
BEAM-BEAM SIMULATIONS ON PARALLEL COMPUTERS1 

A.Jejcic, J.Maillard, J.Silva 
College de France, Paris, France 

and 
N. Dikansky, D. Pestrikov, D. Shatilov, E. Simonov 

BINP, Novosibirsk, Russia 

INTRODUCTION 
As is known, the beam-beam simulations can be per
formed within the framework of the so-called weak-strong 
and strong-strong bunches approaches. Both of 
them may give valuable predictions when designing 
colliders. 
In the weak-strong approximation the particles of the 
weak bunch are tracked for desired number of turns 
using a given fields, which are set in the Interaction 
Point (ΓΡ) by the strong bunch. Except for maybe 
studying of the time dependencies, these problems can 
be parallelized on many stages very easily. In the case 
of electron-positron colliders, the fluctuations of the 
particle's synchrotron radiation provides sufficient ran
domization of its motion. So that the simulations can be 
done using the ergodic assumptions (one particle 
tracking), or using the multiparticle tracking provided 
that the number of particle-turns remains the same, that 
gives more freedom for the code parallelism. In the 
case of proton (or ion) beams, the multiparticle tracking 
should be used as a default. The required CPU time for 
such problems increases linearly with the number of 
particle-turns. 
In the strong-strong simulations the studies are focused 
on tracking of the particles from both colliding 
bunches. These problems present more difficulties even 
for simulations due to huge amount of necessary com
putations. Various schemes with multiparticle tracking 
are usually employed. The required CPU time for such 
problems increases quadratically with the number of 
particles and linearly with the number of turns. Com
putation of the beam-beam kicks in these cases uses the 
information about coordinates of all the macroparticles. 
For that reason, the parallel computations inevitable 
will demand inter-processor communications, decreas
ing the run-time performance of the code. 
In this note we report our experience of the employ
ment of parallel computing for the beam-beam simula
tions, both weak-strong and strong-strong. We shall 
consider two different computer platforms: 
1. Digital's AlphaServer 4100 with 4 processors, 

where parallel computing can be implemented using 
the High Performance Fortran language (HPF), 
running under the Parallel Software Environment 

(PSE) and Digital UNIX. 

2. Set up of 32 transputers T9000 connected with a 
Sparc station as the front-end machine. Here paral
lelism is achieved by explicit calls to the message-passing 
library. In most cases such codes can be 
easily transformed to PVM (Parallel Virtual Ma
chine) codes, providing their portability. 

WEAK-STRONG SIMULATIONS 
Weak-strong simulation should be considered as a very 
good candidate for parallel processing, since the most 
intensive part of computations can be easily arranged in 
such a way that a very little (or even none) interprocessor 
communications will be required. To do so, 
each processor should track its own particle, providing 
that the total number of particle-turns is set to the de
sired value. However, to achieve the goal, one have to 
match the following requirements: 
• Particles must be statistically independent, that can 

be done by setting for each processor the different 
initial particle's coordinates and different initial 
seeds for the random number's generators. 

• To avoid inter-processor communications during a 
tracking, each processor must gather all the statis
tics obtained for its particle locally. After comple
tion of the tracking, data from all the processors 
should be joined together, providing that the final 
tracking results will have the statistical reliability 
corresponding to the total number of particle-turns. 

In the case of proton or ion beams (without cooling) the 
run-time randomization of the particle motion can be 
negligible, that presents a separate problem. Usually 
the goal here is not to obtain the equilibrium distribu
tion, but to watch an evolution of the initial one. So, 
increasing of the number of simulated macroparticles 
(and processors) will be always nice, since it improves 
the statistical reliability of the results, but on this way 
we cannot reduce the tracking time. 
The case of electron-positron (and also proton and ion, 
with cooling) colliders is quite different. Since the par
ticles remember their coordinates for some time 
(usually, one damping time or something like that), the 
initial coordinates should be distributed according to 
the equilibrium, otherwise they will influence the 
tracking results. Since we do not know a priori this 
distribution (it is what we want to obtain).. the follow
ing solution is used: 

1 Work supported by INTAS, project 94-4772. 

220 



• The initial coordinates of the particles are chosen 
with the Gaussian (unperturbed) distribution. 

• One damping time all the particles are tracked 
without statistics gathering, just to mix them ac
cording to the equilibrium. 

• After that, the tracking is continued with accumu
lating of the statistics. 

This algorithm obviously sets a limit for the number of 
particles which can be efficiently tracked (and, there
fore, for the number of processors). Indeed, the required 
tracking time to obtain the equilibrium beam sizes is 
usually 1000 damping times, or like that. If we have, 
say. 1000 processors, it means that each one has to 
track its own particle one damping time for correct ini
tialization and then one more damping time for ob
taining the results (e.g. equilibrium beam sizes), that 
appears to be not very efficient. On the other hand, if 
the goal is the equilibrium distribution including the 
beam tails and lifetime, the tracking time should be 
much longer, allowing effective utilization of many 
thousands of processors (if they are available). How
ever, for long-term tracking we use a special tracking 
technique [1] implemented in the code LIFETRAC 
[2.3], which allow to reduce the required CPU time by 
several orders of magnitude when simulating of the 
beam's halo. Briefly, in this technique the equilibrium 
distribution is built step by step, starting from the core 
region, toward the beam tails. The tracking time for 
each step is also about 1000 damping times, so that we 
have the same limitation for the number of processors. 
Summarizing the above arguments, we can say that the 
weak-strong simulations can be performed very effi
ciently in parallel, with the number of processors up to 
a few hundreds. 

STRONG-STRONG SIMULATIONS 
There are different approaches how to simulate the 
beams even within the strong-strong concept. The most 
adequate (but also most time-consuming) method, 
which is implemented in the tracking code TURN [4], 
is as follows: 
• Both bunches are represented as a set of Ν (usually 

103 - 104) macroparticles. 
• Macroparticles do not depend on their neighbors 

from same bunch, but do experience the nonlinear 
kicks from the macroparticles of the opposite bunch. 

• To track any macroparticle through the IP one has 
to collide it sequentially with every macroparticle 
from the opposite bunch, thus every passage of IP 
will require Ν2 computations of the two-particles 
interactions. 

• Since the macroparticles are distributed longitudi
nally within bunches, they collide in order depend
ing on its current longitudinal coordinates. What is 
important, this order must be not destroyed, since it 
influences the bunch's behavior. For instance, a 

head-tail effect can be observed in such an interac
tion (head of the bunch excites the head of the 
counter-rotating bunch, which then disturbs the tail 
of the first bunch). Similar effects were investigated 

for linear colliders, see for example [5]. 
We shall not discuss here the other details of such a 
scheme (the most important is how to avoid scattering 
on large angles in the two-particles collision without 
loosing essential details of such an interaction), since 

they do not depend on parallelism of the code. 

Figure 1. Two beams divided on sub-bunches, 4th 
step of the collision. 

Since the passage through IP is the most time-consuming 
part of the simulation, just it should be 
done in parallel. In order to minimize the interprocessor 
communications, the following algorithm is 
used: 
• On each turn particles are grouped into sub-bunches 

according to their current longitudinal coordinates. 
The number of sub-bunches, m, usually should be 
equal to the number of processors in use. So, the 
number of particles within sub-bunch is N/m. We 
shall name these sub-bunches as A1, A2, ..., Am for 
the first beam and B1, B2, ..., Bm for the second one. 

• The sub-bunches A1, ..., Am are distributed among 
the processors and stay there, as follows: A1 in the 
1st processor, ..., Am in the mth processor. The sub-bunches 
B1, ..., Bm, on the contrary, move along the 
processors as is shown on Figure 1. 

• On the first step of beam-beam collision only A1 and 
B1 sub-bunches are interacted (this occurs com
pletely in the 1st processor). On the second step B-train 
is shifted, so that A1 and B2 sub-bunches are 
located in the 1st processor, A2and Β1 sub-bunches - in 
the 2nd one. These two collisions between sub-bunches can be done in parallel. On the third step 

already 3 processors will be used: A1 and B3 sub-bunches 
in the 1st processor, A2 and B2 sub-bunches 
in the 2nd processor, A3 and B1 sub-bunches in the 
3rd processor. And so on, so that only on the mth 
step all the processors will be in operation. How
ever, the total number of required steps is not m, but 
2m-1: on the last step again only one processor will 
work, colliding the Am and Bm sub-bunches. Obvi
ously, the interaction between two sub-bunches 
must be performed in the same order as described 

221 



above (simply replace the word 'sub-bunch' by 
'macroparticle' and ignore the word 'processor'). 
• After completion of the IP passage, the transforma

tion through the collider's lattice is applied to each 
sub-bunch, that obviously can be done in parallel 
easily. What is important, such a transformation 
affects also longitudinal coordinates of the 
macroparticles, so that they should be redistributed 
among sub-bunches in order to pass the IP again. 

In general case, the number of sub-bunches can be ar
bitrary (but not less titan the number of processors) and 
even different for the opposite beams. The optimum 
here depends on the relation between speeds of com
putations and inter-processor communications, and also 
on the number of processors and the architecture of 
their connections. Nevertheless, the described above 
particular case can be considered as a base scheme. 
Now let us estimate the run-time performance of such a 
parallel code. The simulation time per one turn can be 
roughly expressed as follows: 
Τ = TL∙(N/m) + Ts∙N∙log(N) + 
(2m-l)∙{TB∙(N/m)2 + TD + TP∙(N/m)} 
Here the first term stays for transport through the lat
tice, second one - for sorting of the macroparticles ac
cording to their longitudinal coordinates and distribut
ing them among the sub-bunches, and the last one - for 
the beam-beam interaction at the IP (most time-consuming). 
Within this last term, the factor (2m-1) is 
the number of steps, the first term in the braces stays 
for interaction between two sub-bunches, and remain
ing terms describe the inter-processor communications. 
So, effectiveness of the employed parallelism depends 
on many factors and should be investigated for each 
particular case (computer platform) independently. 
As is seen, even in assumption that the inter-processor 
communications do not demand any time, the gain in 
the performance will be ~ m2/(2m-1) ~ m/2. The factor 
of 1/2 comes from the fact that not all the processors 
can be always utilized. Without grouping of the 
macroparticles into sub-bunches (or by increasing the 
number of sub-bunches with respect to the number of 
processors) we can almost eliminate this disadvantage, 
but at the cost of greatly increasing inter-processor 
communications, that in most cases appears to be much 
more time-consuming. 

PARALLEL IMPLEMENTATIONS OF 
THE CODES 
We used codes [1, 4, 6] developed in the Budker In
stitute of Nuclear Physics (Novosibirsk) to study the 
beam-beam interaction for electron-positron and elec
tron-ion colliders. We shall not discuss here their fea
tures (it is a subject for separate report within a frame
work of the INTAS project 94-4772), but only our ex
perience in their parallel implementations. 

On Digital's AlphaServer 4100 with SMP (installed in 
ΒΓΝΡ), parallelism is achieved rather easily for Fortran 
codes with the help of HPF and PSE. In the case of 
weak-strong model, we found that the run-time per
formance scales almost linearly with the number of 
processors (we got a factor of 3.8 for 4 processors). 
Parallel version of the strong-strong codes now is under 
debugging yet, but we hope to get positive results soon. 
We also tried to implement these codes on set up of 32 
transputers T9000 installed in College de France (Pa
ris), where the other parallel architecture is used. In the 
weak-strong case, and for some part of calculations in 
the strong-strong case, the radial connections master-slave 
are used. For the main part of calculations in the 
strong-strong case, the sequential connections between 
slaves are used to exchange sub-bunches (see Figure 
2). However, we got some problems with porting of the 
codes to transputers. At the present time almost all of 
them are already solved, and we hope to have this 
scheme working soon. After that, we plan to port our 
codes also to PVM, that can be done rather quickly. 

Figure 2. Archi
tecture of interprocessor 
communications 
between master 
(M) and slaves 
(S1 - S7). Both 
radial and se
quential com
munications are 
used. 

CONCLUSION 
A package of beam-beam codes have been developed, 
both weak-strong and strong-strong, which can be run 
in parallel with a great increase in run-time perform
ance. One of the main features is their potential good 
portability, that opens the possibilities of their wide 
employment on different computer platforms. 

References: 

1. D. Shatilov, Part. Acc. 52, p. 65 (1996). 
2. D. Shatilov, KEK report 96-14 (1996). 
3. K. Hirata, D. Shatilov, M. Zobov, Proc. of 

ICFA97 Workshop, Frascati, 20-25 Oct. 1997. 
4. E. Simonov, Undocumented strong-strong code 

TURN. 
5. N. Solyak, PhD Thesis, BINP, Novosibirsk, 1988. 
6. N. Dikansky, V. Parkhomchuk, A. Skrinsky et 

al., http://www.gsi.de/struck/concepts.html. 

222 

http://www.gsi.deTstnjck/concepts.html

