, and hence

$$
\begin{equation*}
\Sigma_{k}\left(\omega, k_{\perp}^{2}\right)=\frac{d \Sigma(\omega)}{d \omega} k_{\perp}^{2}+\Sigma_{k 0}(\omega) \tag{9}
\end{equation*}
$$

This result can also be understood in a more direct way. Only diagrams with a quarkquark kinetic vertex contain k_{\perp}^{2}; its coefficient is is $i \frac{C_{k}}{2 m}$. The sum of diagrams with a unit insertion is $-i \frac{d \Sigma}{d \omega}$. Note that diagrams with a quark-quark-gluon kinetic vertex vanish because there is no preferred transverse direction.
On the mass shell $(\omega=0)$, the renormalized HQET quark-quark proper vertex is $\frac{C_{k}}{2 m} Z_{Q} \bar{u}_{v}$ $\left[-k_{\perp}^{2}+\Sigma_{k}\left(0, k_{\perp}^{2}\right)\right] u_{v}=-\frac{C_{k}}{2 m} Z_{Q}\left[1-\frac{d \Sigma}{d \omega}\right]_{\omega=0} k_{\perp}^{2} \bar{u}_{v} u_{v}$. On the mass shell, only diagrams with finite-mass particles in loops contribute (e.g., c-quark loops in b-quark HQET) (Fig. (1). Taking into account $Z_{Q}^{-1}=1-\left.\frac{d \Sigma}{d \omega}\right|_{\omega=0}$ and comparing with (6), we finally obtain

$$
\begin{equation*}
C_{k}(\mu)=1 \tag{10}
\end{equation*}
$$

This argument works for an arbitrary μ; hence, the anomalous dimension of the kineticenergy operator in HQET vanishes exactly. In a similar way, it is not difficult to prove that

$$
\begin{equation*}
C_{k 2}=1 \tag{11}
\end{equation*}
$$

Figure 1: HQET quark-quark proper vertex on the mass shell

3 Matching quark-quark-gluon vertex

QCD on-shell proper vertex is characterized by 2 form factors:

$$
\begin{align*}
& \bar{u}\left(p^{\prime}\right) t^{a}\left(\varepsilon\left(q^{2}\right) \frac{\left(p+p^{\prime}\right)^{\mu}}{2 m}+\mu\left(q^{2}\right) \frac{\left[q, \gamma^{\mu}\right]}{4 m}\right) u(p), \tag{12}\\
& \varepsilon\left(q^{2}\right)=1+\varepsilon^{\prime} \frac{q^{2}}{m^{2}}+\cdots, \quad \mu\left(q^{2}\right)=\mu+\mu^{\prime} \frac{q^{2}}{m^{2}}+\cdots
\end{align*}
$$

The total colour charge of a quark $\varepsilon(0)=1$ due to the gauge invariance. Ward identities in the background field formalism [27] are shown in Fig. 2, where the large dot means convolution with the gluon incoming momentum q and colour polarization e^{a}, the second equalities are valid only for an infinitesimal q (or in the case of an abelian external field), and $\left(t^{a}\right)^{b c}=i f^{a c b}$ in the adjoint representation. Therefore, the QCD proper vertex $\Lambda_{\mu}^{a}(p, q)=\Lambda_{\mu} t^{a}$ obeys $\Lambda_{\mu}^{a} q^{\mu} e^{a}=-\Sigma\left(p+q e^{a} t^{a}\right)+\Sigma(p)$ for infinitesimal q, or $\Lambda_{\mu}(p, 0)=$ $-\frac{\partial \Sigma(p)}{\partial p^{\mu}}$. The form factor is projected out by $\varepsilon(0)=Z_{Q}\left[1+\frac{1}{4} \operatorname{Tr} \Lambda_{\mu} v^{\mu}(1+\psi)\right]$. On the mass shell, $\frac{1}{4} \operatorname{Tr} \frac{\partial \Sigma}{\partial p^{\mu}}=\left(1-Z_{Q}^{-1}\right) v_{\mu}$, and hence $\varepsilon(0)=1$.

$$
\begin{aligned}
& \xrightarrow{p}\left\{p+q, g e^{a} t^{a} \quad[\xrightarrow{p+q}-\xrightarrow{p}]=g\left[\xrightarrow{p+q e^{a} t^{a}}-\xrightarrow{p}\right]\right.
\end{aligned}
$$

Figure 2: Ward identities in the background field formalism
Let's denote the sum of bare vertex diagrams in HQET at $1 / m^{0}$ as $i g t^{a} v^{\mu} \frac{1+\psi}{2}[1+\Lambda(\omega, \Delta)]$, where $\Delta=q v=\omega^{\prime}-\omega$. The Ward identity for the static quark propagator is the same as for the ordinary one (Fig. 22). Therefore, $\Delta e^{a} t^{a} \Lambda(\omega, \Delta)=-\Sigma\left(\omega+\Delta e^{a} t^{a}\right)+\Sigma(\omega)$ for infinitesimal Δ, or

$$
\begin{equation*}
\Lambda(\omega, 0)=-\frac{d \Sigma(\omega)}{d \omega} \tag{13}
\end{equation*}
$$

It is interesting, that for an abelian external field $\Lambda(\omega, \Delta)=-\frac{\Sigma(\omega+\Delta)-\Sigma(\omega)}{\Delta}$ exactly. The total colour charge of a static quark $Z_{Q}[1+\Lambda(0,0)]=1$, as expected. The $1 / m$ HQET bare proper vertex has the form

$$
i \frac{C_{k}}{2 m} g t^{a} \frac{1+\psi}{2}\left[\left(1+\Lambda_{k}\right)\left(p+p^{\prime}\right)_{\perp}^{\mu}+\left(\Lambda_{k 0}+\Lambda_{k 1} p_{\perp}^{2}+\Lambda_{k 1}^{\prime} p_{\perp}^{\prime 2}+\Lambda_{k 2} q_{\perp}^{2}\right) v^{\mu}\right]
$$

$$
\begin{equation*}
+i \frac{C_{m}}{4 m} g t^{a} \frac{1+\psi}{2}\left[\gamma^{\mu}, q\right] \frac{1+\psi}{2}\left(1+\Lambda_{m}\right) \tag{14}
\end{equation*}
$$

where all Λ_{i} depend on $\omega, \Delta ; \Lambda_{k 1}^{\prime}(\omega, \Delta)=\Lambda_{k 1}(\omega+\Delta,-\Delta) ; \Lambda_{k}(\omega, \Delta)=\Lambda_{k}(\omega+\Delta,-\Delta)$, and similarly for $\Lambda_{k 0}, \Lambda_{k 2}$. Similarly to the previous Section, we can see that variation of the leading vertex function at $v \rightarrow v+\delta v$ coincides with that of the kinetic-energy vertex function at $p_{\perp} \rightarrow p_{\perp}+\delta p_{\perp}$, if $\delta v=\frac{C_{k}}{m} \delta p_{\perp}$. This requires

$$
\begin{equation*}
\Lambda_{k}(\omega, \Delta)=\Lambda(\omega, \Delta), \quad \Lambda_{k 1}^{\prime}(\omega, \Delta)=\frac{\partial \Lambda(\omega, \Delta)}{\partial \Delta} \tag{15}
\end{equation*}
$$

(and hence $\Lambda_{k 1}(\omega, \Delta)=\left(\frac{\partial}{\partial \omega}-\frac{\partial}{\partial \Delta}\right) \Lambda(\omega, \Delta)$). The Ward identities of Fig. 2 result in

$$
\begin{equation*}
\Lambda_{k 0}(\omega, 0)=-\frac{d \Sigma_{k 0}(\omega)}{d \omega}, \quad \Lambda_{k 2}(\omega, 0)=0 \tag{16}
\end{equation*}
$$

(in an abelian external field, $\Lambda_{k 0}(\omega, \Delta)=-\frac{\Sigma_{k 0}(\omega+\Delta)-\Sigma_{k 0}(\omega)}{\Delta}, \Lambda_{k 2}(\omega, \Delta)=0$).
Reparameterization invariance relates the spin-orbit vertex function to the chromomagnetic one, but we shall not discuss details here.
The on-shell HQET vertex at the tree level is

$$
\begin{equation*}
\bar{u}_{v}\left(k^{\prime}\right)\left(v^{\mu}+C_{k} \frac{\left(k+k^{\prime}\right)^{\mu}}{2 m}+C_{m} \frac{\left[\notin, \gamma^{\mu}\right]}{4 m}+C_{d} \frac{q^{2}}{8 m^{2}} v^{\mu}+C_{s} \frac{[\not\langle, \not \subset]]}{8 m^{2}} v^{\mu}+\cdots\right) u_{v}(k) . \tag{17}
\end{equation*}
$$

As we have demonstrated above, there are no corrections to the first two terms. Other terms have corrections starting from two loops, if there is a finite-mass flavour (such as c in b-quark HQET). Expressing the on-shell QCD vertex via HQET spinors, we obtain

$$
\begin{align*}
& \bar{u}_{v}\left(k^{\prime}\right)\left[\varepsilon\left(q^{2}\right)\left(v^{\mu}+\frac{\left(k+k^{\prime}\right)^{\mu}}{2 m}-\frac{q^{2}+[\not ้, \phi \notin]}{8 m^{2}} v^{\mu}+\cdots\right)\right. \tag{18}\\
& \left.\quad+\mu\left(q^{2}\right)\left(\frac{\left[\not \phi, \gamma^{\mu}\right]}{4 m}+\frac{q^{2}+[\not k, \not \subset]}{4 m^{2}} v^{\mu}+\cdots\right)\right] u_{v}(k) .
\end{align*}
$$

Therefore, the coefficients in the HQET lagrangian are

$$
\begin{equation*}
C_{k}=1, \quad C_{m}=\mu, \quad C_{d}=8 \varepsilon^{\prime}+2 \mu-1, \quad C_{s}=2 \mu-1 \tag{19}
\end{equation*}
$$

The first one has no corrections (10). The coefficients (19) are not independent:

$$
\begin{equation*}
C_{s}=2 C_{m}-1 \tag{20}
\end{equation*}
$$

Probably, reparameterization-invariance Ward identities yield relations among corrections from finite-mass loops in HQET which ensure the absence of corrections to (20). However, we shall not trace details here.
Similarly, at the $1 / m^{3}$ level, the coefficients in the HQET lagrangian are

$$
\begin{equation*}
C_{w 1}=4 \mu^{\prime}+\frac{1}{2} \mu+\frac{1}{2}, \quad C_{w 2}=4 \mu^{\prime}+\frac{1}{2} \mu-\frac{1}{2}, \quad C_{p^{\prime} p}=\mu-1, \quad C_{M}=-4 \varepsilon^{\prime}-\frac{1}{2} \mu+\frac{1}{2} . \tag{21}
\end{equation*}
$$

They are not independent:

$$
\begin{equation*}
C_{w 2}=C_{w 1}-1, \quad C_{p^{\prime} p}=C_{m}-1, \quad C_{M}=\frac{1}{2}\left(C_{m}-C_{d}\right) \tag{22}
\end{equation*}
$$

Calculation of C_{a}, C_{b} requires matching amplitudes with two gluons. Calculation of contact terms requires matching amplitudes with light quarks.

4 Chromomagnetic interaction at two loops

As we know, the kinetic coefficient $C_{k}(\mu)=1$, and the only coefficient in the HQET lagrangian up to $1 / m$ level which is not known exactly is the chromomagnetic coefficient $V_{m}(\mu)$. It is natural to find it from QCD/HQET matching at $\mu \sim m$ where no large logarithms appear. Renormalization group can be used to obtain C_{m} at $\mu \ll m$:

$$
\begin{equation*}
C_{m}(\mu)=C_{m}(m) \exp \left(-\int_{\alpha_{s}(m)}^{\alpha_{s}(\mu)} \frac{\gamma_{m}(\alpha)}{2 \beta(\alpha)} \frac{d \alpha}{\alpha}\right) \tag{23}
\end{equation*}
$$

where $C_{m}(m)=1+C_{1} \frac{\alpha_{s}(m)}{4 \pi}+C_{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\cdots, \gamma_{m}=\frac{d \log Z_{m}}{d \log \mu}=\gamma_{1} \frac{\alpha_{s}}{4 \pi}+\gamma_{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\cdots$ is the anomalous dimension of the chromomagnetic operator in HQET, and the β-function is $\beta=-\frac{1}{2} \frac{d \log \alpha_{s}}{d \log \mu}=\beta_{1} \frac{\alpha_{s}}{4 \pi}+\beta_{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\cdots\left(\right.$ where $\left.\beta_{1}=\frac{11}{3} C_{A}-\frac{4}{3} T_{F} n_{f}\right)$. If $L=\log m / \mu$ is not very large, it is better to retain all two-loop terms and neglect higher loops:

$$
\begin{equation*}
C_{m}(\mu)=1+\left(C_{1}-\gamma_{1} L\right) \frac{\alpha_{s}(m)}{4 \pi}+\left[C_{2}-\left(C_{1} \gamma_{1}+\gamma_{2}\right) L+\gamma_{1}\left(\gamma_{1}-\beta_{1}\right) L^{2}\right]\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \tag{24}
\end{equation*}
$$

This approximation holds up to relatively large L because C_{2} is numerically large. If L is parametrically large, then it is better to sum leading and subleading logarithms:

$$
\begin{equation*}
C_{m}(\mu)=\left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m)}\right)^{-\frac{\gamma_{1}}{2 \beta_{1}}}\left[1+C_{1} \frac{\alpha_{s}(m)}{4 \pi}-\frac{\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}}{2 \beta_{1}^{2}} \frac{\alpha_{s}(\mu)-\alpha_{s}(m)}{4 \pi}\right] . \tag{25}
\end{equation*}
$$

In this case, we cannot utilize C_{2} without knowing γ_{3}. In general, the solution of (23) can be written as

$$
\begin{equation*}
C_{m}(\mu)=\hat{C}_{m} K(\mu), \quad \hat{C}_{m}=\alpha_{s}(m)^{\frac{\gamma_{1}}{2 \beta_{1}}}(1+\delta c), \quad \delta c=c_{1} \frac{\alpha_{s}(m)}{4 \pi}+c_{2}\left(\frac{\alpha_{s}(m)}{4 \pi}\right)^{2}+\cdots \tag{26}
\end{equation*}
$$

where \hat{C}_{m} is scale- and scheme-independent.
As a simple application, we consider $B-B^{*}$ mass splitting [28, 29]

$$
\begin{equation*}
m_{B^{*}}-m_{B}=\frac{2 C_{m}(\mu)}{3 m} \mu_{m}^{2}(\mu)+\frac{1}{3 m^{2}}\left[C_{m}(\mu) \rho_{k m}^{3}(\mu)+C_{m}^{2}(\mu) \rho_{m m}^{3}(\mu)-C_{s}(\mu) \rho_{s}^{3}(\mu)\right] \tag{27}
\end{equation*}
$$

where $\mu_{m}^{2}(\mu)$ and $\rho_{s}^{3}(\mu)$ are local matrix elements of chromomagnetic interaction and spinorbit one, while $\rho_{k m}^{3}(\mu)$ and $\rho_{m m}^{3}(\mu)$ are kinetic-chromomagnetic and chromomagneticchromomagnetic bilocal matrix elements (in the later case, there are two γ-matrix structures, 1 and $\sigma_{\mu \nu}$; the coefficient of the second one is implied here). Introducing renormalization group invariants

$$
\begin{align*}
& \hat{\mu}_{m}^{2}=K(\mu) \mu_{m}^{2}(\mu), \quad \hat{\rho}_{k m}^{3}=K(\mu) \rho_{k m}^{3}(\mu)+[1-K(\mu)] \rho_{s}^{3}(\mu) \\
& \hat{\rho}_{m m}^{3}=K^{2}(\mu) \rho_{m m}^{3}, \quad \hat{\rho}_{s}^{3}=\rho_{s}^{3}(\mu) \tag{28}
\end{align*}
$$

we can rewrite it as

$$
\begin{equation*}
m_{B^{*}}-m_{B}=\frac{2 \hat{C}_{m}}{3 m} \hat{\mu}_{m}^{2}+\frac{1}{3 m^{2}}\left[\hat{C}_{m}\left(\hat{\rho}_{k m}^{3}-2 \hat{\rho}_{s}^{3}\right)+\hat{C}_{m}^{2} \hat{\rho}_{m m}^{3}+\hat{\rho}_{s}^{3}\right] \tag{29}
\end{equation*}
$$

Figure 3: Diagrams for the QCD proper vertex

In order to obtain C_{m}, we should calculate the heavy-quark chromomagnetic moment μ (Fig. (3). All on-shell massive integrals can be reduced to 3 basis ones

using integration by parts 30]-32]. I_{0}^{2} and I_{1} are expressed via Γ-functions of $d ; I_{2}$ is expressed via I_{0}^{2}, I_{1}, and one difficult convergent integral [32]

$$
\begin{equation*}
I=\pi^{2} \log 2-\frac{3}{2} \zeta(3)+O(\varepsilon) . \tag{31}
\end{equation*}
$$

The result has the structure

$$
\begin{align*}
\mu= & 1+\frac{g_{0}^{2} m^{-2 \varepsilon}}{(4 \pi)^{d / 2}}\left(C_{F}, C_{A}\right) \times I_{0} \tag{32}\\
& +\frac{g_{0}^{4} m^{-4 \varepsilon}}{(4 \pi)^{d}}\left(C_{F}^{2}, C_{F} C_{A}, C_{A}^{2}, C_{F} T_{F} n_{l}, C_{A} T_{F} n_{l}, C_{F} T_{F}, C_{A} T_{F}\right) \times\left(I_{0}^{2}, I_{1}, I_{2}\right)
\end{align*}
$$

Now we express it via $\alpha_{s}(\mu)$ and expand in ε. The coefficient of $1 / \varepsilon$ gives the anomalous dimension

$$
\begin{equation*}
\gamma_{m}=2 C_{A} \frac{\alpha_{s}}{4 \pi}+\frac{4}{9} C_{A}\left(17 C_{A}-13 T_{F} n_{f}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\cdots \tag{33}
\end{equation*}
$$

The chromomagnetic interaction coefficient at $\mu=m$ is

$$
\begin{align*}
& C_{m}(m)=1+2\left(C_{F}+C_{A}\right) \frac{\alpha_{s}(m)}{4 \pi} \\
& +\left[C_{F}^{2}\left(-8 I+\frac{20}{3} \pi^{2}-31\right)+C_{F} C_{A}\left(\frac{4}{3} I+\frac{4}{3} \pi^{2}+\frac{269}{9}\right)+C_{A}^{2}\left(\frac{4}{3} I-\frac{17}{9} \pi^{2}+\frac{805}{27}\right)\right. \\
& \quad+C_{F} T_{F} n_{l}\left(-\frac{100}{9}\right)+C_{A} T_{F} n_{l}\left(-\frac{4}{9} \pi^{2}-\frac{299}{27}\right) \tag{34}\\
& \left.\quad+C_{F} T_{F}\left(-\frac{16}{3} \pi^{2}+\frac{476}{9}\right)+C_{A} T_{F}\left(\pi^{2}-\frac{298}{27}\right)\right]\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \\
& =1+\frac{13}{6} \frac{\alpha_{s}(m)}{\pi}+\left(21.79-1.91 n_{l}\right)\left(\frac{\alpha_{s}}{\pi}\right)^{2} .
\end{align*}
$$

The coefficient of $\left(\alpha_{s} / \pi\right)^{2}$ is about 11 for $n_{l}=4$ light flavours. It is 40% less than the expectation based on naive nonabelianization [33]. The contribution of the heavy quark loop to this coefficient is merely -0.1 .

5 Chromomagnetic interaction at higher loops

Perturbation series for C_{m} can be rewritten via β_{1} instead of n_{f} :

$$
\begin{equation*}
C_{m}(\mu)=1+\sum_{L=1}^{\infty} \sum_{n=0}^{L-1} a_{L n} \beta_{1}^{n} \alpha_{s}^{L}=1+\frac{1}{\beta_{1}} f\left(\beta_{1} \alpha_{s}\right)+O\left(\frac{1}{\beta_{1}^{2}}\right) . \tag{35}
\end{equation*}
$$

[^0]There is no sensible limit of QCD in which β_{1} may be considered a large parameter (except, may be, $n_{f} \rightarrow-\infty$). However, retaining only the leading β_{1} terms often gives a good approximation to exact multi-loop results [33]. This limit is believed to provide information about summability of perturbation series [34]. At the first order in $1 / \beta_{1}$, multiplicative renormalization amounts to subtraction of $1 / \varepsilon^{n}$ terms;

$$
\begin{equation*}
\frac{\beta_{1} g_{0}^{2}}{(4 \pi)^{2}}=\bar{\mu}^{2 \varepsilon} \frac{\beta}{1+\beta / \varepsilon}, \quad \beta=\frac{\beta_{1} \alpha_{s}}{4 \pi}=\frac{1}{2 \log \mu / \Lambda_{\overline{\mathrm{MS}}}} \tag{36}
\end{equation*}
$$

The perturbation series (35) can be rewritten as

$$
\begin{equation*}
C_{m}(\mu)=1+\frac{1}{\beta_{1}} \sum_{L=1}^{\infty} \frac{F(\varepsilon, L \varepsilon)}{L}\left(\frac{\beta}{\varepsilon+\beta}\right)^{L}-(\text { subtractions })+O\left(\frac{1}{\beta_{1}^{2}}\right) \tag{37}
\end{equation*}
$$

Knowledge of the function $F(\varepsilon, u)$ allows one to obtain the anomalous dimension

$$
\begin{equation*}
\gamma_{m}=\frac{2 \beta}{\beta_{1}} F(-\beta, 0)+O\left(\frac{1}{\beta_{1}^{2}}\right) \tag{38}
\end{equation*}
$$

and the finite term

$$
\begin{equation*}
C_{m}(\mu)=1+\frac{1}{\beta_{1}} \int_{-\beta}^{0} d \varepsilon \frac{F(\varepsilon, 0)-F(0,0)}{\varepsilon}+\frac{1}{\beta_{1}} \int_{0}^{\infty} d u e^{-u / \beta} \frac{F(0, u)-F(0,0)}{u}+O\left(\frac{1}{\beta_{1}^{2}}\right) \tag{39}
\end{equation*}
$$

(this method was used in [33]; see references in this paper). Renormalization group invariant (26) is

$$
\begin{equation*}
\delta c=\frac{1}{\beta_{1}} \int_{0}^{\infty} d u e^{-\frac{4 \pi}{\beta_{1} \alpha_{s}} u} S(u)+O\left(\frac{1}{\beta_{1}^{2}}\right), \quad S(u)=\left.e^{-\frac{5}{3} u} \frac{F(0, u)-F(0,0)}{u}\right|_{\mu=m} \tag{40}
\end{equation*}
$$

(here α_{s} is taken at $\mu=m$ in the V-scheme, $\exp \left(-\frac{4 \pi}{\beta_{1} \alpha_{s}} u\right)=\left(\frac{\Lambda_{V}}{m}\right)^{-2 u}$).

Figure 4: L-loop diagrams with the maximum number of quark loops.
The function $F(\varepsilon, u)$ is determined by the coefficient of the highest degree of n_{f} in the L-loop term, which is given by the diagrams in Fig. 1 . Calculating them, we obtain

$$
\begin{align*}
& F(\varepsilon, u)=\left(\frac{\mu}{m}\right)^{2 u} e^{\gamma \varepsilon} \frac{\Gamma(1+u) \Gamma(1-2 u)}{\Gamma(3-u-\varepsilon)} D(\varepsilon)^{u / \varepsilon-1} N(\varepsilon, u) \\
& D(\varepsilon)=6 e^{\gamma \varepsilon} \Gamma(1+\varepsilon) B(2-\varepsilon, 2-\varepsilon)=1+\frac{5}{3} \varepsilon+\cdots \tag{41}\\
& N(\varepsilon, u)=C_{F} 4 u(1+u-2 \varepsilon u)+C_{A} \frac{2-u-\varepsilon}{2(1-\varepsilon)}\left(2+3 u-5 \varepsilon-6 \varepsilon u+2 \varepsilon^{2}+4 \varepsilon^{2} u\right) .
\end{align*}
$$

This gives the anomalous dimension

$$
\begin{align*}
\gamma_{m} & =C_{A} \frac{\alpha_{s}}{2 \pi} \frac{\beta(1+2 \beta) \Gamma(5+2 \beta)}{24(1+\beta) \Gamma^{3}(2+\beta) \Gamma(1-\beta)} \tag{42}\\
& =C_{A} \frac{\alpha_{s}}{2 \pi}\left[1+\frac{13}{6} \frac{\beta_{1} \alpha_{s}}{4 \pi}-\frac{1}{2}\left(\frac{\beta_{1} \alpha_{s}}{4 \pi}\right)^{2}+\cdots\right]
\end{align*}
$$

This perturbation series is convergent with the radius $\beta_{1}\left|\alpha_{s}\right|<4 \pi$. The Borel image of δc

$$
\begin{equation*}
S(u)=\frac{\Gamma(u) \Gamma(1-2 u)}{\Gamma(3-u)}\left[4 u(1+u) C_{F}+\frac{1}{2}(2-u)(2+3 u) C_{A}\right]-e^{-\frac{5}{3} u} \frac{C_{A}}{u} \tag{43}
\end{equation*}
$$

has infrared renormalon poles at $u=\frac{n}{2}$. They produce ambiguities in the sum of the perturbation series for δc, which are of order of the residues $\sim\left(\Lambda_{V} / m\right)^{n}$. The leading ambiguity ($u=\frac{1}{2}$) is

$$
\begin{equation*}
\Delta \hat{C}_{m}=\left(1+\frac{7}{8} \frac{C_{A}}{C_{F}}\right) \frac{\Delta m}{m} \tag{44}
\end{equation*}
$$

where Δm is the ambiguity of the heavy-quark pole mass [35, 36].
Physical quantities, such as the mass splitting (27), are factorized into short-distance coefficients and long-distance hadronic matrix elements. In regularization schemes without a hard momentum cut-off, such as $\overline{\mathrm{MS}}$, Wilson coefficients also contain large-distance contributions which produce infrared renormalon ambiguities. Likewise, hadronic matrix elements contain small-distance contributions which produce ultraviolet renormalon ambiguities. In other words, the separation into short- and long-distance contributions is ambiguous; only when they are combined to form a physical quantity, an unambiguous result is obtained. Cancellations between infrared and ultraviolet renormalon ambiguities in HQET were traced in [37].
Ultraviolet renormalon ambiguities in matrix elements ρ_{i}^{3} don't depend on external states, and may be calculated at the level of quarks and gluons (Fig. 5). Note that there is an ultraviolet renormalon ambiguity in the wave function renormalization $\Delta Z_{Q}=\frac{3}{2} \frac{\Delta m}{m}$ (Fig. 5dd). The result is

$$
\begin{equation*}
\Delta \rho_{k m}^{3}=-\frac{2}{3} \frac{C_{A}}{C_{F}} \mu_{m}^{2} \Delta m, \quad \Delta \rho_{m m}^{3}=-\frac{19}{12} \frac{C_{A}}{C_{F}} \mu_{m}^{2} \Delta m, \quad \Delta \rho_{s}^{3}=-\frac{1}{2} \frac{C_{A}}{C_{F}} \mu_{m}^{2} \Delta m \tag{45}
\end{equation*}
$$

The sum of ultraviolet ambiguities of the $1 / m^{2}$ contributions to (27) cancels the infrared ambiguity of the leading term.
The requirement of cancellation of renormalon ambiguities in the mass splitting (28) for all m allows us to establish the structure of the leading infrared renormalon singularity in $S(u)$ at $u=\frac{1}{2}$ beyond the large β_{1} limit. The ultraviolet ambiguity of the square bracket in (28) should be equal to $\hat{\mu}_{m}^{2}$ times

$$
\begin{equation*}
\Lambda_{V}=m e^{-\frac{2 \pi}{\beta_{1} \alpha_{s}}} \alpha_{s}^{-\frac{\beta_{2}}{2 \beta_{1}^{2}}}\left[1+O\left(\alpha_{s}\right)\right] \tag{46}
\end{equation*}
$$

In order to reproduce the correct fractional powers of $\alpha_{s}, S(u)$ in (40) should have the branch point at $u=\frac{1}{2}$ instead of a pole:

$$
\begin{equation*}
S(u)=\frac{1}{\left(\frac{1}{2}-u\right)^{1+\beta_{2} / 2 \beta_{1}^{2}}}\left[2 C_{F} K_{1}-\frac{1}{3} C_{A} K_{2}+\frac{19}{12} \frac{C_{A} K_{3}}{\left(\frac{1}{2}-u\right)^{-\gamma_{1} / 2 \beta_{1}}}+\frac{1}{2} \frac{C_{A} K_{4}}{\left(\frac{1}{2}-u\right)^{\gamma_{1} / 2 \beta_{1}}}\right], \tag{47}
\end{equation*}
$$

Figure 5: Diagrams for ρ_{i}^{3}; quark loops are inserted in all possible ways.
where omitted terms are suppressed as $\frac{1}{2}-u$ compared to the displayed ones. Normalization constants are known in the large β_{1} limit only: $K_{i}=1+O\left(1 / \beta_{1}\right)$. The large-order behaviour of the perturbation series for δc is

$$
\begin{equation*}
c_{n+1}=n!\left(2 \beta_{1}\right)^{n} n^{\beta_{2} / 2 \beta_{1}^{2}}\left[4 C_{F} K_{1}-\frac{2}{3} C_{A} K_{2}+\frac{19}{6} C_{A} K_{3} n^{-\gamma_{1} / 2 \beta_{1}}+C_{A} K_{4} n^{\gamma_{1} / 2 \beta_{1}}\right] \tag{48}
\end{equation*}
$$

where omitted terms are suppressed as $1 / n$ compared to the displayed ones.
Acknowledgements. I am grateful to A. Czarnecki and M. Neubert for collaboration in writing [19, 20]; to S. Groote for ongoing collaboration; to C. Balzereit for discussing [10, 26]; to T. Mannel for useful discussions; to J. G. Körner for hospitality at Mainz during preparation of this talk; and to M. Beyer for organization of the workshop.

References

[1] M. Neubert, Phys. Reports 245 (1994) 259.
[2] E. Eichten and B. Hill, Phys. Lett. B234 (1990) 511.
[3] E. Eichten and B. Hill, Phys. Lett. B243 (1990) 427.
[4] A. F. Falk, B. Grinstein, and M. E. Luke, Nucl. Phys. B357 (1991) 185
[5] C. L. Y. Lee, Preprint CALT-68-1663 (1991); revised (1997).
[6] A. V. Manohar, Phys. Rev. D56 (1997) 230.
[7] M. Luke and A. V. Manohar, Phys. Lett. B286 (1992) 348.
[8] Y.-Q. Chen, Phys. Lett. B317 (1993) 421.
[9] W. Kilian and T. Ohl, Phys. Rev. D50 (1994) 4649.
[10] C. Balzereit, Diploma thesis, Darmstadt (1994).
[11] M. Finkemeier, H. Georgi, and M. McIrvin, Phys. Rev. D55 (1997) 6933.
[12] R. Sundrum, Preprint BUHEP-97-14, hep-ph/9704256 (1997); Phys. Rev. D57, in print.
[13] C. L. Y. Lee, Preprint UCSD-TH-97-24, hep-ph/9709238 (1997).
[14] J. G. Körner and G. Thompson, Phys. Lett. B264 (1991) 185.
[15] S. Balk, J. G. Körner, and D. Pirjol, Nucl. Phys. B428 (1994) 499.
[16] T. Mannel, W. Roberts, and Z. Ryzak, Nucl. Phys. B368 (19204) 92.
[17] C. L. Y. Lee, Preprint UCSD-TH-97-23, hep-ph/9709237 (1997).
[18] G. Amorós, M. Beneke, and M. Neubert, Phys. Lett. B401 (1997) 81.
[19] A. Czarnecki and A. G. Grozin, Phys. Lett. B405 (1997) 142.
[20] A. G. Grozin and M. Neubert, Preprint CERN-TH/97-102, hep-ph/9707318 (1997); Nucl. Phys. B, in print.
[21] Y.-Q. Chen, Y. P. Kuang, and R. Oakes, Phys. Rev. D52 (1995) 264.
[22] C. Balzereit and T. Ohl, Phys. Lett. B386 (1996) 335.
[23] M. Finkemeier and M. McIrvin, Phys. Rev. D55 (1997) 377.
$[24]$ B. Blok, J. G. Körner, D. Pirjol, and J. C. Rojas, Nucl. Phys. B496 (1997) 358.
[25] C.Bauer and A. V. Manohar, Preprint UCSD/PTH 97-19, UTP-97-17, hepph/9708306 (1997); Phys. Rev. D57, in print.
[26] C. Balzereit, These Proceedings.
[27] L. F. Abbott, Acta Phys. Polonica 13 (1982) 33.
[28] T. Mannel, Phys. Rev. D50 (1994) 428.
[29] I. I. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, Phys. Rev. D52 (1995) 196.
[30] N. Gray, D. J. Broadhurst, W. Grafe, and K. Schilcher, Zeit. Phys. C48 (1990) 673.
[31] D. J. Broadhurst, N. Gray, and K. Schilcher, Zeit. Phys. C52 (1991) 111.
[32] D. J. Broadhurst, Zeit. Phys. C54 (1992) 599.
[33] D. J. Broadhurst and A. G. Grozin, Phys. Rev. D52 (1995) 4082.
[34] A. H. Mueller, QCD 20 years later, ed. P. M. Zerwas and H. A. Kastrup, World Scientific (1993), p. 162.
[35] M. Beneke and V. M. Braun, Nucl. Phys. B426 (1994) 301.
[36] I. I. Bigi, M. A. Shifman, N. G. Uraltsev, and A. I. Vainshtein, Phys. Rev. D50 (1994) 2234.
[37] M. Neubert and C. T. Sachrajda, Nucl. Phys. B438 (1995) 235.

[^0]: ${ }^{1}$ in 28, $\rho_{m m}^{3}$ is missing; in 29], the leading logarithmic running of $C_{m}(\mu)$ has a wrong sign.

