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Abstract

The charged particle production by a charged black hole is due to th,.-
tunneling of created particles through an effective Dirac gap. Nonthermal
radiation of a rotating black hole is also described in an analogous way.
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Introduction

Particle production by charged (Reissner-Nordstrem) and rotating (Kerr) black
les was predicted simultaneously with or even somewhat earlier than the
famous thermal radiation. Though the problems of the nonthermal particle

o

creation are pretty old, there are some aspects of them which were elucidated
only recently. These aspects are discussed in the present article.

~ The problem of particle production by the electric field of a black hole has
been discussed repeatedly [1-7]. The probability of this process was estimated
[1-6] using in one way or another the result obtained previously [8-10] for
the case of an electric field constant all over the space. This approximation
might look quite natural with regard to sufficiently large black holes, for which
the gravitational radius exceeds essentially the Compton wave length of the
particle A = 1/m. (We use the units with A = 1,¢ = 1; the Newton grav-
itational constant k is written down explicitly.) However, in fact, as will be
demonstrated below, the constant-field approximation, generally speaking, is
nadequate to the present problem, and does not reflect a number of its essen-
tial peculiarities. A consistent semiclassical solution of the problem was given
in [11].

- The investigation of particle production by Kerr black holes started with
the prediction [12, 13] of amplification of an electromagnetic wave at the re-
flection from a rotating black hole, so called superradiation. The effect was
studied in detail in [14, 15] for electromagnetic and gravitational waves. It
ks rather obvious that if the amplification of a wave at the reflection is
possible, then its generation by a rotating black hole is possible as well. In-
deed, direct calculation [16] has demonstrated that the discussed, nonthermal
radiation does exist, and not only for bosons, photons and gravitons, but for
teutrinos as well. The last result looks rather mysterious since for fermions
there is no superradiation.

~ In [17] the nonthermal radiation of Kerr black holes was considered from
another point of view: as tunneling of quanta being created through the Dirac
gap. Certainly, this approach by itself can be valid for fermions only. It is
tear however that in the leading semiclassical approximation the production
of fermions and bosons is described by the same, up to the statistical weight,
elations.

Let us note that in [18] an analogous mechanism was considered for the
description of the friction experienced by a body rotating in superfluid liquid
T = 0: the quantum tunneling of quasiparticles to the region where their
energy in the rotating frame is negative.
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2 Radiation of charged black holes

2.1 Particle production by constant electric field

It is convenient to start the discussion just from the problem of particle pr
duction by a constant electric field. We restrict ourselves to the considerati
of the production of electrons and positrons, primarily because the probabili
of emitting these lightest charged particles is the maximum one. Besides, t|
picture of the Dirac sea allows one in the case of fermions to manage wit
out the second-quantization formalism, thus making the consideration mo
transparent. To calculate the main, exponential dependence of the effect,
is sufficient to use a simple approach due to [8] (see also [19, 20]). In ¢l

+m

Figure 1: Dirac gap

potential —eE'z of a constant electric field £ the usual Dirac gap (Fig. 1) til
(see Fig. 2). As a result, a particle, having a negative energy in the absen:
of the field, can now tunnel through the gap (see the horizontal dashed lir

Figure 2: Dirac gap in electric field

in Fig. 2) and go to infinity as a usual particle. The hole created in this wa
is nothing but an antiparticle. The exponential factor in the probability ¢
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he particle creation obviously depends only on the action inside the barrier.
This action does not change under a shift of the dashed line in Fig. 2 up or
fown, i.e., under a shift by AE of the energy £ of the created particle. Being
bviously an integral of motion, £ is also the energy of the initial particle of
...Dira.c sea. If we put for instance £ = —m, so that the particle enters the
arrier at z = 0, the squared four-dimensional momentum

(€E—ed)?—p’=m?

(=m + eEz)? — p* = m?.

or the time being we assume that the transverse part of the particle momen-
um py = (pz,py), which is also an integral of motion, is equal to zero. Inside
he barrier the modulus of the momentum p(z) = p,(2) is

lp(2)| = /m? — (m — eEz)2.

The action inside the barrier equals:

2

2mfeE ™m
s= [T dalp(a)] = T

:ally, the exponential factor in the probability W is [8]:

e W ~ exp(—285) ~ exp(—mm?/eE). (1)
~ One can easily take into account in the exponent (1) the transverse momen-
um p;. This integral of motion will, clearly, enter all the previous formulae
i the only combination m? + p?% . So, expression (1) in this case demands the
ubstitution m? — m? 4+ p% | thus changing to

W ~ exp[—m(m?® + pl)/eE]. (2)

- Let us calculate now the pre-exponential factor in the probability of particle
reation, as it was done in [21]. The obtained exponential (2) is the probability
hat a particle of the Dirac sea approaching the potential barrier from the left
see Fig. 2), will tunnel through it to the right, thus becoming a real electron.

. obtain the total number of pairs created per unit volume per unit time, the
xponential (2) should be multiplied by the current density of the particles of
he Dirac sea
: Jz = pUs. (3)
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For the velocity we use the common relation

e i
Z—ap

i

(the subscript z of the longitudinal momentum p is again omitted here and
below). The particle density is as usual

d*p.dp
3 1

°=2"n

the factor 2 being due to two possible orientations of the electron spin.
For a fixed coordinate z and fixed p, the identity holds:

0€

3 dp = d€.
On the other hand, it is obvious that the interval of energies d€ of the tunneling
particles is directly related to the interval dz between longitudinal coordinates
of the points where the particles enter the barrier: d€ = eEdz (up to an
inessential sign). Being interested in the probability per unit volume in general,
and per unit longitudinal distance in particular, we should delete the arising
factor dz when calculating the effect. So, the total number of pairs created
per unit volume per unit time is

| d?
'l Wi = 2eE[ (2—:;'—3 exp[—'ﬂ'(n'z2 +p'i)/eE].

2E2
S —-exp(—mm?®/eE).

i Wiz = 47
The probability W in the above formulae is supplied with the subscript 1/2
to indicate that the result refers to particles of spin one half. Obviously,
the notion of the Dirac sea, and hence the above derivation by itself, does not
apply to boson pair creation. However, in the semiclassical approximation, t
creation rate for particles of spin zero is almost the same. The only difference
is that these particles do not have two polarization states, so the their rateis

two times smaller than (7):

e’E?
Wo = s exp(—mm?/eE). 8
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The corresponding exact results for a constant electric field are [10]

62E2 & -1 "
Wi = a3 Zﬁexp(-—nwm /eE), (9)
0
62E2 ® (1 n—1
Wo = = Z( = exp(—nmm?/eE). (10)
0

Obviously, the account for higher terms, with n > 2, in the sums (9), (10)
makes sense only for very strong electric fields, for eE ~ m?. For smaller
fields, when eE < m?, simple formulae (7) and (8) are quantitatively correct.
- The above straightforward derivation clearly explains some important prop-
erties of the phenomenon. First of all, at the constant electric field the action
inside the barrier does not change under a shift of the dashed line in Fig. 2 up
or down. Owing to this property expressions (1) and (7) are independent of
ﬂle energy of created particles. Then, for the external field to be considered
i a constant one, it should change weakly along the path inside the barrier.
Obviously, the length of this path [ ~ m/eE essentially differs from the Comp-
fon wave length A = 1/m of the particle. The ratio [/ is of the same order
of magnitude as the action S inside the barrier, and therefore should be large
for the semiclassical approximation to be applicable at all.

- The considered case of a constant electric field has one more peculiarity.
The same criterion of the semiclassical approximation, {[/A > 1, means also
that the tilt of the Dirac gap is very small. Therefore, the vicinity of the
turning point, where the classical picture is inapplicable, is anomalously large
inthe (formally) classically accessible region. That is why the formation length
or the electron positron pairs is in this case not m/eE, as one may expect
vely, but much larger, m/eE(m?/eE)'/?, as was demonstrated by direct
aalculations in [21, 22].

22 Particle production by charged black holes.
- Exponential dependence

tis clear now that, generally speaking, the constant-field approximation is
mot applicable to the problem of a charged black hole radiation, and that the
probability of particle production in this problem is strongly energy-dependent.
The explicit form of this dependence will be found below.
We start the solution of the problem with calculating the action inside the
barrier. The metric of a charged black hole is well-known:

ds? = fdt2 pe f‘ldrz - 1':“,(116'2 + sin? 9d¢2), (11)
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where

%M | kQ?
g r r2’

M and @ being the mass and charge of the black hole, respectively. Th
equation for a particle 4-momentum in these coordinates is

(12

2
O ) (
Here ¢ and p are the energy and radial momentum, respectively, of the partlclq
We assume that the particle charge e is of the same sign as the charge of tht
hole @, ascribing the charge —e to the antiparticle. |

Clearly, the action inside the barrier is minimum for the vanishing orbitz
angular momentum /. It is rather evident therefore (and will be demonstrate
below explicitly) that after the summation over [ just the s-state defines th
exponential in the total probability of the process. So, we restrict for th
moment to the case of a purely radial motion. The equation for edges of the

Dirac gap for [ =0 is 0
e
ex(r) = - % m\/J—C, (14

which is presented in Fig. 3. It is known [23] that at the horizon of a blad
hole, for r = ry = kM + /kZM? —kQ?, the gap vanishes. Then, with th

increase of r, the lower boundary e_(r) of the gap decreases monotonically
tending asymptotically to —m. The upper branch e, (r) at first, in genera,
increases, and then decreases, tending asymptotically to m.

It is clear from Fig. 3 that those particles of the Dirac sea whose coordinafe
r exceeds the gravitational radius r; and whose energy ¢ belongs to the intervd
€-(r) > € > m, tunnel through the gap to infinity. In other words, a blad
hole loses its charge due to the discussed effect, by emitting particles with the

same sign of the charge e, as the sign of Q. Clearly, the phenomenon take
place only under the condition

— > m.

For an extremal black hole, with Q% = kM?, the Dirac gap looks somewha
different (see Fig. 4): when Q2 tends to kM?, e cation of the maximumd
the curve £, (r) tends to r,, and the value of the maximum tends to eQ/ry.
It is obvious however that the situation does not change qualitatively due fo
it. Thus, though an extremal black hole has zero Hawking temperature and
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Figure 3: Dirac gap for nonextremal black hole

rrespondingly, gives no thermal radiation, it still creates charged particles
e to the discussed effect.

 In the general case Q% < kM? the doubled action inside the barrier entering
he exponential for the radiation probability is

91S| = 2[ dr|p(r,¢)| =

B r2 drr MBER F , Pt pro
1 b T 2kMr 4 kQ? V—pir? + 2(ceQ — km2M)r — (e? — km?)Q2.
. (16)

lere pp = V€2 —m? is the momentum of the emitted particle at infinity,
nd the turning points ry » are as usual the roots of the quadratic polynomial
inder the radical; we are interested in the energy interval m < E < eQ/r,.
course, the integral can be found explicitly, though it demands somewhat
dious calculations. However, the result is sufficiently simple:

m‘Z
28| = 27— [eQ — (e~ po)kM]. (17)

reviously, this exponent was obtained in [7] from the solution of the Klein-
Gordon equation in the Reissner-Nordstrem metric.) Certainly, the expression
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Figure 4: Dirac gap for extremal black hole

(17), as distinct from the exponent in formula (1), depends on the energy quite
essentially.

Let us note that the action inside the barrier does not vanish even for
the limiting value of the energy e, = eQ/r4. For a nonextremal black hole
it is clear already from Fig. 3. For an extremal black hole this fact is not
as obvious. However, due to the singularity of |p(r,€)|, the action inside the
barrier is finite for € = €,, = eQ/r, for an extremal black hole as well. In this
case the exponential factor in the probability is

exp|—m(Vkm/e)kmM). (18)

Due to the extreme smallness of the ratio

Vkm

€

e 1052, (19)

the exponent here is large only for a very heavy black hole, with a mass M
exceeding that of the Sun by more than five orders of magnitude. And since
the total probability, integrated over energy, is dominated by the energy region
€ ~ €m, the semiclassical approach is applicable in the case of extremal black
holes only for such very heavy objects. Let us note also that for the particles
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itted by an extremal black hole, the typical values of the ratio ¢/m are very

ge:
i E Etm _ €Q e
m  m  kmM Vkm
other words, an extremal black hole in any case radiates highly ultrarela-
istic particles mainly.
Let us come back to nonextremal holes. In the nonrelativistic limit, when
)/rs — m and, correspondingly, the particle velocity v — 0, the exponential

of course very small:

~ 10%.

exp(—2mkmM/v). (20)

Therefore, we will consider mainly the opposite, ultrarelativistic limit where
e exponential is

exp[—m(m*/e?)eQ). (21)
course, here also the energies ¢ ~ ¢, ~ eQ/kM are essential, so that the
rarelativistic limit corresponds to the condition

e@ > kmM. (22)

it then the semiclassical result (21) is applicable (i.e., the action inside the
rrier is large) only under the condition

kmM > 1. (23)

is last condition means that the gravitational radius of the black hole
t ~ kM) is much larger than the Compton wave length of the electron
m. In other words, the result (21) refers to macroscopic black holes. Com-
iing (22) with (23), we arrive at one more condition for the applicability of
mula (21):

eQ > 1. (24)

e shall return to this relation later.

Let us note that in [4] the action inside the barrier was being calculated
der the same assumptions as formula (21). However, the answer presented
[4], 2|S| = mm?r? [eQ, is totally independent of energy (and corresponds to
mula (2) which refers to the case of a constant electric field). Obviously,
s cannot be correct-for the discussed integral in the general case ¢ # ¢,,.
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2.3 Particle production by charged black holes.
Pre-exponential factor

Now the radiation intensity is conveniently calculated in the following way. Af
r — oo the radial current density of free particles in the energy interval de is

o dp de 27w (20+1)dp, O .
jele,)de =23, (2m)3 Op, = (2w)Ee2 osdp, "--

The summation over the directions of the angular momentum reduces in fac
to the multiplication by the number 2/ + 1 of possible projections of the orbita
angular momentum | onto the z-axis and to the integration over the azimutl
angle of the vector 1, which gives 27. By means of the identity

%
Op,
we obtain in the result that the total flux of free particles at r — oo is

2(2 +1)
s

dp, = de,

—r

41rr2j,.(£, 1) = “
One can easily see that in our problem the total flux of radiated particl
differs from the last expression only by the barrier penetration factor . Thus
the number of particles emitted per unit time is

ﬂ ok —[d Z 20 + 1) exp[—2|S (e, 1)|)-

In the most interesting, ultrarelativistic case dN/dt can be calculated
plicitly. Let us consider the expression for the momentum in the region insid
the barrier for | # 0:

e 2
ple. )] = f“\J (m+52) 1+ (- 2)"

The main contribution to the integral over energies in formula (27) is given by
the region € — ¢,,. In this region the functions f(r) and € — eQ)/r, enterin
expression (28), are small and change rapidly. As to the quantity

i (r,0) = m* + /1, (29

one can substitute in it for r its average value, which lies between the turnin

points 7y and ry. Obviously, in the discussed limit ¢ — ¢,, the near tu ning
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; point coincides with the horizon radius, ry = r4. And the expression for the
distant turning point is in this limit
0 JREMT=RQ?
| s . (30)

To =T4 1+
! €2 — u? T+

that for estimates one can put in formula (29) r ~ r4, one can
asily show that the addition to 1 in the square bracket is bounded by the
atio [?/(eQ)?. Assuming that this ratio is small (we will see below that this
ssumption is self-consistent), we arrive at the conclusion that r, =~ r,, and
lence 4 can be considered independent of r: p*(r,l) ~ m* + */r}. As a
esult, we obtain

m?
Now we easily find
eQ : 2,2
dN/dt =m (m) exp(—mm*ry [eQ). (32)

.. us note that the range of orbital angular momenta, contributing to the
otal probability (32), is effectively bounded by the condition /2<eQ. Since
Q) > 1, this condition allows one to change from the summation over [ in
ormula (27) to the integration. On the other hand, this condition justifies the
used approximation p?(r,l) & m? + 1*/r3.

Applicability of the semiclassical approximation

lowever, up to now we have not considered one more condition necessary for
he derivation of formula (32). We mean the applicability of the semiclassical
pproximation to the left of the barrier, for r, < r < r;. This condition has
he usual form 5[]

——x< 1. 33
; dr p(r) e
" other words, the minimum size of the initial wave packet should not exceed
he distance from the horizon to the turning point. Using the estimate

‘:! p(r) ~ (:i(i?)(:s_r:)_), r_ =kM — \/k2M? — kQ?

or the momentum in the most essential region, one can check that for an
xtremal black hole the condition (33) is valid due to the bound e@ > 1. In
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a non-extremal case, for ry —r_ ~ ry, the situation is different: the conditis
(33) reduces to
. e@—-1 e

T4 T+ (
Thus, for a non-extremal black hole in the most essential region € — €
condition of the semiclassical approximation does not hold. Nevertheless, tt
semiclassical result (32) remains true qualitatively, up to a numerical factor]
the pre-exponential.

Now we give some comments on the radiation of light charged black hole
for which kmM < 1, i.e., for which the gravitational radius is less than th
Compton wave length of the electron. In this case the first part,

3 eQ) — 1,
T+
of inequality (34), which guarantees the localization of the initial wave pacl
in the region of a strong field, means in particular that

eQ =Za>1

(we have introduced here Z = Q/e). It is well-known (see, e.g., [24, 25]) th
the vacuum for a point-like charge with Za > 1 is unstable, so that such
object loses its charge by emitting charged particles. It is quite natural th
for a black hole whose gravitational radius is smaller than the Compton wa
length of the electron, the condition of emitting a charge is the same as|
the pure quantum electrodynamics. (Let us note that 1 in the right-hand-sid
of (35) should not be taken too literally: even in quantum electrodynamics
where the instability condition for the vacuum of particles of spin 1/2 is jus
Za > 1 for a point-like nucleus, it changes for a finite-size nucleus [24, %
to Za > 1.24. On the other hand, for the vacuum of scalar particles in th
field of a point-like nucleus the instability condition is [26, 27): Za > 1/
As has been already mentioned , for a light black hole with kmM < 1, the
discussed condition e > 1 leads to a small action inside the barrier and to th
inapplicability of the semiclassical approximation used in the present article
The problem of the radiation of a charged black hole with kmM < 1 w
investigated numerically in [28].

2.5 Discussion of previous results.
Comparison with the Hawking radiation

The exponential
exp(—mm?r? [eQ)
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m our formula (32) coincides with the expression arising from formula (1),
which refers to a constant electric field E, if one plugs in for this field its
walue @/r% at the black hole horizon. An approach based on formulae for a
constant electric field was used in Refs. [1-6]. Thus, our result for the main,
exponential dependence of the probability integrated over energies, coincides
with the corresponding result of these papers. Moreover, our final formula (32)
agrees with the corresponding result of [6] up to an overall factor 1/2. (This
difference is of no interest by itself: as has been noted above, for a non-extremal
lack hole the semiclassical approximation cannot guarantee an exact value of
the overall numerical factor.)

- As to the corresponding result of [7] (see formula (36) in [7]), the expo-
iential therein is exp[—4m(kmM)?/eQ)] instead of exp(—mm?r2 [eQ), and the
pre-exponential factor is proportional to (e@)?/kM instead of m(e@/mry)3.
We believe that our analysis of the phenomenon, which demonstrates its
sssential distinctions from the particle production by a constant external field,
s useful. First of all, it follows from this analysis that the probability of the
article production by a charged black hole has absolutely nontrivial energy
pectrum. Then, in no way are real particles produced by a charged black
ole all over the whole space: for a given energy e they are radiated by a
spherical surface of the radius ry(e), this surface being close to the horizon
for the maximum energy. (It implies, for instance, that the derivation of the
nentioned result of [6] for dN/dt has no physical grounds: this derivation
educes to plugging E = Q/r? to the Schwinger formula (7), obtained for
constant field, with subsequent integrating all over the space outside the
orizon. )

- Let us compare now the radiation intensity I due to the effect discussed,
ith the intensity /y of the Hawking thermal radiation. Introducing additional
eight € in the integrand of formula (27), we obtain

I=1rm2( ed

Tmry

) exp(—mm?*r? [eQ). (36)

s to the Hawking intensity, the simplest way to estimate it, is to use dimen-
onal arguments, just to divide the Hawking temperature

LA ol ol

Ta =

2
4mry

y a typical classical time of the problem r,. Thus,




More accurate answer for Iy differs from this estimate by a small nume
factor ~ 2 x 1072, but for qualitative estimates one can neglect this distinctio
The intensities (36) and (37) get equal for

o T el (b |
6 Inmry 6 InkmM (

(One cannot agree with the condition eQ ~ 1/(47) for the equality

these intensities, derived in [6] from the comparison of €, = eQ/ry wi
Tp = (r4 —r-)/(47ry).)

2.6 Change of the horizon area

In conclusion of this section let us consider the change of the horizon surfa
of a black hole, and hence of its entropy, due to the discussed non-the m;
radiation. To this end, it is convenient to introduce, following [29], the s
called irreducible mass M, of a black hole:

2Mo = M +\/M? — @2,

here and below we put & = 1. This relation can be conveniently rewritten als
as

Q°
M=M+ o5 (_
Obviously, ry = 2My, so that the horizon surface and the black hole ent
are proportional to M. '

When a charged particle is emitted, the charge of a black hole changes b
AQ = —e, and its mass by AM = —eQ/r; + €, where ¢ is the deviation:
the particle energy from the maximum one. Using the relation (40), one ca
easily see that, as a result of the radiation, the irreducible mass My and hen
the horizon surface and entropy of a non-extremal black hole do not change;
the particle energy is the maximum, eQ/r,. In other words, such a process
which is the most probable one, is adiabatic. For ¢ > 0, the irreducible mas
horizon surface, and entropy increase.

As usual, an extremal black hole, with M = Q = 2M,, is a specif
case. Here for the maximum energy of an emitted particle e, = e, we hau
AM = AQ = —e, so that the black hole remains extremal after the radiation,
In this case AMy = —e/2, i.e., the irreducible mass and the horizon surfac
decrease. In a more general case, AM = —e + ¢, the irreducible mass change
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ﬁi follows:

e—¢ e &
AMy = — My—-+->)E 41
0 5 + \]( 0= 3 -+ 4)E (41)
Clearly, in the case of an extremal black hole of a large mass, already for a
mall deviation ¢ of the emitted energy from the maximum one, the square
oot is dominating in this expression, so that the horizon surface increases.

Radiation of rotating black holes
3,1 Scalar field

Ve will start the discussion of radiation of rotating black holes with a problem
f a methodological rather than direct physical interest, with the radiation of
alar massless particles.

~ The semiclassical solution of the problem is started from the Hamilton-
Jacobi equations for the motion of a massless particle in the Kerr field (see,
for instance, [30]):

aS,(r) 2 K (P4 aP)e —al.)?
( or ) =& A7 ’ (42)
" (6556(30)) =K% - (a.e sin f — sil; ) : (43)

e S,(r) and Sy(0) are the radial and angular actions, respectively;
A=rl—rr+ad?, r,=2kM;

=J/M is the angular momentum of the black hole in the units of its mass
[; I, is the projection of the particle angular momentum onto a.

- As to the constant x? of the separation of variables, in the spherically
metric limit @ — oo it is equal to the particle angular momentum squared
! orto [(/+1) in quantum mechanics. The influence of the black hole rotation,
e. of the finite a, upon x? is taken into account by means of the perturbation
eory applied to equation (43). The result is [14]

2 32 —1(l+1)
2 — [+1 A T P z !
=ll+1)-2wal, + 3w « 1+(21_1)(21+3)

(44)
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Figure 5: Gap for I =1

Here and below we use the dimensionless variables w = ekM, z = r/kM
a =a/kM. Let us recall that in the semiclassical approximation the substit
tion

W+1)— (+1/2)?

should be made.

Besides, in the exact quantum mechanical problem, under the reductlon.
the radial wave equation to the canonical form

R" +p*(r)R =0,

the expression for p?(r) contains additional (as compared to the right-han
side of equation (42)) nonclassical terms, which should be, strictly speakin
included for [ >~ 1. However, for the simplicity sake we neglect here and belos
these nonclassical corrections to p?(r), which should not influence qualitativel
the results obtained. i

The dependence of the classically inaccessible region, where the radial m
mentum squared p? is negative, on the distance z is presented for different an
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Figure 6: Gap for I > 1

lar momenta in Figs. 5, 6. At the horizon the gap vanishes [23]. For r = o0
e boundaries of the classically inaccessible region behave as +(1 4+ 1/2)/r.
other words, the centrifugal term for massless particles plays in a sense the
le of the mass squared. Let us note that for / > 1 both branches of the
uation p*(r) = 0 fall down, but for [ = 1 one branch near the horizon grows
and the second one falls down. Thus, the radiation mechanism consists in

neling, i.e., in particles going out of the dashed region to the infinity.

ne should note the analogy between the emission of charged particles by
larged black hole and the effect discussed. In the first case the radiation is
.1 : the Coulomb repulsion, and in the second case it is due to the repulsive
action between the angular momenta of the particle and black hole [31].
T The action inside the barrier for the radial equation (42) is:

5.1 = [ da \J T [w(?_ll))f s (45)

e integral is taken between two turning points. For simplicity sake we confine
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for the time being to the case of an extremal black hole, a = kM. Let us note
that due to a singular dependence of p on z, the action inside the barrier does
not vanish at [ > 1 even for the maximum energy w = [,/2. So much the more,
it stays finite at [ = 1 (compare Figs. 5 and 6).

The repulsive interaction is proportional to the projection [, of the particle
angular momentum and enters the tunneling probability in the exponent, but
the barrier depends on the orbital angular momentum [ itself. Therefore, the
main contribution to the effect will be clearly given by particles with [, close to
[. The numerical calculation demonstrates that the contribution of the states
with [, # [ can be neglected at all. Besides, since the action inside the barrier
decreases with the growing energy, the main contribution to the effect is given
by the particles with energy close to maximum.

Unfortunately, an analytical calculation of the action inside the barrier
does not look possible even for an extremal black hole. Therefore, to obtaina
qualitative idea of the effect, we will use a simplified expression for x?:

=P +1-2wl+ (46)

(The results of a more accurate numerical calculation with expression (44) will
be presented below.) In this approximation one can obtain a simple analytical
formula for the action inside the barrier for all angular momenta but [ = 1.
Let us assume that w = (1 — §)1/2 with § < 1; just this range of energies
dominates the radiation. Then, the turning points of interest to us, which are
situated to the right of the horizon, are:

26

2+ /1+4/1

T12=1+ (47)

Now one finds easily
! f
|sa,,|=3r—(z- Blecioles (48).

One can see from this equation that the term [ (following I?) in formula (46) is
quite essential even for large angular momenta: it generates the terms 4/l in
formulae (47) and (48), thus enhancing |S| for [ 3> 1 by 7/+/3. Correspond-
ingly, the transmission factor D = exp(—2|S|) gets about 40 times smaller.
Let us note that even the transition in x? from /(I +1) to (I +1/2)? makes the
effect considerably smaller for ! comparable to unity; but this suppression dleﬁ
out for large angular momenta.
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Table 1: Action inside the barrier for scalar particles

1S| |3.45 | 3.15 | 3.33

[l 3.14 | 3.34

It follows from formula (48) that the action inside the barrier is large, it
creases monotonically with the growth of [, starting with |S| = = for [ = 2.
As to | = 1, one can see by comparing Fig. 5 with Fig. 6 that here the
arrier is wider than for | = 2, and therefore the action should be larger.
ndeed, the numerical calculation of the action inside the barrier | S| with &2
given by formula (44) confirms these estimates. Its results are presented in
able 1 where for the comparison sake we present also the analytical estimates
Sun| with formula (46). By the way, this comparison demonstrates that the
approximate analytical formula (46) works very well. The numbers presented
xthe table refer to an extremal black hole and maximum energy of emitted
articles. It is clear however that the transition to nonextremal black holes,
ower energies, and larger [ will result in the growth of the action inside the
arrier. Since it proves here to be always considerably larger than unity, the
se of the semiclassical approximation inside the barrier is quite reasonable.

- Let us check now whether it applies to the left of the barrier. Here, near
je horizon, one can neglect in the expression for the momentum p the term
elated to the centrifugal barrier, so that condition (33) transforms to

d 1 _d_ (z—1)
zp(z) " drw(z?+a?) —al

(49)

e can see easily that for not so large [, which are of importance in our case,
lis expression is comparable to unity and condition (49) does not hold. Nev-
eless despite of this circumstance and of the neglect of the nonclassical

orrections to p?(z) mentioned above, the results of the semiclassical calcula-
on, presented below, should be correct at least qualitatively.
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Let us come back to the calculation of the radiation intensity. The linel
reasoning used previously demonstrates that here the total flux of free partick

at T = oo is {

- 2 L e N el
4rr?j, (e,l) = 4nr Z 27[_)37_2 T = (

Again, the total flux of radiated part:cles differs from this expression by th
barrier penetration factor only. Thus, in our semiclassical approximation #
obtain for the loss of mass by a black hole in the unit time the followin
expression:

_li / eexp(—2|S(e, 1)]) de . (3l

Tiz1

dM

Here the maximum energy of radiated quanta is

al .
Emaz = 2 2;
r,+a L

rh = km + Vk?*M? — a? is the radius of the horizon of a Kerr black hole.

analogous expression for the loss of the angular momentum is

dJ__iz f lexp(=2|S(e, 1)) de .

W ihey- %

The results of the numerical calculations with formulae (51) and (53)¢
the loss by a black hole of its mass and angular momentum for different valug
of the rotation parameter a are presented in Table 2. We present here an
below, for spinning particles, results of calculations only for sufficiently rapi
rotation, a &~ 1. The point is that with further decrease of a, not only th
thermal radiation grows rapidly, but the effect discussed falls down even mor
rapidly. For smaller a this effect becomes much smaller than the thermal o
and thus its consideration there does not make much sense. §

As one can see from Table 2, the rate of loss of the angular momentum
higher, in the comparable units, than the rate of loss of the mass. In fact, i
follows immediately from expression (52). Already from this expression one cal
see that even for the maximum possible energy the ratio of the correspondin
numbers is 2:1. Real ratios are even larger. Hence an important conclusio
follows: extremal black holes do not exist. Even if an extremal hole is forme
somehow, in the process of radiation it looses the extremality immediately.
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Table 2: Loss of mass (in the units of 10737 M?) and angular momentum (in the
units of 10 =37 M), due to the radiation of scalar particles

a | |dM/dt| | |dJ/dt|

0.999 2.6 6.4

Radiation of photons and gravitons

he investigation of the radiation of real particles we start with the electro-
etic field. Photon has two modes of opposite parity: the so called electric
ode, with [ = j + 1, and magnetic one, with [ = 5 [19]. It follows from the
uality invariance that the radiation intensities for these two modes are equal.
hus one can confine to the solution of the problem for the magnetic mode,
d then just double the result.
One can demonstrate that the situation with the gravitational waves is
'ogous. Again, there are two modes which, due to a special duality, con-
bute equally to the radiation, and for one of these modes [ = j.
Obviously, for a mode with [ = j the radial equation in the semiclassical

proximation is the same as for the scalar field, but with different value of
. It can be demonstrated also starting from the so called Teukolsky equation
'!3! (neglecting again nonclassical corrections to p?(r)). The corresponding
' va.lues of the angular equation for particles of spin s, found again in the
turbation theory, are [14]:

3.

20w], s
iG+1)
352 —j(5+1) 257  332-j(7+1)
+a2w2{ [1+ 2 — <
(27 =102 +3)] . 303 +1)(2i~1)(25+3)
)

[(2 Y=gy 4G )R =gk < )]}
(23—1)(2J+1) G+1325+1)(2543) |)
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Table 3:Action inside the barrier for photons and gravitons

s=1 B==2

15| | 1.84 | 2.17 | 1.0 | 1.7

We have included into this expression the term 1/4, necessary for the correct
semiclassical description. Let us note that, as follows from the consideration of
the helicity of a massless particle, the restriction j > s holds. Correspondingly,
for a photon 7 > 1, for a graviton 5 > 2. As well as in the scalar case, the
main contribution into the radiation is given by the states with the maximum
projection of the angular momentum, 7, = 7. |

Let us discuss first of all whether the semiclassical approximation is ap-
plicable here. As to the situation to the left of the barrier, it does not differ
qualitatively from the scalar case. The situation inside the barrier is different.
As one can see from equation (54), the presence of spin makes x? smaller, and
correspondingly, makes smaller the centrifugal repulsion. In result, both the
barrier and the action inside it decrease. This qualitative argument is con-
firmed by a numerical calculation of |S| for photons and gravitons with the
maximum projection of the angular momentum j, = 7 and maximum energy
for the case of an extremal black hole (see Table 3). Therefore in the present
case, one should expect that the accuracy of semiclassical results is lower than
in the scalar case. 4

The semiclassical formulae for electromagnetic and gravitational radiation
differ formally from the corresponding scalar ones (51) and (53) by extra fa,c
2 only, which reflects the existence of two modes. The results of this calculation
are presented in Table 4. In it we indicate in brackets for comparison the results
of the complete quantum mechanical calculation [16] which takes into account
as well the thermal radiation.

It is clear from Table 4 that even for @ = 0.999, when the thermal radiation
is negligibly small, our semiclassical calculation agrees with the complete one
qualitatively only. It is quite natural if one recalls that the semiclassical action
in the present problem exceeds unity not so much, if any. This explanation
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Table 4: Loss of mass (in the units of 1073 7M?) and angular momentum (in the
units of 10737 M), due to the radiation of photons and gravitons

s=1 s=2

o | |dM/dt| | |dJ/dt) | |dM/dt) | |dJ/dt]

0.999 | 16.5(9.6) | 39(24) | 66(228) | 148(549)

0.9 |0.72(2.26) | 2.8(8.2) | 0.58(12.9) | 2(48)

is supported by the fact that for photon, where |S| is considerably larger (see
Table 3), the semiclassical calculation agrees better with the complete one.

3.3 Radiation of neutrino

Let us consider at last the radiation by a rotating black hole of neutrinos, .
massless particles of spin 1/2. The wave function of a 2-component neutrino ‘
is written as (see, for instance [16]):

. 2 R, S
= —et v . 55
P = exp(—iet +1ij ¢)( Ry S, ) (55)
It is essential that the wave equations for neutrino in the Kerr metrics allow for

the separation of variables as well [32]. The radial equations in dimensionless
variables are:

dR, .w(z®+d?)—ja, kK

iz A Y
2.4 2) s

ng_l_iw(a: + a?) Jior gy K R..

dz A VA
The angular equations are:

dS;

W-I- (wa sinﬂ-——-J-i—) S1 =k 8,,

sin @
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Table 5: Loss of mass (in the units of 10~ 7M?) and angular momentum (in the
units of 1073 M), due to the radiation of neutrinos

| a | |dM/dt| | |dJ/dt|
099 |44 (2.1) |11 (5.65)
|

| 0.9 | 0.7 (1) |27 (3.25)

For #? the same formula (54) takes place, but now of course with s = 1/2. A
well as for bosons, it is sufficient practically to consider states with 5 =

It is essential that R; corresponds at infinity, for £ — oo, and at the
horizon, for z — 1, to the wave running to the right, and R, corresponds for
¢ = 00 and for z — 1 to the wave running to the left. (For this classification,
it is convenient to use the so called “tortoise” coordinate £(x); for z — co €&
= too,forz =1 €~In(z—1) = —oc0.) It is quite natural therefore that
here the radial current density is

Jr = |R1|* = |Ra[*.

We are interested in the barrier penetration factor for the state which
an outgoing wave at infinity. For a neutrino or antineutrino such a state has
a fixed helicity, but has no definite parity. Meanwhile, the potential barrier
depends in our problem, roughly speaking, on the orbital angular momentum,
and therefore is much more transparent for the states of [ = j — 1/2, than for
the states of [ = j 4 1/2. (These states of given [ have definite parity, and are
superpositions of neutrino and antineutrino.) Moreover, at ! = j—1/2 for small
J, which give the main contribution to the radiation, the action either has no
imaginary part at all, or its imaginary part is small, so that our above approach
is inapplicable. Therefore, we will solve numerically the exact problem of the
neutrino radiation.
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" Technically, it is convenient to find the reflection coefficient R in the prob-
em of the neutrino scattering off a black hole, and then use the obvious relation

or the transmission coefficient D:
D=1-R.

re the expressions for the loss of mass and angular momentum by a black
ole are:

dM Emaz
= _Z [ eD(e,j)de; (58)
Ti=1/2
dJ o s ,
F P 2 f JD(e,j) de; (59)
i=1/2 g
aj
Emaz = 2_+"‘;2-- (60)

":i;'n results, obtained by numerical solution of the system of radial equations
36), are presented in Table 5. In brackets we present the results of [16], which
I lude the Hawking radiation contribution. For a black hole close to extremal
ne, at @ = 0.99, where the thermal radiation is practically absent, our results
re about twice as large as previous ones.
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