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USE OF THE GRIBOV THEOREM ON SOFT EMISSION IN
MASSLESS GAUGE THEORIES

V.S.FADIN
Budker Institute of Nuclear Physics
and Novosibirsk State University, 630090 Novosibirsk, Russia

We present an exampe, which demonstrates, that the Gribov theorem about the
region of applicability of the soft emission factorization can be used in massless
gauge theories for exact calculations, inspite of the fact that the theorem cannot be
literally applied in the case of massless charged particles. The example is closely
connected with the programm of calculation of the next-to-leading corrections to
the BFKL equation. We use the theorem for calculation of the gluon production
amplitude in the multi-Regge kinematics with small transverse momentum of the
produced gluon.

1 Imntroduction

We want to show how the theorem about the region of applicability of well-
~ known formulas for accompanying bremstrahlung, which was proved by V.N.
" Gribov !, can be used in massless gauge theories. Let us remind, that in 1967
~ V.N. Gribov proved, that for collision of two hadrons, A and B, with large
. c.m.s. energy /s = 1/(pa + pp)? this region is restricted by the inequalities

M«l, M«l,
8 8
P2~ 2eak) 2080 o 2 0

 where k, is the projection of the momentum of the emitted photon on the
' plane orthogonal to the momenta of the colliding particles p4 and pp, and u
- is a typical hadron mass.
' Notice that before the work of Ref. ! it was generally accepted (see, for
- example, Ref. ?) that for the applicability of the accompanying bremstrahlung
 formulas one has to have

2ppk < p* . (2)

"_ Therefore, V.N. Gribov proved, that the region of applicability of these formu-
las is considerably extended at large energies. Indeed, the conditions (2) are
fnuch more stringent than the conditions (1), if

szk < #’2 ]

s>y2 . (3)
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Gribov proved! that in the region (1) the amplitude of the emission process
is given only by those Feynman diagrams where the photon is attached to
external charged particles. Furthermore, calculating the contributions of these
diagrams one has to keep the non radiative part of the amplitude on the mass
shell, i.e. to neglect virtualities of radiating particles. In the following we’ll call
the formulas obtained in such a way as “soft insertion formulas”. Let us stress
that these formulas are invariant under gauge transformation of the emitted
photon. The possibility of using the factorized formulas with on mass-shell
non radiative amplitude in the region (1) is quite non trivial and is connected
with gauge invariance of the emission amplitude!.

It is very attractive to make use of the Gribov theorem in more complicated
cases, such as, for example, Quantum Chromodynamics (QCD). An evident
obstacle for this is the masslessness of particles having colour charge. In other
words, the typical mass p in Eq. (1) is equal to zero for the case of QCD.

The main point in the proof of the Gribov theorem is the smallness of the
transverse momentum k; of the emitted quantum of the gauge field (photon
or gluon) in comparison with the essential transverse momenta of the other
particles. In massive theories the latter momenta are of order (or larger than)
p. Contrary, in theories with massless particles, such as QCD, the essential
transverse momenta of virtual particles can be arbitrary small (that appears
as infrared and collinear divergences). Therefore, the Gribov theorem cannot
be applied literally for these theories.

Nevertheless, the theorem can be used in such theories. It is necessary
to say, that, in some sense, there are nothing new in this statement, because,
in fact, the theorem was used already many times for QCD calculations in
Double Logarithmic Approximation (DLA) (see, for example, 3). We want to
demonstrate here a validity of this statement in much more powerful sense: the
theorem can be used for calculations not only in the DLA, but with an accuracy
up to a constant. Below an example of such calculation is presented in frame-
work of the programm of calculation of the next-to-leading corrections to the
BFKL equation*. The theorem is used for calculation of the gluon production
amplitude in the multi-Regge kinematics with small transverse momentum of
the produced gluon.

The outline of the talk is the following. In Section 2 we give a short review
of the BFKL equation. In Section 3 the programm of calculation of the nex-
to-leading correction to the BFKL kernel and its present status is presented.
Section 4 is devoted to calculation of gluon production amplitude in the multi-
Regge kinematics with small transverse momentum of the produced gluon. In
Section 5 the Reggeon-Reggeon-Gluon vertex is obtained in the case of small
gluon transverse momentum for arbitrary space-time dimension D.

i
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2 BFKL equation

In the last years one can notice a wave of interest to. the B.FKL eqtfation
4 connected with results of recent experiments on deep inelastic scattermg_ of
electrons on protons®. The equation permits to solve the prf)blem of &:alcul atuzm
of parton distributions in the region of small values of BJor.ken variable z in
the leading logarithmic approximation (LLA) of perturbation theory, which
means summation of all terms of the type [a,In(1/z)]". It can be presented
in the form of equation of evolution in variable In(1/z):

- z,q)°) = 7, 02)F(2,3°), (4)
aln(l/z)f( @) /dzqz’c(q @) F(z,q,°)

where function F(z,k 2) is so called unintegrated gluon density, connezcted
with distribution of gluons, having squared transverse momenta up to Q*, by

equation

B %
2@ Q) = [ dF *F(z,F?). %)
0
In the LLA the kernel of the equation has a form?*
2 N1
- = g N — 3 Jlk o (L2 e g — . (6)
K8 = Gyt | @ B e

Here g is a gauge coupling constant (a, = f%), N is a Tmmber of colours
(N = 3 for QCD), and the vector sign serves for denot.a.tlon of components
of 4-momenta of partons orthogonal to the plane of initial partm}e mom‘eflta
PA, pB . Separate contributions to the kernel (6) leads to in!:‘rared smgula.ntl'es,
which cancel each other in Eq.(4). In the LLA it is not difficult, performm.g
an azimuthal integration in Eq.(4), to rewrite it in such a way that makes this
cancellation evident *:

) b
W}'(%ql )=
= = 2 1 1
Nas [ ..o F(z6%)) 229 . . —)].
- /d(h [|f§'22 _(Flce[B2l F(z, ¢ )6'22 P (@2)% + 4(3,%)?

(7)
In the next-to-leading approximation, which will be discussed below, the can-
cellation of the infrared singularities is not so simple, therefore in the following
we’ll use dimensional regularization

d’k dP—2k g
@n® ~ P (®)
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where D = 4 + 2¢ - space-time dimension, in order to use only well defined
expressions at each step of calculations.

The LLA leads to a sharp power growth of cross sections with c.m.s. energy
/3. In terms of parton distributions this means a fast increase of the gluon
density g(z,Q?) in small z = Q; region:

g(Ing) % Wl ) (g)

where jo is the LLA position of the singularity of the partial amplitude with
vacuum quantum numbers in ¢-channel 4:

Jo=1+ 40"1\.’1112, (10)

T
with N = 3 for QCD. Such behaviour violates the Froissart bound oy, <
const(In s)* and therefore the LLA can not be applied at asymptotically small
x. Nevertheless, in the region of parameters accessible for modern experiments
observed behaviour of the structure functions is consistent with LLA results
8, and we will not discuss here the unitarization problem, which appear at
asymptotically large energies. From practical point of view it seems more im-
portant to determine the region of energies and momentum transfers where
the LLA is applicable. For this purpose we have to calculate radiative cor-
rections to the LLA. Importance of the radiative corrections is strengthened
by the curcumstance that the dependence of the QCD running coupling a; on
virtuality is beyond of accuracy of the LLA. It diminishes a predictive power
of the LLA, because numerical results of this approximation can be strongly
modified by changing a scale of virtuality.

It is clear from the above discussion, that the problem of calculation of
radiative corrections to the LLA is very important now.

3 Next-to-leading approximation

In the next-to-leading approximation, when all terms of the type aja, In(1 /z)]"
have to be summed, the equation for F(z, k %) preserves its form 7, so that the
problem is reduced to calculation of corrections to the kernel K(q1,3). Up to
the next-to-leading approximationis the kernel can be presented in the form:

K(gi, ) = 2w(t1)d(q — &) + Kreat (31, @) (11)

where t; = —§,* , w(t;) - deviation of the gluon Regge trajectory j (t))=1+
w(t1) from unity, and K,cq1(d1 , §2) is determined by a probability of real particle
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production in collision of two Reggeized gluons with momenta q; = Bpa + @1
and —¢2 = apg — ¢2; @, < 1. More definitely,

Kreat(q1, @) :Etj‘f_q'gm z /dndﬂf

i1,ia,f

8P (1 —g2 = Y. k)R (@ @) - DB (@) enmed  (12)
ne{f}
where the sum is taken over colours i;,i, of the Reggeized gluons and over all
discreet quantum numbers of the system {f} of produced particles (including
their number); k = (g1 — ¢2)? -square of invariant mass of the two reggeons,
k, - momenta of produced particles; dpy - an element of their phase space,

dkn
dor = 11 Gryporam, (13)
ne{f}

'7i{£ (q1,92) - effective vertices for production of the sys.tem {f} in Reggeon-
Reggeon collision and the subscript ”asympt” means their values at a.symptpt—
ically large k. Substraction is performed in order to escape a double counting
of the region of large %, because in this region vertices 7}51 (q1,g2) with gluon
quantum numbers in t-channels factorizes into products of more simple ver-
tices and therefore the discussed region is taken into account by iterating of
contributions of these vertices in the kernel.

In the LLA*

WELA() = g’ty ﬁf—-dﬂ_zk- ’ (14)
@m)P=1 2 J k(g - k)?

and only a one gluon can be produced, with the Reggeon-Reggeon-Gluon
(RRG) vertex

v i (91,92) = 9T, €5 (K)C* (2, q1), (15)
where T¢; - matrix elements of the SU(N) group generators in the ajoint rep-
resentation, e(k) - polarisation vector of the produced gluon, k -its momentum,

k=q1—q2,a.nd

2 Lk
kapsy (-2 g2 BIPAy (46

2
g i
CMam)=—0—a +pA(k1PA . 2PAPB " kips * “papB

Therefore

KEL @) =

1 d 2
5 129 E : I’Yils,(ql,qe)l =
202m)P Ay @ %2 ;S



a’N 2
COP (G —q) (17)

Here A is a helicity of the produced gluon. Evidently, substituting Eqs.(14),(17)
in Eq.(11) and taking D = 4 we obtain Eq.(6).

The next-to-leading corrections to the kernel are expressed 7 in terms of
the two-loop contribution w(?)(t) to the gluon Regge trajectory w(t), one-loop
correction to the RRG vertex 'yﬂ i,(@1,42), and contrbutions from two-gluon
and quark-antiquark production in the quasi-multi-Regge kinematics (QMRK),
which, in turn, are expressed in terms of the Reggeon- Reggeon-Gluon-Gluon
(RRGG) and Reggeon-Reggeon-Quark-anti-Quark (RRQQ) vertices.

Corrections to to the Reggeized gluon trajectory were calculated in Refs.
® and®. The closed form for the correction w(? () is presented in Ref?.

Investigation of the contributions from two-gluon and quark-antiquark pro-
duction in the QMRK was started in Ref”, where the two-gluon production
amplitude in the QMRK, and, correspondingly, the RRGG vertex, was found.
The next step was done in Ref!?, where the two-gluon and quark-antiquark
production amplitudes in the QMRK were simplified using helicity representa-
tion, the corresponding next-to-leading contributions to the BFKL kernel were
expressed in terms of the integrals from the squares of these helicity amplitudes
over relative transverse and longitudinal momenta of produced particles, all in-
frared divergencies were extracted in an explicit form and cancellation of the
divergences between real and virtual contributions of quark-antiquark pairs to
the kernel was shown. In general case cancellation of infrared divergences was
demonstrated in Ref!'. Finally, contribution of two-gluon production to the
kernel was obtained in Ref!”. Resummation formulas for the quark-antiquark
production were derived in Ref!3,

The corrections to the RRG vertex were calculated in Refs. 4. The calcu-
lations were performed in the space-time dimension D = 4 + ¢ for regularizing
the infrared and collinear divergences, but terms vanishing at e — 0 were omit-
ted in the final expressions. Unfortunately, such terms can give non vanishing
contributions to the total cross sections (and to corrections to the BFKL equa-
tion) because integration over transverse momenta of the produced gluon leads
to divergences at k; = 0 for the case D = 4. Therefore, in the region k; — 0
we need to know the production amplitude for arbitrary e. As we shall see, the

use of the Gribov theorem simplifies considerably the calculation of the RRG
vertex in this region.
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4 Gluon production amplitude

Let us consider the process of emission of a gluon G with momentum pg = k
at scattering of the particles (quarks or gluons) A and B,

A+B->A+B +G, (18)
in the multi-Regge kinematics
s=(pa+p)’ > 812> |ti2],

s1 = (2par + k) = 2pak s2 = (2pp + k)’ ~ 2ppk

ti=q¢l =~ -g1, @ =Ppa—pa, @=pp—p, (19)
for the case of the transverse momentum of the emitted gluon small compared
with the transferred momenta:

o - _nta
Ik.l.] < |Q.LI ) q= D) )

Ity —ta] < |t = G - (20)

Let us start with the. Born approximation. Obviously, the soft insertion ce[5 for-
mula should be valid here in the region defined by Eqgs. (19) and (20), l?ecause
all transverse momenta are fixed and k; is the smallest one. The elast':lc sc.at-
tering amplitude in the region of large s and fixed ¢ in the Born approximation
has the form
't - S
ALE (Born) = LT | (21)
where t = —g %> and Fﬁ’.’; are the particle-particle-Reggeon (PPR) vertices in
the Born approximation®. In the helicity basis these vertices can be presented
% . o
r9i = g(A|TH|A)ox 0 24 » (22)
where (A'|T%| A) are the matrix elements of the colour group generators in the
corresponding representation. It is easy to see that the soft insertion of a gluon
with momentum pg = k, colour index c and polarization vector e(k) gives us

‘B 0)is 28 1 (0): T (N R
AYS (Born) = D@0 TTREToael(b) (4 - 28 ) - (23)

Let us remind that in the kinematics defined by the relations (149) the gluon
production amplitude in the Born approximation takes the form

Fib i1 1 5
AASPF (Born) = 25T gvf,.-,(ql,qg)grfé’?g : (24)
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where the effective production vertex Y542 (@1, @) is given by Egs.(15),(16).
Since in the region (20) of small k; we obtain that

PA PB
Clana) + (24 - 22 ), (25)

the expression (24) turns into the form (23). So, for the case of the Born
approximation the soft insertion formula is valid, as it was reported.

Now let us consider the one-loop corrections to the production amplitude.
Since in this case we need to integrate over the momenta of virtual particles, we
cannot expect that the soft insertion gives a corrected answer here. However,
analyzing the proof of the Gribov’s theorem ! one can conclude that the soft
insertion should be valid for the contribution of the kinematical region where
the transverse momenta of virtual particles are much larger than k;. The
idea is to use the soft insertion formula for this contribution and to add the
contribution of the region of small virtual transverse momenta, which has to be
calculated separately. From the first sight the idea appears doubtful, because
for D = 4 the integrals over virtual transverse momenta have a logarithmic
behaviour; therefore, it seems that the separation of two regions is not a simple
problem. But for D > 4 the integrals are convergent, and we have two different
scales where they can converge, ¢, and k 1, so that the separation is quite
simple in this case. Evidently, the contribution of the integrals converging at
q. can be obtained applying the soft insertion formula and the contribution of
the integrals converging at k, has to be calculated.

Fortunately, a simple inspection of the Feynman diagrams shows that only
those ones of Fig. 1 lead to the integrals of the second kind. This statement is
valid for all possible choices of colliding particles: they can be gluons (in this
case all lines in the diagrams of Fig. 1 are gluon lines) or quarks (in this case
the upper and lower lines in the diagrams are quark lines) and so on.

Let us split the production amplitude as the sum of the factorizable and
non factorizable contributions:

ALST = A4SP (f) + ALSE (nf) . (26)

The first term in Eq.(26) comes from the soft insertion while the second one is
represented in the one-loop approximation by the diagrams of Fig. 1.

PA —» T » PA’ PA —»- >
k k
PB —» - » DB’ PB —»- > —
a) b)
PA —» > » DA PA —» > —s
k
k
PB —» - » DB’ PB —»- - =
c) d)

Fig. 1: Feynman diagrams giving a non factorizable contribution to the gluon
emission amplitude.

Contrary to the Born case, in higher orders the colour structurcle of the
production amplitude is not so simple. For definiteness, let us consider the
part of the amplitude with the gluon quantum numbers in t; and t; channels.
This part is the most important one because it determines the RRG vertfax.
The factorizable contribution to this part has a form similar to the expression
(23): -

AD () =

2y [(:—i)jw ) (-it)m)] rixopr el (;%_ z%) v )

Here j(t) = 1+ w(t) is the gluon trajectory **° and I'},, , are the PPR verﬂc:f.
The one-loop corrections to the LLA vertices (22) are calculated in Refs. it

Now let us pass to the non factorizable contribution. Evidently, tl?e dia-
grams of Fig. 1 are connected each other by crossing, therefore it is suﬂic_lent. to
calculate the contribution of the diagram a). Performing usual tricks with the
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numerators of the gluon propagators connecting lines with strongly different

momenta:
2
g — 24tk (29)

and simplifying the numerators of the integrand, one can present the contri-
bution of the diagram a) of Fig. 1 in the form

(k)(p“ P

!JN (©) #1p(0) farpe
=) 1pl0) i
pak  pBk

8) A'GB’
'Afrl)B (a) - A'A iy .u

)381321 , (29)
where
1= (30)
/ oy
(2m)Pi(p? +ie)((p + pa)® +ie)((p — pB)? + ie) (P + 01)? + i) (p + 2)° + &) |
In the region defined by the relations (19) and (20) we get

1 _I@E-3)re %‘2)( 8132) i 31)

(4,,-)‘9 318262P(D = 4) 8§

Consequently, using a simple colour algebra and the crossing relations we ob-
tain

A (nf) = (32)
r@ s 25 (0 i vy g°N 5
PB’B :u .u(k) (;&Lk T pﬁk) (_8(4 ) )( J_) :

<bor (o (3-9) oo (39| P B0,

The total amplitude is given by the sum of Eqs.(27) and (32).

5 Reggeon-Reggeon-Gluon vertex
Assuming the Regge behaviour of the amplitude in the sub-channels s, and

82, from general requirements of analiticity, unitarity and crossing symmetry
one has (see Refs. 7:16)

1
b4 —_
(i

8) A'GB’ 1 1.
Ak =Ty Thu Ths

GGG )

¥
b
i
j
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SG) @ TG @) e

where w; = w(t;) and the RRG vertices R and L are real in all physical channels.
In the region (20) of small k; this representation is reduced to

’ ’ 1 1 -8 - S < R + L
8) A'GB 1A s
AE‘l)B FA’A t nu trg'B { [(:2-) + (Ff) ] 9 (34)

[ 0(5) 1) () e

Comparing the above form with Egs. (27) and (32) we conclude that

ibsag Pha _Ph t
R—L—ge”(k)(m_:ﬁ wy — wa

2¢°N oI (3= 2)T° (2 —2) sin (v (F —2))
*\Tam*® Uk T(D — 4) T ,
R o) gl fr@-2)
R+L = 2ge;, (k) (p:k — pBBk) { w(t)In ( ) D 1)
F 2

o[- (3-1) =L ”m(z—f)l}«m

At D — 4 the above expressions for the vertices coincide, taking into account
the charge renormalization, with the small k; limit of the corresponding ex-
pressions of Ref. !4 (see Eq.(86) there). Independently we have performed the
straightforward calculation of the RRG vertices at small k; for arbitrary D
and have obtained the result (35.

6 Conclusion

We used the Gribov theorem about the region of applicability of the soft in-
sertion formulas in framework of the programm of calculation of the next-
to-leading corrections to the BFKL equation in order to find the Reggeon-
Reggeon-Gluon vertex in QCD in the region of small transverse momentum of
the gluon for the case of arbitrary space-time dimension D.

This example demonstrates, that the theorem can be used in massless
gauge theories not only for calculations with double logarithmic accuracy, as
it was done before, but for calculations with accuracy up to a constant. The
crucial point for applications of the theorem in both cases is that the soft in-
sertion is valid for (and only for) contributions of kinematical regions, where
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transverse momenta of virtual particles are much smaller than transverse mo-
mentum of considered gauge particle (gluon in QCD). Since in theories with
massless particles the essential transverse momenta of virtual particles can be
arbitrary small, the theorem can not be applied for them literally. In the dou-
ble logarithmic approximation the idea, which permits to use the theorem, is
based on the fact, that in this approximation all transverse momenta can be
considered as strongly ordered; therefore, one can always find a particle with
transverse momentum, which is much smaller than others, and apply the the-
orem to this particle. Evidently, this idea can not work for calculation with
accuracy up to a constant.

Here the idea is that for D > 4 integrals over virtual transverse momenta
are convergent in the infrared region, and scales of their convergency are deter-
mined by transverse momenta of external particles. In the case, when trans-
verse momentum for considered gluon is much smaller than for other particles,
only for small part of Feynman diagramms the scale of the convergency of
integrals over virtual transverse momenta is determined by this smallest exter-
nal transverse momentum. The contributions of such diagramms have to be
calculated. But for the most part of Feynman diagrams the scale of the conver-
gency is much larger than the transverse momentum of the considered gluon,
and their contributions can be obtained, according to the Gribov theorem,
applying soft insertion formulas.
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