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ABSTRACT

We calculate the next-to-next-to-leading order correction to the cross section for ‘oﬂ

quark pair production in e*e™ annihilation in the threshold region, resumming all
O (/)" x (a2, 5%, @,B)] terms of perturbation series. We find that the magnitude of
the NNLO correction is comparable to the size of the NLO corrections.

1. Introduction

The cross section of hadron production in e*e~ annihilation belongs to the

known quantities in high energy physics. Far away from quark thresholds the cross
is well approximated by the results obtained in perturbative QCD (for a review s
The situation is not so clear at quark thresholds which, however, are known to
importance for a number of physical applications.

Among such applications, a special place is occupied by a threshold production o
pairs at the Next Linear Collider. It was suggested in Ref. 2, that the large width of th

quark provides a natural cutoff for long-distance effects and, therefore, reliable predi

for the tf threshold production cross section are possible in perturbative QCD. Since the
the threshold production cross section of # was studied in great detail 4.5, 6,7

commonly accepted conclusion & 8 is that one can perform precision studies of

quantities of direct physical interest (top mass, top width, strong coupling constant, et
once accurate measurements in the threshold region are conducted. However, all

studies were performed using predictions for the top threshold production cross se
valid up to O(a,) and, therefore, suffered from the ignorance of higher order QCD ef
It is worth emphasizing, that calculation of radiative corrections to the th
cross section differs from standard perturbative calculations, which are done for h
energies. The difference is because of the fact that close to the threshold, the convent!
perturbation theory breaks down 9. The physical origin of this phenomena is known

quantum mechanics: considering Coulomb potential as a perturbation, one gets series |
@/, where a is the strength of the potential and 3 is the particle velocity. When f
velocity is small, this ratio becomes large and meaningful predictions can be only achiey

once the series is resummed. It was demonstrated in 9, that if such resummati
performed, the threshold cross section becomes proportional to the square of the Co

wave function at the origin. In Ref. 2 this result was generalized to the situation, wh
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the produced particles are unstable. It was
quark pair production is proportional to the imaginary part of
function of the QQ system, evaluated for complex energies.
Since then, it was also realized, that the @(a,) corre
porated, because contributions of soft énd hard scales comp!
curacy. The absence of this factorization property, as well 3
with explicit higher order calculations, were the st:umbl.mg bloc]
accuracy. It is remarkable, tha: nlfw results, _obtamed in the last s
-elatively easy determination of these corrections. MO
et 1131( wha},;, follows, we present the calculation of the threshold cross section for the tf
pair production which is valid with O(ag. a,83, %) accuracy.

S

2. The framework of the calculation

We first discuss a framework of our calculations and introduce all .relr:v'_a.nt nota-
tions. The threshold region is characterized by a small value of the quark velocity 3:

ﬁ=‘/1—i'?<1. (1)

To order O(a?, a3, 3%), dynamics of slowly moving quark-antiquark pair is governed by
51 %sHy y
a non-relativistic Hamiltonian*):

H = Hy+Vi(r) +U(p,7), (2)
_ P _Cra 3)
Ho = ;11_ P ?
2
W) = —SE% (o ln(ur) + o

g 7 Trz f (4)
- [ﬁg (4]112(;1 r)+ ) +2(f1 + 2Boar) In(p'r) + aaf ¢
n

P‘ nCra, Cras [ 5, T (rp)p
UPr). = e Tt ) T et ( F it 1
2
N NPT N A 8—"6"’{1-)) SGo o)
4m?r3 2m? \r? rs 3 2mr

In the above equations, the strong coupling constant is evaluated at the scale yu:
a, = ay(p). (6)

The scale u’ equals to pe”, 7 is the Euler constant. . ;
. SC’I‘;: o;:ra.tor U(p,r) is the QCD generalization of the standard Breit potential 10,

The last term in Eq.(5) is the non-Abelian contribution, originating from a co}'recl.ion to
the Coulomb gluon exchange, caused by a magnetic gluon 1 The potential V;(r) repre-
sents a deviation of the static QCD potential from the Coulomb one. It was calculated

*)One can describe the QQ system by means of the non-relativistic quantum mechanics to this order since the
radiation of real gluons shows up only at @(3°) order.
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to order a2 in '? and to order o in 13. The coefficients there read explicitly:

11 4
,BO = ECA = ENLTR!
B = %“c; - %CATHNL — 4CFTaNy,
31 20
a = —Q—CA = ?TRNL!
4343 5 = 22 2
a; (T6?+6W—4+§'C3)CA_
1798 56 55 20 :
(? + EC&) CaTrNL — (? . 16(3) CrTrNL + (?TRNL) .

For the SU(3) color group, the color factors are Cy = 3,Cp = 4/3,Tr = 1/:
Np =5 is the number of quarks whose masses have been neglected. '

Given the Hamiltonian H, one can find the Green function for the Schrédinge
equation: ;

(H—-E - 6)G(E;r,7') = 5(3)(,. =),

Once the Green function is found, the cross section of the non-relativistic QRQ
production in ete~ annihilation? is obtained as:

2
o(s) = 4_7:;_5_ R(s),
where

24 p2
o =t [N 27 (1 £ aino] . E-vi-am g

In Eq.(10), we have included the O(3?) correction originating from the expansion of the
vector current which produces and annihilates a heavy QQ pair in the triplet S-state.
The quantity R(s) will be the central object for further discussion.

If a calculation of R will be attempted, one will find, that the Green function at
the origin does not exist because there are terms in the Hamiltonian K , which behave
1/r*, n > 2, for small values of . The difficulty originates from the fact, that the regi e:;'_'
7 — 0 is not properly treated in the Hamiltonian. Indeed, small values of r correspo nd
to a region in the momentum space, where a typical momentum transfer between Q and
@Q, is of the order of the quark masses and therefore quarks cannot be considered as non—
relativistic. For this reason, the use of the Hamiltonian H in actual calculations leads to
the divergencies, which appear for r — 0. 1

The way to circumvent this difficulty is as follows. In order to perform a calculation,
one introduces a cutoff A, such that a,m < A < m. The momenta region where k < A is-
non-relativistic region and can be described using a Hamiltonian H. The momenta region
with k 3> A is a relativistic one and the calculation in this region should be perfo

n what follows, we consider only photon mediated process and do not take into account the Z-boson exchatiil
The axial-vector coupling of the Z-boson contributes ((3?) relative correction to the threshold cross

The vector Ze*e™ coupling is also suppressed, but can be taken into account in the same way as the photon
contribution, which we treat in this paper.
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using the rules of quantum field theory. We note tha?t this is rather sta.ndu:t‘l proeedmg
for calculations, related to bound state problems. It is also well known that its practical
realization often requires substantial effort. . .
However, there is a possibility to use the result of the non-relativistic calcﬂa.t!on
with the cutoff in the following way: one takes the limit:of the obt-ained result, Conm‘flefu!g
kinematic region where a, € § <« 1. In this particular region, the non—r.elatlwstnc
results are still valid; on the other hand as long as a,'/,B & 1,.the resummation of the
Coulomb effects is not necessary. Therefore, in this particular region, one can calculate the
corrections applying the standard rules of the quantum field gleory. In the framework of
QCD. such calculations have been performed recently in Rﬁf.- . One therefore can match
the result of the non-relativistic calculation with the cutoff, directly to th('a result presented
in '? and in this way completely eliminate the cutoff dependem_:e. This proced,.lre was
suggested in 14 5nd we will call it a direct matching procedure, in accordance with that
erence. '
= In what follows, we pursue this program in QCD. We confine ourselves tc} a strictly
perturbative approach and we do not attempt any discussion of non—perturbative effects.
In order to accommodate the phenomenologically relevant case of the unstable top quark,

~ we will consider the total energy E as the complex variable E — E + [, in the spirit of
' Ref. 2

3. Matching and final result for R

We obtain the following final result for R at NNLO:

ap\? 53
) — %Nceg (1 +CiCr (‘:r—") +C:Cr (;’i) )Im{ (1 " T) G'(rg,ro)}. (11)

Here we have factored out all energy-independent corrections. They are pa.ra,.metrized
by the constants ) and C,, which are divergent in the limit rg — 0. : For this reason
we use aj, = a,(m) as the expansion parameter for these “hard” corr?ctlons. In_(ll), all
non-singular vanishing in the limit ro — 0 terms of the Green’s funct:on are omitted.

To get rid of the ro-dependence we use the direct matching procedure, suggested
in Ref. 4. For this we consider /s > 2m, set the width of the top q.uark Ff to zero
and equate our result (11) to its perturbative counterpart 15 in the kinematic region

' a, < f < 1, where both are supposed to be valid. We also set 4 = m, so that a,

coincides with aj. . o
Let us note, that the direct matching procedure fixes the linear combination of C;
and In(mrg)

C:Cr ("?)2 —2xin(sne).

If we were working strictly to NNLO, this last combination would be the onl){ thing we
need for the final result. However, because of the large difference in scales, which govern
relativistic and non-relativistic physics, we would like to write Eq.(11) in a fa,f:torlzed
form and include an exact dependence on ry into the non-relativistic Green.function. For
this reason, we have to set a factorization scale. We do this by choosing rp in SL‘lCh a way,
that the correction to the Coulomb Green function due to the 1/r? perturbation in the
region a, € # < 1 is given by log(), without additional constar.lts. .Any other choice of
ro would correspond to other (also legitimate) value of the factorization scale.

(12)
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Figure 1: Ryo (dotted lines), Rnpo (dashed lines), Rnsvo (solid lines) as a

function of energy \/s — 2m, GeV. In all three cases, three curves correspo

to different choices of the soft scale p = 50 GeV (upper curves), p = 75 Ge
and pp = 100 GeV (lower curves). We also use m = 175 GeV, T, = 1.43 GeV

and o,(Mz) = 0.118 as the input parameters.

n'

A factorized form (11) of our final result makes sense only if a dependence on .
choice of the factorization scale is weak. We have checked that changing the value of the
cutoff between ro/2 and 2rq for ro given by Eq.(13), we obtain small (~ 1 — 3%) variati

of the resulting values of R.
Therefore, accoring to our choice, we fix the value of the cutoff

e~

= om

and obtain finally:

Ci=—4  Cy=CrC; + CaCM* + TRNLCE + TrNyCE,
where
=
.= 3

Eq.(11) with definitions provided by Eqs.(13 -15) is our final result for the te

qu;ark threshold cross section with the NNLO accuracy.
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For numerical purposes, we have chosen m = 175 GeV and I'; = 1.43 GeV. As
an input value for the strong coupling constant we used a,(Mz) = 0.118. Fig.1 provides
our final results for RxnLo as a function of /5 — 2m in comparison with LO and NLO
results, for three values of the soft scale p = 50, 75, 100 GeV. One can see that the
NNLO corrections are as large as the NLO ones.

There is also a moderate scale dependence of the NNLO corrections in the vicinity
of the resonance peak. The position of the resonance peak appears to be sensitive to the
variations in the scale y on the level ~ 100 MeV. We note in this respect, that the shift
of the ground-state energy due to the Breit perturbation is well known (see Ref. 10y and
its expected variation with p is close to this value.

4. Conclusions

We have presented a calculation of the next-to-next-to-leading order corrections
to the threshold cross section of the top quark pair production in QCD, summing all
O (as/B)" x (a2, 8%, a,B)] terms of the perturbation series. We have found. that the
NNLO effects are quite sizable.
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CAN o CORRECTIONS BE HUGE ENOUGH TO RESOLVE 1
THE POSITRONIUM DECAY PROBLEM?

1I.B. KHRIPLOVICH
Budker Institute of Nuclear Physics,
630090 Novosibirsk, Russia

ABSTRACT

Second-order corrections to the positronium decay rate, calculated up to now, are
35(a/m)? and 76(a/7)? for singlet and triplet states, respectively.

1. The strnng disagreement between the experimental value of the orthoposi
ium decay rate !

2P = 7.0482(16) ps™

and its theoretical value which includes the order a and a*log(1/a) corrections [2—6]"

2(w? - 9) ! 1
o—Ps _ § =X el ; [ o T
e = ma o 10. 2866(6)TT 3¢ log

= 7.038236(10) pus!

is the most acute problem in the modern low-energy QED. For the disagreement to |
resolved within the QED framework, the correction ~ («/7)?, which has not been cal
lated completely up to now, should enter the theoretical result (2) with a numerical fact
250(40), which may look unreasonably large.

Though the result of a more recent experiment 7

[7.7* = 7.0398 £ 0.0025(stat) + 0.0015(syst) ps™"

does not demand by itself such a large second-order correction, the problem of evaluatin

~ (a/m)? terms certainly exists. :

One class of large second-order corrections arises as follows 8. The large, ~ —1(

factor at the a/7 correction to the decay rate (see (2)) means that the factor at the afr

correction to the decay amplitude is roughly —5. Correspondingly, this correction squares

contributes about 25(c/7)? to the decay rate. In fact, 1/4-10.28% (a/7)? is the lower limi
for this contribution and its true value, as obtained by numerical calculations, is % 10

28.86 (ar/T)2.

There is one more class of potentially large contributions to the positronium de
rate. 1 mean relativistic corrections. A simple argument in their favour is that the
corresponding parameter (v/c)® ~ o is not suppressed, as distinct from that of us
second-order radiative corrections, (a/7)?, by the small factor 1/7% ~ 1/10. In this
talk I present the results for the relativistic corrections to the positronium decay rate

190

' btained by A.L Milstein and myself 1112 Our technique is based on such simple tools

as the tree-level QED, starting with the noncovariant perturbation theory, plus the Breit
equation. The noncovariant perturbation theory, as distinct from the covariant, Feynman
one, allows us to work m a natural way with bound particles, treating properly their
binding energy (see, e.g., i B

The problem of relativistic corrections to the positronium decay rate was addressed
previously in 14,15 e differ essentially from those authors in the approach to the
problem and, which is more essential, in the conclusion made. At least one origin of the
disagreement will be elucidated below. The result of the more recent paper 10 agrees with
ours.

As to the relativistic correction to the parapositronium decay rate, also obtained
in our article 11, its calculation was started by us as a warm-up exercise for the much
more complicated orthopositronium problem. However, the correction in the singlet case
also turns out large, quite close to the sensitivity of the recent experiment 17

2. The central point when treating relativistic corrections to the positronium
decay rate is as follows. When calculating the decay amplitude we have to integrate the
anniililation kernel M (p) over the distribution of the electron and positron three-momenta
7. In the present section we address the relativistic corrections to M(p) only, i.e., we take
as the ground-state wave function (p) the nonrelativistic one. Then the decay amplitude

Ta®

is
f(21r}3 vioMig) = f {p2a2+1)2 M), (5)

where a = 2/ma is the positronium Bohr radius. To lowest order in v/c the kernel M(0),
both for para- and orthopositronium, is independent of those momenta, and we are left

ith
= M(0) [ Vo
(27)? (p?a? + 1)?
Thus, in the limit p — 0 we obtain the common prescription: the positronium decay rate
is proportional to |¢(r = 0)]2.
However, already to first order in (p/m)? the momentum integral

[ droimr S ™

linearly diverges at p — oo, which precludes the straightforward evaluation of these
relativistic corrections.

The crucial observation is that the true relativistic expression for the annihilation
kernel does not grow up at p — oo, as distinct from its expansion in p/m. So, the initial
integral (5) in fact converges.

When treating relative corrections to the decay amplitude, it is convenient to single
out from it the factor ¥(r = 0) = (ma®)~'/2, and a trivial overall dimensional factor from
M(p). So, we investigate, instead of (5), the following expression:

= M(0)%(7=0). (6)

dp 87ra®

@y e+ 17 1P &
with dimensionless M (p).
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Let us consider first an auxiliary integral

di 8ma’
(27)? plat

(M) — M(0)), ©)

which converges both at low and high p. After the angular integration, the dimensionless
kernel M(p) depends on the ratio y*> = (p/m)? only, and the expression (9) reduces to

™ Jo

In other words, this auxiliary integral is of first order in &/, and therefore of no interest for
our problem. This is a first- order radiative correction absorbed already by —10.286 a/m
in (2) (for orthopositronium). In fact, we have neglected in this argument the kernel
dependence on the positronium binding energy (this dependence certainly exists in the

noncovariant perturbation theory). But corrections effectively neglected in this way, are

of higher odd powers in a.
So, expression (9) can be used as a regulator, perfectly convergent and unique. In
the now rapidly converging integral

dp
(27)3 B’ [(p?a2 +1)? p ot

we can safely expand M (p) up to (p/m)? included. In this way we obtain

] M) - M(0)] (11)

dp 1 1] /p\2 3
f @ [(pﬂaz ) ﬁ] ) =~ (128

It can be demonstrated in the analogous way that (p/m)* — (5/16)a* (neglecting contri-
butions ~ a?).

Our alternative derivation 1 of the result (12) demonstrates that a? correction
is generated by the pole of the atomic wave function 8v/7a3/(p*a® + 1)? in the initial
integral (5), and the contribution on the order of a is due to the square-root cuts in the
annihilation amplitude M (p).

3. We start calculations with a more simple case of parapositronium. Here the

noncovariant annihilation amplitude can be written as

—

A+(P kl) A—( _kl) = =
E—w-—¢(p E,)—e(p)! R

F= E(gl(;)m (1 B e(pfi m) ( 2 ) Sk E(glé)m (1 " etpfim) ( 0 ) 43

In this expression x and ¢ are nonrelativistic spinors; E = 2m —ma?/4 is the positronium
total energy; €2 and k, » are the polarizations and momenta of the photons; w; = w; =

w = E/2 are their frequencies; e(p) = vVm? + p%;

")

M = 4maV*(&d)

Ai(fa‘)—%(
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Zo ™ ‘;_E[M(f) — M(0)]. (10)

are the projectors onto the positive and negative energy states of a fermion with a mo-
mentum p correspondingly. The Coulomb interaction in the intermediate state can be
neglected since the momentum of one particle in it is close to m.

The expansion of the amplitude in p/m is straightforward. Averaging over the
directions of § (an S-state is under discussion) and using relation (12) we obtain

M +46M = [1+a2 (%+?)] M, (14) -
where M is the lowest order annihilation amplitude. The corresponding relative correction

to the decay rate is
sr 2
=k o? (1 + %) =185, (15)

4. The calculation of relativistic corrections for the triplet state (decaying into
three photons) is much more tedious problem. We believe that have managed to simplify
it considerably, but still it is too lengthy to be presented in detail here. So, only its brief
outline is given below.

The construction of noncovariant perturbation theory amplitude is straightforward.
Then we rewrite the initial energy E in the perturbative denominators as

E = 2¢(p) + E - 2¢(p)

and expand the amplitude in

L]

mao

E —2(p) = —

(here we use already the recipe (12) for p*/m?).

Zeroth term of this expansion transforms into usual covariant Feynman amplitude
for electron and positron with 4-momenta (e(p),+p). Now we expand this covariant
amplitude in p/m, average the terms of second order in p/m over the directions of 5 and
make the substitution (12). We obtain in this way the following expression:

5 dra)?? o? AT LA R SR
M. = gazMu - Lz—r-n);u 74 xH{((8283) (7irity + 7iyiiy — figiis)
—(iafis) (Rahs)|(5€1) + [(Eaha) (Firfis) + (Esha) (1)) ()
¥ o et
+ was (8363)(081) (16)

+ i—m (€285 + hahs)(€1) + (€17is) ([€2hs)5) + (€1732) ([€3F2]6)]
+1e2)+ (1 3)}e
Here ; = K;/wy; by = [:&];

(4ma)¥?

My=- 22—

x' (€265 — hahis)(G81) + (82h3 + E3ha) (Fy)

+(1e2)+ (1 3))o (17)
is the amplitude of zeroth order in v/c.
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The interference of this a?-correction with the lowest order amplitude after the
summation over the polarizations of the photons and integration over the final phase
space, generates the following correction to the decay rate: :

6T, 53172 —240

T % 162 -9)

In fact, before starting the tedious algebra which leads to the last formula, we
tried a simplified estimate of this correction. Both M, and My were taken at the cen
of the Dalitz plot, and then the product of those expressions, after summation over ¢
polarizations, was multiplied by the three-photon phase space. The result turned out hu
(in good agreement with formula (18) obtained afterwards). Then the accuracy of
trick was checked by applying it to the estimate of the zeroth order probability general
by M. This last estimate coincided with the exact expression within few percent: the
exact factor 72 —9 ~ 0.87 (see (2)) was approximated by 27/32 ~ 0.84%). Only then, with
good reasons to expect that the correction is large indeed, did we resort to the lengthy
calculations. ]

The correction (18) is conveniently combined with that for the phase space. The
shift of the total energy from 2m to E = 2m — ma?/4 changes the phase space and
therefore the decay rate by ;

ory 1.5

Tl ok (14

6T+ 6T, 02277# — 204
r 16(x2-9)

The prescription v* = — a?/4 used in 15 is obviously correct for the phase space,
but it differs from our formula (12) for the expansion of the annihilation kernel. We believe
that the above simple and transparent derivation of formula (12) makes obvious which of
the two results for v? in the expansion of M(p) is correct. Contrary to some assertions,
this discrepancy cannot be ascribed to the fact that neither of the two approaches results
in complete a? correction. The disagreement refers to a contribution which is gauge-
invariant, well- defined, unique. .

Let us consider now the “noncovariant” correction to the annihilation amplitude
(i.e., terms proportional to E — 2¢(p) = ma? /2 in the expansion of the exact amplitude)::

4ra)¥?a? i Sk o el PR o i
M, = T 1 @) 6er) + (@) (0) - (@) (@)
(m+w2762)(m+w;;—63)+62—w2 €3 —Wws
2(2(3{62 + €3 — wl) mea mes

*) An assertion is widely spread that the problem with the orthopositronium decay rate is not that the higher-
order corrections to it are large, but that the lowest order probability is accidentally small. It is based on the
observation that this probability is proportional to a small difference of two large numbers: 72 =9 ~ 1. Our
estimate demonstrates that the assertion is wrong: > — 9 is nothing but an educated presentation of a number
naturally close to unity.
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+[(€1h3)(Gha) + (€1h2)(GRs) — (Rahs)(361)] (21)
s [(m — Wy +c2)(m - w3+ 53)
2ex€e3(€2 + €3 — wy)

m+ €x — wo
ea(m — &2 — wy)

m+€; — w3
Es(m—(3“W3

+1e2)+ (14 3)}(&.

Here €, = y/w? + m2. This correction to the decay rate demands numerical calculations
which give

o, "

= = 0.807a". (22)
Let us note here that the weird term with /2 in the correction to the singlet decay rate
(see egs. (14), (15)) is of the same “noncovariant” origin.

5. Let us consider at last the effects originating from relativistic corrections to the
wave function () itself. We will use here the Breit equation in the way it was done in
8, Para- and orthopositronium can be treated thus in parallel.

The part of the Breit Hamiltonian (BH) that corresponds to the relativistic cor-
rections to the dispersion law of the particles and to their Coulomb interaction,

4
el T
Ve= _ﬁ =+ ma(f“) p (23)
can be easily transformed to
3
a
V.= » (24)

We omit constant, independent of r terms in the perturbations (obviously, they do not lead
to observable effects) and substitute — ma/2 for 8, acting on the ground state positronium
wave function.

The next spin-independent term in the BH

Vin = — e

(v + 7). (29)

2m?r

describes the magnetic electron-positron interaction due to the orbital motion. For the
ground state it transforms into

a® o?

R T (2%}

The last term in BH of interest for our problem is the contact spin-spin interaction
T 7

Vs = ﬁflé(f’); A= ES(S-f- 1) - 2. (27)

It is conveniently rewritten as

1 @ o P o«
m[Ha—]"f'A H=;—;- (28)
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Straightforward calculation leads now to the following correction due to the re;
tivistic modification of the y-function:

31/8 — 2C — 2log(mry), S=0
—19/24+1/3C + 1/3log(mry), S =1

Here C = 0.577 is the Euler constant. The effective short-distance cut-off rp ~ 1/m ig
provided by the range at which the annihilation takes place. We have omitted in (29) the
logarithmically enhanced part of this correction

1 2 S =0
2 Fod 3
. 10g(a){ -1/3, §=1 (

which has been calculated previously for the triplet (see formula (2)) and singlet cases
in 4 and 8 respectively. We believe that +1 is a reasonable estimate for the scatter o
possible values of log(mry) introduced by t.he uncertainty in the short- distance cut-off ry.

To complete the calculation of the a? corrections and to get rid of this uncertainty,
one should proceed in the same way as it is being done in the Lamb shift problem. The
correction calculated here for the atomic region of momenta with the full account for
the bound-state effects, should be combined with the correction originating from higher
momenta where the atomic effects can be neglected. In practice, it demands calculatmg,
the whole set of the corresponding Feynman diagrams.

Such calculations are usually performed in the momentum representation. There-
fore, it is useful to rewrite formula (29) in terms of the cut-off at high momenta, instead of
short distances. It can be easily done by going over to the momentum representation for
the positronium wave function and introducing the maximum momentum py. The result

differs from formula (29) by the substitutions mg — 1/pg, C — 1. It is
0Ly _ o[ 15/8 + 2log(po/m), S=0 (31)
r —11/24 — 1/3log(po/m), S=1 °

Our prediction for the atomic relativistic correction in orthopositronium, —11/24a?,
differs from that given in 13, We cannot explain the disagreement, since the authors of 1
present only their numerical result for this correction, 1.16a?, without any details.

6. To summarize, the total relativistic corrections in para- and orthopositronium
constitute, respectively,

dar, 2 a\? '

= = 3.2290" = 31.86 (;) , 8=0; (32)
2

% — 4.8390% = 47.76 (%) , §=1 (33)

(it is instructive perhaps to present these relativistic corrections in the usual “radiative”
units (a/7) as well).

The known corrections to the orthopositronium decay rate comprise, in line with
(33), the already mentioned square of the first-order correction (see (4)) and the result of
the polarization operator insertion into the first-order diagrams 18 19

0.965 (%)2 (34)
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Taken together, corrections (4), (33), and (34) constitute

or a\?
T =m9(3). (35)

Since the parapositronium decay is described by a single amplitude, the analogue of
the contribution (4) is derived immediately from the well-known result 20 for the first-order
correction. This second-order correction is (1/4)(5 — 72/4)(a/7)* = 1 60(a/w) . The
polarization operator insertion into the first-order correction gives here 18: 19 0.45 (a/m)2.
Taken together with (15 and (32), these corrections result in

or a\?
= =301 (?F) . (36)

I am thankful to A.I. Milstein, the relativistic corrections discussed here were
obtained together with him. I acknowledge the support by the Russian Foundation for
Basic Research through Grant No. 98-02-17797 and by the Federal Program Integration-
1998 through Project No. 274.
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ANALYSIS OF SOME SECOND ORDER RADIATIVE CORRECTIONS
TO THE ORTHOPOSITRONIUM DECAY WIDTH.

V. ANTONELLI, V. IVANCHENKO, E. KURAEV, V. LALIENA
Talk given by Vite Antonelli
Institute for Theoretical Physics - University of Bern,
Sidlerstrasse 5 CH-3012 Bern Switzerland

ABSTRACT

The problem of the evaluation of the orthopositronium decay width, including second
order radiative corrections, is discussed. After a review of the results available in literature,
some O(a?) annihilation-type contributions, recently computed in 11, are analyzed.

1. Introduction

Positronium is essentially a pure QED system; strong and weak interactions can be
neglected at the level of accuracy at which we are interested. Its study is an interesting test
of QED calculations and of the formalism used to describe bound states in quantum field
theory. It can exist in two different spin states: a singlet S = 0, called parapositronium,
that decays mainly into a couple of photons, and a triplet S = 1, called orthopositronium,
decaying into an odd number of photons greater than one. At the 10 ppm level of accuracy,
one can restrict the analysis for orthopositronium to the decay mode with three photons
in the final state.

We will focus our attention to the analysis of orthopositronium (Ops) decay width.
With the present results one cannot exclude a possible discrepancy between theory and
experiment. This could eventually indicate also a problem in the formalism used to study
this bound state system.

The more precise experimental determinations of Ops decay rate are 1+ 2;

)\gp”s =T7.0514 £ 0.0014 ps™' Af;;’s = 7.0482 £+ 0.0016 ps~' . (1)
A more recent experiment 3 found a different value: AGr = 7.0398+0.0025+0.0015 st
where the first error is statistical and the second systematic.

Considering only the decay into three photons, the theoretical value is t:

a)\:

2 3
Ath = A\ ‘E_ﬁl 2 E () 790_ 21 3
b = 142 Ll en (2 2220 L o],

T

where the lowest order decay rate Ay, first obtained by Ore and Powell 4, is given by )\, =
7.21116940.00000415™" . The coefficient A has been computed by many authors > 6, 7, 8

’“’g adopt the convention to collect an explicit power of (2)" in front of the contribution of order n, to be
consistent with what usually done in literature. We would like, however, to stress that this convention can be
misleading. In fact, in this way, the coefficients of the higher order radiative corrections appear unnaturally big.
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and its most accurate determination A = —10.286606-0.000010 has been found in 8. The
constants _Tl and 32 of the logarithmic terms have been found respectively in % 7> 9 and 10,
Using these results, one gets: A%, = 7.038204 + 0.000010us~" + A, [B (s)2 +0 (3)3}.

Putting B = 0 in the previous equation, we obtain a value at O(a), with the
inclusion of logarithmic terms up to O(a® In? @), which differs by the experimental results
of 21 by 6.2¢ and 9.40. To reproduce these results one should have an unnaturally
big value of the coefficient B ~ 250. On the other hand, B ~ 40 would be enough to
reproduce the result of 3. Hence, up to now, one cannot discriminate whether the so called
“Ops decay width puzzle” is a theoretical or an experimental problem. It is clear, in any
case, that a complete O(a?) calculation is needed. Some second order contributions to
the decay rate still need to be evaluated.

Here we focus our attention on some second order annihilation type radiative cor-
rections that have recently been computed in 1.

The first simplification in the study of a bound state like positronium 12 is to
consider it as a two body system. The development of a consistent relativistic two body
formalism for bound state calculations is mainly due to the works of Schwinger 13 and
Bethe and Salpeter 1. We have to look for the poles of a four point Green function, that
must obey the well known Bethe-Salpeter (BS) equation. In this equation a fundamental
role is played by the sum of all the two particle irreducible graphs, usually denoted as
the BS kernel. We can introduce the “BS wave functions”, obtained by considering the
projections on the two particle (antiparticle) states. Using them, one obtains an equation
for the residua of the poles that has non trivial solutions for specific values of P, 1t
corresponding to the energy momenta of the bound states coupled to the two particle-
antiparticle states. One usually looks for perturbative solutions of this equation, by
writing the kernel K as the sum of a piece Ky, whose solution is known, and a remainder
AK. Using the fact that in a QED bound state, like positronium, the relative momentum
p of the components is small, (p ~ « m), we can make a non relativistic approximation
and choose the lowest order kernel of BS equation in such a way to recover the well known
Schrédinger equation with a coulombic potential.

2. The orthopositronium decay rate

To obtain the lowest order Ops decay width, one has to consider only one graph. At
the next order of perturbation theory, we must, instead, take into account different classes
of diagrams, like self-energy and vertex corrections and the radiative corrections given by
the two graphs of fig. 1, usually denoted as annihilation and binding diagrams. One can
easily show that the matrix element M for the second graph can be written in the férm
Mg =M, (1 - 3%), where M, is the lowest order matrix element. So it seems that this

12P+p  12P+p-k e
172 Pap K, Bi AN K Ey
|
P 3 ka. E; P. LAy Kooy
12 Pap ki ey 1 o
7 P e 2 T e
Figure 1: Two corrections of O(«):the annihilation graph and the binding diagram.

1P is the sum of the tetramomenta of the two particles (P = p, + p2 = ps + p4) and m is the electron mass.
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graph contributes not only at order e, but also at order zero. This is due to the fact that
we are considering also the possibility that the additional binding photon inserted in the
original lowest order diagram is a coulombic one, but in the determination of the Oys wave
function one has already taken into account the exchange of any number of coulombic
photons between the e and e~ lines. Hence, we must subtract the part corresponding
to the exchange of a Coulomb photon, that is the term of order zero appearing in the
original expression for Mp. In this way, we get for the matrix element (a/7) MY of the
“subtracted binding diagram” V: (a/m)Mp = -3 (a/7) M, . The binding diagram
is particularly important also because it gives a contribution to the decay rate, which is
bigger than the 90% of the total O(«) radiative corrections 7.

As already said, we must consider also the second order radiative corrections, some
of which have been already computed. A first relevant contribution of this order is given
15.8 by the sum of the squares of all the first order amplitudes. They give a contribution
equal to 28.860 £ 0.002 to the coefficient B of eq. (2). A second contribution ¢ to B,
equal to 9.0074 +0.0009, comes from the radiative corrections to the light-light scattering
block. The inclusion of the vacuum polarization corrections to the first order graphs 17
enhances the value of B of 0.964960 + 0.000004. Considering the decay channel into five
photons, one gets 18 an additional contribution to B equal to 0.187 + 0.011. The very
important second order relativistic corrections have been studied by different authors.
Khriplovich et al.1? have found a big contribution to the coefficient B, equal to 46 + 3,
in agreement with the result of Faustov et al 2. Quite a different result have been found
with a different approach, in the second paper of 1%, by Labelle et al., that, using the so
called “NRQED” have got for this contribution the value 24.6.

Generally speaking, we can write the matrix element for the sum of all the diagrams

contributing up to O(a?) in the following way:
M= Mo+ 2 (M + Ma+ M)+ (2)" (Mg + Mar+ Mo)+O(a?) , where M, is
the sum of all the first order amplitudes with the exceptions of the first order annihilation
diagram, M,, and the subtracted binding amplitude, M};. The second order annihilation
type corrections are given by the subtracted binding diagram, M, (fig. 2(A)) and the
radiative corrections to the light-light scattering block, M4 (an example is given in fig.
2(B)); M, denotes the remaining (non-annihilation type) second order amplitudes. For
what already said, it seems reasonable to look at second order corrections obtained by
graphs containing some additional binding photon.

In a recent paper !!, we examined the contribution to the decay width coming
from the interference between the graph of fig. 2(A) and the zero order diagram. We
also considered the square of the first order annihilation amplitude M 4, contributing at
O(a®) to the decay rate, and we verified the existence of a logarithmic enhanced contri-
bution arising from the radiative correction to the light-light scattering block depicted in
fig. 2(B). Let’s recall briefly how one can evaluate these contributions (for more details
look at 11). The matrix element of the annihilation binding diagram can be written as
M) = — 2z T{™ G The tetravector G describes the transition of the heavy
photon to the three real ones and we have denoted with £ = (g;,,,¢3) the set of the

“Notice that here and in the rest of the paper we write explicitly in the formulas the powers of a/n appearing
in all the amplitudes; on the contrary, we omit them in the text, with the exception of this line. Note also that
we will not write any power of a/r for the two unsubtracted amplitudes Mz and Mg, since they contain terms
of different order in a/n.

200

(A) (B)
Figure 2: Two different kinds of corrections to the annihilation graph. (A) is the vertex

correction, (B) represents the insertion of a photon into the light-light scattering block.

three polarizations of these photons (¢; = +1). The symbol T{™ represents the O(a) cor-
rection to the annihilation current 4-vector of the positronium in the polarization state
€m- It contains a double integral, over p and k, a trace of v matrices, including also the
0, wave function ¥(™ (p), and one photon propagator, that we can write as —%ﬁf—%{—’l.
The Ay, tensor depends on the gauge we use. The choice of the gauge is subtle when
dealing with bound state problems (as discussed for instance in the last paper of 6). We
have computed T’S"‘) both in the Fried-Yennie (FY) gauge ! and in the Coulomb gauge.
As expected, the result is the same in both cases, and no gauge correction term must be
added when using the FY gauge. Let’s report the basic steps of the calculation in the
FY gauge, for the analogous computation in the Coulomb gauge we refer the interested
reader to 1. In the FY gauge we have Dy =g + 25;’-5-“. To perform the computation,
we have splitted the trace entering T‘S"‘) into two pieces, one remaining non-singular at
k = 0 and another one containing the contribution of the coulombic photon.

Formally we have used the equality: Tr ,,(k) = Tr 1p(0) + (Tr up(k) — Tr ,(0)) .
The first term gives a contribution to the matrix element proportional to the O(a) an-
nihilation amplitude (a/m) M4: Mapy = (a/m) M4 (1 -3 a/n). The second one is
infrared finite and we can safely put p = 0 in the loop integral, introducing an error of
order O(a?). The ultraviolet divergence can be regulated either with dimensional regular-
ization or with the use of a cut-off 11. We must add the contribution of the “annihilation
vertex” counterterm, that cancels the divergence, as explicitly proved in 1. The sum of
the contributions of the second term in which we splitted Tr ,,,(k) and of the counterterm
gives: Mupgs =+ (a/7) (a/7) May.

Hence we have found the following expression for the unsubtracted annihilation binding
diagram in the FY gauge: Mg = [1 — 2(a/7)] (a/7) M 4.

We must subtract the lowest order contribution (a/m) M4 corresponding to the
exchange of a coulombic binding photon and consider the interference of this subtracted
annihilation binding diagram with the order zero graph. In this way we have got the
following O(a?) contribution to the O, decay width:

I'yp = —2(a/7)T4 = 1.6281 (a/7)’ Ty, where we have used the numerically improved
value of the lowest order annihilation width I'4, that can be found in the first paper of 7.
This result is in very good agreement with the estimate, based on factorization arguments,
of this correction, that was made by Karshenbdim in 22.

To compute the contribution to the decay width coming from the square of the O(a) anni-
hilation amplitude (fig. 1(A)) we have used some relations that enabled us to reduce this
calculation to a one dimensional numerical integral. We have got the following numerical
result: I'y2 = (0.17021 + 0.00010)(c/7)*To. This result, like the one for annihilation-
binding contribution (and differently from the lowest order annihilation contribution of
O(a)) has the right sign to reduce the discrepancy between theory and experiment. Nev-
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ertheless, the absolute value of these corrections to the decay width is quite small and
they are manifestly far from solving this discrepancy. If the “O,, problem” has to be
solved by this kind of perturbation theory, larger contributions must be searched in other
classes of diagrams. Finally, let’s remember that in!! we also considered the radiative
correction to the light-light scattering block given by the graph of fig. 2(B). It generates a
logarithmically enhanced term that gives a contribution to the decay width proportional
to a®In(@)Tg. Our result is in agreement with the ones of 1%, where the all set of these
radiative corrections has been computed, and with those of 9 and of the first paper of 8,
Acknowledgments
V. Antonelli is indebted to P. Labelle for the very useful information and suggestions.
He also would like to thank all the organizers and in particular A. Rusetsky, for the kind
hospitality and for the unique human and scientific opportunity they provided us.
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ABSTRACT

We present our recent results on the spectrum, the decay and the production of the
dimuonium bound system.

This talk is devoted to a presentation of our recent results on the spectrum, the
decay rate and the production of the u*u~ bound system (dimuonium). The main
feature of dimuonium which leads to a difference with respect to pesitronium is that
the electron is the lightest charged particle. As a result, orthodimuonium. which consists
of the heavier leptons, decays into electron-positron pair through annihilation over a
single virtual photon. In calculating the leading order corrections one has to take into
consideration the Uehling potential effects which contribute in dimuonium in the relative
order a.

We start our investigation with the dimuonium hyperfine splitting which is
quite similar to the positronium hfs. The result

ot =512 Fn(32) -oomol (3 [5r () + £ (2]}

where Ep = 7/12a°m,,, includes all order a corrections (Fig. 1) 12 and the leading
logarithmic terms in relative order a? 3. Details of the calculations in one-loop order can
be found in Table 1. The higher order leading logarithmic terms with In(a) are similar
to those for positronium, and the double logarithm can be easily obtained within the
effective charge approach.

diagram | C(15) | C(25) || diagram C(1S) | C(28)

(g2)-T | 0.571 | 0.571 || VPC-T | 0.605 0.523
Rec |-0.857 | -0.857 || VPT | 0.345 0.355
Vert-A | -1.714 | -1.714 || VPC-A | 0.454 0.393
VP-u-A | -0.381 | -0.381 || VP-e-A | 1.483 1.483
2A | 0.263 | 0.263 || VP-h-A | -0.080(9) | -0.080(9)

" E-mail: sgk@onti.vniim.sbp.su
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NUCLEON POLARIZABILITY CONTRIBUTION
TO THE HYDROGEN LAMB SHIFT AND
HYDROGEN - DEUTERIUM ISOTOPE SHIFT
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Budker Institute of Nuclear Physics,
630090 Novosibirsk, Russia,
and Novosibirsk University

ABSTRACT

The correction to the hydrogen Lamb shift due to the proton electric and magnetic
polarizabilities is expressed analytically through their static values, which are known from
experiment. The numerical value of the correction is — 71 + 11+ 7 Hz. Correction to
the H-D 15-2S - isotope shift due to the proton and neutron polarizabilities is estimated as
61+ 10+ 6 Hz.

1. High experimental precision attained in the hydrogen and deuterium spec-
troscopy (see, e.g., 1 2) stimulates considerable theoretical activity in this field. In par-
ticular, the deuteron polarizability contribution to the Lamb shift in deuterium was cal-
culated in 3-11, Ap estimate of the proton polarizability contribution to the Lamb shift
in hydrogen was made in 4. A special feature of these corrections is that they contain
logarithm of the ratio of a typical nuclear excitation energy to the electron mass, In £/m,.

In the present note we consider the problem of the proton polarizability correction
to the Lamb shift in hydrogen. The typical excitation energy for the proton E, ~ 300
MeV is large as compared to other nuclei (to say nothing of the deuteron). So, In E,/m,
is not just a mere theoretical parameter, it is truly large, about 6 — 7, which makes the
logarithmic approximation quite meaningful quantitatively.

In our calculation we follow closely the approach of 9. In particular, we use the
gauge Ap = 0 for virtual photons, so that the only nonvanishing components of the photon
propagator are Dim = dim [k, dip = bipn — kikn fi0? (1,m =1,2,3). The electron-proton
forward scattering amplitude, we are interested in, is

ks d*k y(l —k+ me)v;
T = 4maf @) .mDJnW Min: (1)

Herel, = (m,,0,0,0) is the electron momentum. The nuclear-spin independent Compton
forward scattering amplitude, which is of interest to as, can be written as

M = a(w*,K')E'E + 3(w?, k*)B*B = Mynemen”, (2)

where @ and f are the nuclear electric and magnetic polarizabilities, respectively. The
structure v;({—k+m.)y; in (1) reduces to —wd;j. Perhaps. the most convenient succession
of integrating expression (1) is as follows: the Wick rotation; transforming the integral over
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the Euclidean w to the interval (0, co); the substitution k — kw. Then the integration
over w is easily performed with the logarithmic accuracy:

o0 dw?
,/L; w? + 4m,2/(1 + k?2)?

(3 + 2K® + k*)&(—w?, —w?k?) — 2k*B(—w?, -] (3)
= [(3+ 2K + k*a(0) — 2*3(0))] In %

The crucial point is that within the logarithmic approximation both polarizabilities & and
3 in the lhs can be taken at w = 0, k? = 0. The final integration over @k is trivial.

The resulting effective operator of the electron-proton interaction (equal to —T)
can be written in the coordinate representation as

V = —am,[5&(0) — 5(0)] In m—E— 8(r). (4)

This expression applies within the logarithmic accuracy for arbitrary nuclei. It should be
mentioned that a similar relation for hydrogen was obtained in 3, our numerical result
agrees with theirs. On the other hand, the formula derived in 12 for an arbitrary nucleus
differs from ours (4) by the absence of the magnetic polarizability 3(0) only.

The experimental data on the proton polarizabilities, which follow from the Comp-
ton scattering, can be summarized as follows !3;

@,(0) + B3,(0) = (14.2 £ 0.5) x 10~* fm?,
Gp(0) — B,(0) = (10.0 + 1.8) x 10~* fm?®, (5)

Now,
55(0) = By(0) = 2[@,(0) + B,(0)] + 3[&,(0) - B,(0)] = (58.4 + 5.3) x 107* fm®. (6)

The errors are added in quadratures.
Finally, at E, ~ 300 MeV the proton polarizability correction to the hydrogen 15
state is
~ 1k 11 4.7 Hy. (7

Here the first error is that of the logarithmic approximation, which we estimate as 15%.
The second one originates from the values of the polarizabilities.

The corresponding estimate presented in 4 differs from our result by the factor at
a,(0) (2 instead of 5) and by the absence of B,(0). Besides, the authors of 4 (and of 3)
choose the inverse nucleon radius, instead of the excitation energy, for the logarithmic -
cut-off in the corresponding formulae.

2. Though being calculated rather accurately from the theoretical point of view,
the correction (7) to the hydrogen Lamb shift is too small to be observed. However, the
corresponding effect in the hydrogen-deuterium isotope shift is comparable both with the
experimental accuracy (150 Hz) attained for it 2, and with the theoretical precision (70
Hz) for the contribution of the deuteron polarizability due to relative motion of the proton
and neutron 11,
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The deuteron is a weakly bound system. Then it is natural to assume that deute:
polarizability is the sum of the polarizability due to relative motion of the nucleons ang
the internal polarizabilities of the nucleons. Simple physical arguments, supported
model estimates, demonstrate that nucleon polarizabilities in deuteron coincide with pe
larizabilities for free nucleons, well within the accuracy of our logarithmic approximation
Therefore, in the corresponding effect in the H-D isotope shift the proton contributiong
cancel, and we are left with that of a neutron (with opposite sign)

8Viu_p = am, (5a,(0) — 3,(0)) In % §(r).

The neutron electric polarizability is 14

a,(0) = (9.8 4+ 1.3+ 0.7) x 10™* fm?;

Its magnetic polarizability 3, is not known. Assuming that it does not change the re-
sult considerably, the discussed contribution to the isotope shift between hydrogen and
deuterium due to the internal polarizabilities of the nucleons can be estimated as

61+ 10 + 6Hz. (9)
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ABSTRACT

Production of relativistic singlet positronium atoms by high-energy photons and elec-
trons in aligned crystal targets is considered. The detailed numerical calculations show that
due to coherence effect in a crystal. the significant enhancement of positronium yield. at
certain positronium energies and emission angles. can be achieved.

1. Introduction

The production of relativistic positronium (Ps) atom by high-energy photon in
collision with an atom has been calculated first by H.Olsen in ! and V.L.Lyuboshits
in 2. and production of Ps by relativistic electrons - by G.V.Meledin. V.G.Serbo and
A.K Slivkovin 3 and A.A. Akhundov. D.Yu. Bardin and L.L. Nemenov in 4: more detailed
theory of Ps electroproduction was developed by E.Holvik and by H.Olsen in . When
created, the Ps can be broken during their passage through the target 1. The Ps break-up
cross-sections in relativistic collisions with an atom have been calculated very precisely by
St.Mrowchynski in 6. Later, the Ps production in a crystal has been studied 7 8 9 and it
was shown that due to coherent production effect. the considerable enhancement occurs
at certain emission angles and incident photon energies. Recently. similar coherent effects
have been predicted for the creation of relativistic fermionium by relativistic electrons in
a crystal 10, The aim of this paper is to present the detailed numerical studies of coherent
production of beams of relativistic singlet Ps in aligned crystals. in relevance to possible
experiments at REFER facility of Hiroshima University.

2. Coherent photoproduction of relativistic singlet Ps in a crystal

The differential cross-section for production of singlet Ps by a high-energy photon
has the form !: 2 (here, h = ¢ = 1):
N pym?2sin’ @ 0
dQ ~ n3 q* 2E,(E, — pycos8)?” (

where F(q) is the atomic formfactor, g is the momentum transfered. mp=2m, —¢

doy Z%® i [1 - F(q))?

. € is the Ps binding energy, m, is electron mass and n is the principal quantum number
( below, n = 1). Here, E, and p, are the energy and momentum of Ps travelling as

235



