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Abstract

In this lecture the next-to-leading order (NLO) corrections to the QCD
Pomeron intercept obtained from the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
equation are discussed. It is shown that the BFKL Pomeron intercept when
evaluated in non-Abelian physical renormalization schemes with Brodsky-Le-
page-Mackenzie (BLM) optimal scale setting does not exhibit the serious prob-
lems encountered in the modified minimal subtraction (MS) scheme. The
;&sults obtained provide an opportunity for applications of the NLO BFKL re-
. ation to high-energy phenomenology. One of such applications for virtual
gamma—ga,mma total cross section shows a good agreement with preliminary

data at CERN LEP.
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AHHoTaumsa

OBcyxmatorcs crenyiompe 3a BeIyIIAM BKIIAIOM TONPABKH K HHTEPCENnTY
tovepora KX, nomyvennoro u3 ypapaenns Banunkoro-®anuna-Kypaepa-Jlu-
mrosa (BPKII). Ilokasano, uTo muTepcent B®KJI-nomepona npu npumene-
BN HeabelleBEIX (U3NIECKUX CXeM IePeHOPMUPOBOK C ONTHMHU3HUPYIOLIER To4-
" neperopmupoek# bponckoro-Jlemaxa-Makkensu (BJIM) me nmeer cepnés-
X TPYIHOCTeli, BO3HMKAIOUIMX B CXeMe MHHMMATBHOTO BLIYHTAHUS (MS).
.OJI}":IEHHHe Pe3yIbTaThl OTKPHIBAIOT WIXPOKHE BO3MOXKHOCTH I IPEMEHE-
mi BOKJI B dusuxe Boicokux smeprmir. IIpmmoxenme BOKJI x ommcammio
IOMHBIX CeYeHHH BUPTYaJbHEIX (OTOHOB HaXOOHUTCA B XOPOIIEM COTJIaCHH €
ipenBapuTenbEeIMI nasEEIME JIDII B IIEPHe.
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1 Motivation

The discovery of rapidly increasing structure functions in deep inelastic scaf
tering (DIS) at HERA [1] at small-z is in agreement with the expectation
of the QCD high-energy limit. The Balitsky-Fadin-Kuraev-Lipatov (BFKI

[2, 3] resummation of energy logarithms is anticipated to be an important toc
for exploring this limit. The leading order (LO) BFKL calculations [2] predic
a steep rise of QCD cross sections. Namely, the highest eigenvalue, w™*,
the BFKL equation [2] is related to the intercept of the Pomeron which it
turn governs the high-energy asymptotics of the cross sections: o ~ soP=1 =
s“"*. The BFKL Pomeron intercept in the LO turns out to be rather large
ap — 1 = wp™ =12 In2(as/m) ~ 0.55 for as = 0.2; hence, it is very im
portant to know the next-to- leading order (NLO) corrections. In addition
the LO BFKL calculations have restricted phenomenological applications
cause, e.g., the running of the QCD coupling constant as is not included and
the kinematic range of validity of LO BFKL is not known. ]

Recently the NLO corrections to the BFKL resummation of energy log-
arithms were calculated; see Refs. [4, 5] and references therein. The NLO
corrections [4, 5] to the highest eigenvalue of the BFKL equation turn out to
be negative and even larger than the LO contribution for ag > 0.157. At such
circumstances the phenomenological significance of the NLO BFKL calcula-
tions seems to be rather obscure.

However, one should stress that the NLO calculations, as any finite-order
perturbative results, contain both renormalization scheme and renormaliza-
tion scale ambiguities. The NLO BFKL calculations [4, 5] were performed by
employing the modified minimal subtraction scheme (MS) [6] to regulate the
ultraviolet divergences with arbitrary scale setting. '

In this work we consider the NLO BFKL resummation of energy logarithms
(4, 5] in physical renormalization schemes in order to study the renormalization
scheme dependence. To resolve the renormalization scale ambiguity we utilize
Brodsky-Lepage-Mackenzie (BLM) optimal scale setting [7]. We show that the
reliability of QCD predictions for the intercept of the BFKL Pomeron at NLO
when evaluated using BLM scale setting within non-Abelian physical schemes‘,"f
such as the momentum space subtraction (MOM) scheme [8, 9] or the T-schefr[ef
based on T — ggg decay, is significantly improved as compared to the MS-
scheme. This provides a basis for applications of NLO BFKL resummation to

high-energy phenomenology. Certain aspects of this work were presented in
Ref. [10].
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2 BFKL in Physical Renormalization Schemes

- | Webegin with the representation of the MS- result of NLO BFKL [4, 5] in phys-
s | ical renormalization schemes. Although the MS-scheme is somewhat artificial
.' and it lacks a clear physical picture, it can serve as a convenient intermediate
renormalization scheme. The eigenvalue of the NLO BFKL equation at trans-
ferred momentum squared ¢ = 0 in the MS-scheme [4, 5] can be represented as
the action of the NLO BFKL kernel (averaged over azimuthal angle) on the
: 0 eigenfunctions (Q32/Q?)~1/2+ [4]:

.. 2\ —3+iv

. wirs(@h,v) = fd2Q2 K+75(@Q1,Q2) (Qz) =

L 2 2

;‘ = Necxi(v) aﬁi(Ql) [1 + TMS(V)QME;QIJ], (1)

ok

where

- e

| Xe(v) = 26(1) = $(1/2 +iv) — $(1/2— iv)
is the function related with the LO eigenvalue, ¢ = [/I' denotes the Euler

Y- function, the v-variable is a conformal weight parameter [11], N¢ is the
mumber of colors, and Q2 are the virtualities of the reggeized gluons.

l The calculations of Refs. [4, 5] allow us to decompose the NLO coefficient
s of Eq. (1) into 3-dependent and the conformal ((-independent) parts:

| (V) = i) + 12 (), 2
"here ;
rhrsv) = —%[Exz.(u) - g} (3)
con 3 [T eaze N¢ m? sinh(mv) & 141202 >
s (V) = 4xr(v) [21/ cosh?(mv (3 3 (1 k7 Ng) 16(1 + uz)) —x) ¥
oi g 3
b ) - o~ 6(3) + 400 @)

jith

—2/ dzr cols:ll;(j_)[ —ng(:c)] Liy(z f dt l_t) (5)
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Here By = (11/3)N¢—(2/3) N is the leading coefficient of the QCD B-functio
N is the number of flavors, ((n) stands for the Riemann zeta-function, Liy(z
is the Euler dilogarithm (Spence-function). In Eq. (4) Np denotes flaw
number of the Abelian part of the gg — g process contribution. The Abelia
part is not associated with the running of the coupling [12] and is consisten
with the correspondent QED result for the y*y* — ete™ cross section (13].

The 3-dependent NLO coefficient r‘%—s—(u), which is related to the runninge
the coupling, receives contributions from the gluon reggeization diagrams, fro
the virtual part of the one-gluon emission, from the real two-gluon emissior
and from the non-Abelian part [12] of the gg — qq process. There is an omitte
term in rﬁﬁ(u) proportional to x7(v) which originates from the asymm

treatment of ), and Q,, it can be removed by the redefinition of the L0
eigenfunctions [4].

The NLO BFKL Pomeron intercept then reads for Ny = 3 [4]):

o — 1 = wrs(@7,0) = 12 In2 TE(&) 1+ rmw)———am(qz)], 6

™ m™

rars (0) =~ —20.12 — 0.1020Nf + 0.066920, ,
rir5(0)vp=e =~ —19.99 .

Physical renormalization schemes provide small and physically meaningfy
perturbative coefficients by incorporating large corrections into the definitio
of the coupling constant. One of the most popular physical schemes is MO
scheme [8, 9], based on renormalization of the triple-gluon vertex at some
symmetric off-shell momentum. However, in the MOM- scheme the coupling
constant is gauge-dependent already in the LO, and there are rather r
bersome technical difficulties. These difficulties can be avoided by performing
calculations in the intermediate MS-scheme, and then by making the transition
to some physical scheme by a finite renormalization [8]. In order to eliminate
the dependence on the gauge choice and other theoretical conventions, one
can consider renormalization schemes based on physical processes (7], e.g., V-
scheme based on heavy quark potential. Alternatively, one can introduce a

physical scheme based on the T — 999 decay using the NLO calculations of
Ref. [14]. .

A finite renormalization due to the change of scheme can be accomplish'
by a transformation of the QCD coupling [8]: k

as — as[l +Tgﬁ],
m
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where T is some function of Ng, Ng and, for the MOM- scheme, of a gauge
arameter £. Then the NLO BFKL eigenvalue in the MOM-scheme can be
epresented as follows:

i 2 2

1 «

' wiom(Q?,v) = chL(V)QM%(Q)[] + raom(v) M] . (9)

™

rmom(v) = ras(v) + Tvom.

; the transition from the MS-scheme to the MOM-scheme the corresponding
function has the following form [8]:

Tmom = T;;(’;{ld"l'TﬁOMv (10)
- Nc [17

Tishe = 2[5 I+60-)+€0-30-¢],

Thow = ~3[1+51)

ihere | = —2 [y dzIn(z)/[2? — z + 1] ~ 2.3439.
l,_ Likewise, one can obtain for the V-scheme [7]:

bl 2 5
' Ty = ENC_EﬂOa (11)

nd, by the use of the results of Ref. [14], for the T- scheme:
i 6.47 2.77

Iy = —3~—NC——J@0 (12)

“ One can see from Table 1 that there is no a strong renormalization scheme
"{. endence, though the problem of a large NLO BFKL coefficient remains. A
ige size of the perturbative corrections leads to a significant renormalization
e ambiguity.

- Optimal Renormalization Scale Setting

_ renormalization scale ambiguity problem can be resolved if one can op-
'ze the choice of scales and renormalization schemes according to some
klble criteria. In the BLM optimal scale setting [7], the renormalization
s are chosen such that all vacuum polarization effects from the QCD S-
hiction are resummed into the running couplings. The coefficients of the
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Table 1: Scheme-transition function and the NLO BFKL coefficient in physic:
schemes

Scheme [T =T*" 4+ TF r(0) = re*/(0) + r#(0) r(0) -
(NF T 4) i
M|&éE=0|7471 —1.2815, | —12.64 — 0.1020Np — 1.21453, -22.76 '_
O|€é=1][8247—-1.2815, | —11.87 —0.1020Nr — 1.21453, -21.99 |
M|[£(=3]8.790 —1.2816, | —11.33 — 0.1020Nr — 1.21453, -21.44
\ 2—0.41676, | —18.12 — 0.1020Np — 0.34976, | -21.44 |
¥ 6.47 — 0.9235, —13.6 — 0.102Nr — 0.85603, -21.7

perturbative series are thus identical to the perturbative coefficients of the
corresponding conformally invariant theory with 8 = 0. The BLM approach
has an important advantage of resumming the large and strongly divergent
terms in the perturbative QCD series which grow as n![asGo]", i.e., the in-
frared renormalons associated with coupling constant renormalization. The
renormalization scales in the BLM approach are physical in the sense that
they reflect the mean virtuality of the gluon propagators [7].

The BLM scale setting [7] can be applied within any appropriate physical
scheme. In the present case one can show that within the V-scheme (or the
MS-scheme) the BLM procedure does not change significantly the value
the NLO coefficient (/). This can be understood since the V-scheme as well
as MS-scheme are primarily adjusted to the case when, in the LO, there are

dominant QED (Abelian) type contributions, whereas, in the BFKL case, the

LO gluon-gluon (non-Abelian) interactions are important.

.’b
Therefore, from the point of view of BLM scale setting, one can separate

QCD processes into two classes specifying whether gluons are involved into th@.
LO or not. Thus one can expect that in the BFKL case it is appropriate to
use a physical scheme which is adjusted to non-Abelian interactions in the L0,

One can choose the MOM- scheme based on the symmetric triple-gluon vertegf.'

[8, 9] or the T-scheme based on T — ggg decay. The importance of taking into
account this circumstance for vacuum polarization effects can be seen from the
“incorrect” sign of the fo-term for r47z in the unphysical MS-scheme (Eq. (7).

e
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Table 2: The NLO- BFKL-Pomeron intercept in the BLM scale setting within
non-Abelian physical schemes

Scheme | rprm(0) ap™ —1 = wpLm(Q?,0)

F. (Nrp=4) | Q*=1 GeV* | Q* =15 GeV* | Q* = 100 GeV*

. M[é=0] -13.05 0.134 0.155 0.157
O|[é=1] -12.28 0.152 0.167 0.166
M|é({=3 -11.74 0.165 0.175 0.173

T -14.01 0.133 0.146 0.146
scheme is
e : & MOM 2 & MOM?2
, “’gLOAJ}J(Qz,V) = Nexe(v) mom(@5ii ) [1 2 rgf?#('/) MOM(SBLM ) )
' (13)
rhi (V) = ragoa(v). (14)

: The f-dependent part of the ryon(v) defines the corresponding BLM op-
timal scale

B rﬂ
| QMOM2() = QP exp [J‘—M;;M] = Qexp [%n(u)—g-w(n;f)]- (15)

Taking into account the fact that xr(v) = —2In(v) at v — oo, one obtains at
large v
wh

1 2 5
» MOM2/ \ _ 21 e
1 BIM (V) = @ ~exp [2(1+ 3 I) 3]. (16)
At v = 0 we have QF5F*(0) = Q*(4exp[2(1 + 21/3) — 5/3]) ~ Q?127.
Note that Q¥ *(v) contains a large factor, exp[—4T%op,/Bo] = exp[2(1 +
21/3)] ~ 168, which reflects a large kinematic difference between MOM- and
M3- schemes [15, 7], even in an Abelian theory.

‘- Analogously, one can implement the BLM scale setting in the Y-scheme

(Table 2).

- Figures 1 and 2 give the results for the eigenvalue of the NLO BFKL
ernel. We have used the QCD parameter A = 0.1 GeV which corresponds
0 as = 4r /[BoIn(Q?/A?)] ~ 0.2 at Q? = 15 GeV>. Also, the generalizations
16,17, 18] of the 8 -function in the running coupling and of flavor number for
ontinuous treatment of quark thresholds have been used.
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Figure 1: v-dependence of the NLO BFKL eigenvalue at @* = 15 GeV*:
(in MOM-scheme) - solid, MOM-scheme (Yennie gauge: { = 3) - d
MS-scheme - dotted. LO BFKL (as = 0.2) - dash-dotted.

One can see from Fig. 1, that the maximum which occurs at non-zero v t
not as pronounced in the BLM approach compared to the MS-scheme, thus it
does not serve as a good saddle point at high energies.

One of the striking features of this analysis is that the NLO value for the
intercept of the BFKL Pomeron, improved by the BLM procedure, has a very
weak dependence on the gluon virtuality Q. This agrees with the conventi
Regge theory where one expects a universal intercept of the Pomeron with:
any Q*dependence. The minor Q?-dependence obtained, on one side, prov
near insensitivity of the results versus precise value of A, and, on the ot
side, leads to the approximate scale and conformal invariance. Thus one may
use conformal symmetry [11, 19, 20] for the continuation of the present results
to the case t # 0. o

Therefore, by applying the BLM scale setting within non-Abelian physical
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figure 2: Q2-dependence of the BFKL Pomeron intercept in the NLO. The
otation is as in Fig. 1

schemes (MOM- and Y- schemes), we do not face the serious problems (21,
2, 23] which were present in the MS-scheme, e.g., oscillatory cross section
lisbehavior based on the saddle point approximation [21], and a somewhat
puzzling analytic structure [22] of the MS-scheme result (4, 5].

' Since the BFKL equation can be interpreted as a “quantization” of the
enormalization group equation [19], it follows that the effective scale should
epend on the BFKL eigenvalue w, associated with the Lorentz spin, rather
han on v. Thus, strictly speaking, one can use the above effective scales as
unction of v only in “quasi-classical” approximation at large Q. However,
e present remarkable Q?-stabilty leads us to expect that the results obtained
ith LO eigenfunctions may not change considerably for ¢ # 0 due to the
pproximate conformal invariance.

5

j
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4 Other Approaches to Perturbation
Theory Optimization

Now we consider briefly the NLO BFKL within other approaches to the z
mization of perturbative theory, namely, fast apparent convergence (FAC) [2
and the principle of minimal sensitivity (PMS) [25].

By the use of the FAC [24], one can obtain

wrac(Q%v) = NCXL(V)M ; (17

QFac(v) = Qzexp[—g—r(u)J.

0

In the MS-scheme at v = 0, wpac = 0.33 — 0.26 for Q? = 1 — 100 GeV2
However, the NLO coefficient () and hence FAC effective scale, each have, 2
singularity at v ~ 0.6375 due to a zero of the x1(v)-function.

In the PMS approach [25] the NLO BFKL eigenvalue reads as follows

( )aPMS(Qz(V)) [1 + (C/Z)C*PMS/WJ, (19

2 —
wpms(Q,v) = No xr(v T 1+ Cappms/m

where the PMS effective coupling apps is a solution of the following transcen-
dental equation 4

CorpMS/ﬂ' C/2 _ Q2 .
+Cl“(1 +0ams/1r) G it e “(m e

apms

with C = $,/(46) and B; = 102 — 38Nr/3. At v = 0 one obtains in the
MS-scheme wpprs = 0.23 — 0.20 for Q2 = 1 — 100 GeV? but, by the san
reason as in the FAC case, the PMS effective coupling has a smgula.rlty
vo. Thus, the application of the FAC and PMS scale setting approaches to
the BFKL eigenvalue problem leads to difficulties with the conformal w ight
dependence, which is an essential ingredient of the BFKL calculations. g
unphysical behavior of the FAC and PMS effective scales for Jjet productios _"i
processes has been noted in Refs. [26]. '

The problem can be resolved by the expansion of yz(v)-function near its
zero to avoid unphysical behavior of the optimization procedure.
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5 Application for Gamma-Gamma Scattering

The gamma-gamma total cross section calculated with the resummation of the
leading energy logarithms was considered in (3, 27, 28].

The total cross section of two unpolarized gammas with virtualities 4 and
Qp in the LO BFKL (3, 27] reads as follows:

b 1 Fdv AN X
| a(s,Q%, QB) _;,k=ZT,L 70405 J 5 C08 (VIH(Q%))E(V)F’C("V) (30) ,
(21)
with the gamma impact factors in the LO for the transverse and longitudinal
polarizations:

; (3 -] [2 +z’u]r(§ o iv)zr‘(% + z‘u)2

fr(v) = agepas (Zq:ei) P) T2 — i)T(2 + i) » (22)

N T =i)T(2+aw)r(3 - )T (}+iv)
Fi(v) = agep s (zq: GQ) W T(2 — w)0(2 + iv) 1)

‘where Regge scale parameter so is proportional to a hard scale Q* ~ Q%, @%,
I being the Euler -function, and e, is the quark electric charge.

 In the NLO BFKL case one should obtain the formula analogous to LO
BFKL (Eq. 21). It has been demonstrated in Ref. [29] that the infrared
singularities at the NLO are cancelled out for impact factors of colorless parti-
es. Therefore, in the NLO both the kernel of the BFKL equation and impact
factors are infrared safe which confirm a self-consistence of such factorization
:eme.

 While exact NLO impact factors of gamma are not known yet [30] one can
use the LO impact factors of Eqs. (22-23) [3, 13, 27] implying that the main
NLO corrections come from the NLO BFKL subprocess rather than from the
impact factors [31, 32]. Thus, in the NLO BFKL one can have Eq. (21) but
with w(Q?,v) taken in the NLO. To imply the BLM procedure to the total
cross section one can see that one can imply the BLM procedure directly to
the NLO BFKL eigenvalue w(Q?,v) within the accuracy up to the next-to-
‘next-to-leading order (NNLO) and higher subleading terms.
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2 7 [ (3 doto from LEP1
% 45 [ VSuw =91 CeV
t [ <OP> = 3.5GeV®
X bk
b —— NLOBFKL+BLM
e MRS LO BFKL
; ; y
- el 14} .‘..- o
30 - J o

Figure 3: The NLO BFKL Pomeron vs preliminary L3 data on virtual
gamma-gamma cross section (with subtracted quark-box contribution) at en:
ergy 91 GeV of the e*e~ collisions. Solid curves: NLO BFKL in BLM; dashed:
LO BFKL, and dotted: LO contribution. Two different choices of the
scale: so = @%/2 and sp = 2Q2.

For numerical calculations the NLO BFKL eigenvalue w(Q?, ) in the MOM
scheme (Yennie gauge: ¢ = 3) has been used.

In Figs. 3 - 5 the comparison of BFKL predictions in the LO and N 0
BFKL (31, 32] improved by the BLM procedure with L3 Collaboration data
(33, 34] from CERN LEP is shown. Different curves reflect uncertainty with
the choice of the Regge scale parameter which indicates when the asymptotic
regime starts. At infinite collision energies, the cross sections do not depend
on this scale parameter so. For present calculations, two variants have beer
choosen so = Q?/2 and s = 2Q?, where for symmetric virtuality case @ =
Q% = Q%. One can see from Figs. 3 - 5 that the LO BFKL predictions
overestimate the L3 data, while the agreement of the NLO BFKL improved by
the BLM procedure is reasonably well, especially at higher energies of LEP2
VSete— = 183 ~ 189 GeV (Figs. 4, 5). One can notice also that sensitivity
of the NLO BFKL results with respect to the Regge parameter sq is much
smaller than in the case of the LO BFKL. Recent OPAL Collaboration data
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[35] are also in a good agreement with the NLO BFKL predictions.

50
€ 7 [ L3 dota from LEP2 E
"gf 45 [ VS = 183 GeV '

+ .I .'1
L[ <0 =14GeV s
4 40 [ & s

[ ——— NLO BFKL+BLM ; i

35 [ seeseeee LO BFKL

P i ;

30 :— - ‘..'
25 o
: 3 o
20 :_ .0‘.‘. ..t"‘.
F o
15 E -
e’ .
10 F _ *
E-"'--.-’ L ——
5 i 1
|
0 P N S VI T ™ TR RR A VR 0 S WD I KR R DR
2 25 3 35 4 4.5 5 55 6
Y=log(s,,/<Q"*>)

Figure 4: The same as Fig. 3, but for energy 183 GeV of e*e~ collisions

- The gamma-gamma scattering is attractive from viewpoint that it is theo-
etically more controllable rather than hadron-hadron and lepton-hadron col-
lisions where non-perturbative hadronic structure functions are involved. In
ddition, in the gamma-gamma scattering the unitarization (screening) cor-
ections due to multiple Pomeron exchange would be less important than in
adron collisions. It was shown in Refs. [36] that the unitarization corrections
0 hadron collisions can lead to higher value of the (bare) Pomeron intercept
an the effective intercept value. Since the hadronic data fit yields about 1.1
or the effective intercept value [37, 38], then the bare Pomeron intercept value
lould be above this value. So that, in case of small unitarization corrections
I the gamma- gamma scattering at large Q2 one can accomodate the NLO
FKL Pomeron intercept value 1.13 - 1.18 along with larger unitarization cor-
ctions in hadronic scattering [36], where it can lead to a smaller effective
omeron intercept value about 1.1 for hadronic collisions.
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2 [ L3 data from LEP2 (preliminary) ..-'.
T 45 [ VS = 189 Gev
A [ <0 =1450GeV b
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Figure 5: The same as Figs. 3,4, but for energy 189 GeV of e*e~ collisi .'
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Summary

There have been a number of recent papers which analyze the NLO BFKL
pedictions in terms of rapidity correlations [39, 40], t-channel unitarity [41],
ngle-ordering [42], double transverse momentum logarithms [43, 44, 45, 46]
nd BLM scale setting for deep inelastic structure functions [47). This requires
afurther study to find relations between such approaches.

- To summarize, we have shown that the NLO corrections to the BFKL equa-
ion for the QCD Pomeron become controllable and meaningful provided one
ses physical renormalization schemes relevant to non-Abelian gauge theory.
BLM optimal scale setting automatically sets the appropriate physical renor-
malization scale by absorbing the non-conformal $-dependent coefficients. The
frong renormalization scale dependence of the NLO corrections to BFKL re-
summation then largely disappears. This is in contrast to the unstable NLO
esults obtained in the conventional MS- scheme with arbitrary choice of renor-
nalization scale. A striking feature of the NLO BFKL Pomeron intercept in
he BLM approach is its very weak @*-dependence, which provides approxi-
nate conformal invariance. The NLO BFKL application to the total gamma-
amma, cross section shows a good agreement with the preliminary L3 data at
le CERN LEP2 energies. The results presented here open new windows for
_hca.tlons of NLO BFKL resummation to the high-energy phenomenology.
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Note added at Proof. After presentation of this lecture, the OPAL and L3
ollaborations at the CERN LEP accumulated statistics at higher energies and
nalized their data [48]. The final OPAL and L3 data [48], although presented
a different way, show even better agreement [49] with our earlier predictions

1, 32).
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