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Preface

The International workshop ”Computer Algebra and its Application to Physics”/
CAAP-2001 took place at the Laboratory of Information Technologies of the Joint In-
stitute for Nuclear Research (JINR) in Dubna, Russia, in June 28-30, 2001. This meeting
was supported by the Russian Foundation for Basic Research and the Scientific Center for
Applied Research in JINR and brought together more than 70 scientists and researchers
from Byelorussia, Bulgaria, Georgia, Germany, Canada, Poland, Russia, South Africa,
Slovenia and Ukraine. Fifty two reports were presented at the workshop and their writ-
ten forms as full papers or abstracts are contained in this volume.

This meeting was the fifth in a series of workshops on computer algebra and its ap-
plication to physics were held in Dubna in 1979, 1982, 1985 and 1990. The workshop
provided a forum for researchers on computer algebra methods, algorithms and software
and for those who use this tool in theoretical, mathematical and experimental physics,
applied mathematics, engineering and education.

The CAAP-2001 workshop grew out of the recognition of the need for such a meet-
ing based on the fact that, although there is a number of regular meetings of computer
algebraists and users of computer algebra systems, those meetings do not pay so much at-
tention to specific needs of physical sciences as they did in 70th and 80th. We believe that
our workshop has helped to establish new links between algorithmic and software aspects
of computer algebra and those from research problems in natural sciences, especially in
physics.

It is my pleasure to acknowledge all contributors to these proceedings. Unfortunately,
we did not received full papers for a number of interesting talks, and some full papers
were not accepted for the proceedings. For all these cases we decided to include abstracts
of the talks.

Vladimir P. Gerdt
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Minimal Multiplicative and Additive
Decompositions of Hypergeometric

Terms in One Variable

S. A. Abramova1, M. Petkovšekb2

a Computer Center of the Russian Academy of Science,
Vavilova 40, Moscow 117967 Russia;

e-mail: abramov@ccas.ru
bDepartment of Mathematics and Mechanics,

Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska 19, 1000 Ljubljana, Slovenia;

e-mail: marko.petkovsek@fmf.uni-lj.si

In this talk we sum up our investigations [1, 2]. We describe a multiplicative nor-
mal form for rational functions which exhibits the shift structure of the factors, and
investigate its properties. On the basis of this form we propose an algorithm which,
given a rational function R, extracts a rational part U from the indefinite product of
R:
∏n

k=0 R(k) = U(n)
∏n

k=0 V (k), where the numerator and denominator of the ratio-
nal function V have the lowest possible degrees. This gives a minimal representation
(or a minimal multiplicative decomposition) of the hypergeometric term

∏n
k=0 R(k). For

example,

n−1∏
k=0

(k + 3)(2k + 5)(3k + 1)(4k + 1)

(k + 1)(k + 4)(2k + 1)(3k + 4)
= 4n (n + 1)(n + 2)(2n + 1)(2n + 3)

6(3n + 1)

n−1∏
k=0

k + 1
4

k + 4
.

We also present an algorithm which, given a hypergeometric term T (n), constructs hy-
pergeometric terms T1(n) and T2(n) such that T (n) = ΔT1(n) + T2(n) (ΔT1(n) =
T1(n + 1) − T1(n)) and T2(n) is minimal in some sense (see example below). This solves
the decomposition problem for indefinite sums of hypergeometric terms: T1(n+1)−T1(n)
is the “summable part” and T2(n) the “non-summable part” of T (n). In other words, we
get a minimal additive decomposition of the hypergeometric term T (n). For example,(

−2n2 + 3n + 2

n2 + n

) n−1∏
k=0

1

k + 2
= Δ

(
1

n

n−1∏
k=0

1

k + 1

)
− 1

n

n−1∏
k=0

1

k + 1
,

where the minimal representation 1
n

∏n−1
k=0

1
k+1

of “non-summable” part has the rational

factor 1
n

with the denominator of the lowest possible degree.

1Partially supported by the French-Russian Lyapunov Institute under grant 98-03.
2Partially supported by MZT RS under grant J2-8549.
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On Some Algebraic Problems
Arising in Quantum Mechanical
Description of Biological Systems

M.V.Altaisky

Laboratory of Information Technologies,
Joint Institute for Nuclear Research, Dubna, 141980 Russia;

altaisky@mx.iki.rssi.ru

The biological hierarchy and the differences between living and non-living matter are
considered from the standpoint of quantum mechanics. Starting from the Schrödinger
question “How the life can be understood from the standpoint of quantum mechanics?”,
we analyze what algebraic constraints may be caused by a nontrivial “the part – the
whole” relation, when the state of a part is constrained by the state of the whole.
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Project “CalcPHEP:
Calculus for Precision High Energy

Physics”

D.Bardin, G.Passarino∗, L.Kalinovskaya, P.Christova, A.Andonov,
S.Bondarenko, G.Nanava

Laboratory of Nuclear Problems, JINR
Joliot-Curie, 6, Dubna, Moscow region, Russia;

e-mail: bardin@nusun.jinr.ru
∗ Dipartimento di Fisica Teorica, Università di Torino, Italy

INFN, Sezione di Torino, Italy

Work supported by INTAS No00-00313 and by the European Union under contract HPRN-CT-2000-
00149.

1 Introduction

The CalcPHEP collaboration joins the efforts of several groups of theorists known very well
in the field of theoretical support of various experiments in HEP, particularly at SLAC and
LEP, (see, for instance [1], [2] and [3]). The first phase of the CalcPHEP system was realized
in the site http://brg.jinr.ru/ in 2000–2001. It is written mostly in FORM3, [4]. In this talk,
we will describe the present status and our plans for the realization of next phases of the
CalcPHEP project aimed at the theoretical support of experiments at modern and future
accelerators: TEVATRON, LHC, electron Linear Colliders (LC’s) i.e. TESLA, NLC,
CLIC, and muon factories. Within this project, we are creating a four-level computer
system which eventually must automatically calculate pseudo- and realistic observables
for more and more complicated processes of elementary particle interactions, using the
principle of knowledge storing. Upon completion of the second phase of the project,
started January 2002 with duration of about three years, we plan to have a complete
set of computer codes, accessible via an Internet-based environment and realizing the
complete chain of calculations “from the Lagrangian to the realistic distributions” at the
one-loop level precision including all 1 → 2 decays, 2 → 2 processes and certain classes of
2 → 3 processes.

1.1 CalcPHEP group

The CalcPHEP group was formed in 2001 in sector No1 NEOVP LJAP.
During the first phase of the project in 2000–2001, the CalcPHEP group created the

site brg.jinr.ru, where the development in two strategic directions is foreseen:

1. Creation of a softwear product, capable to compute HEP observables with one-loop
precision for complicated processes of elementary particle interactions, using the
principle of knowledge storing. Application: LHC.
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2. Works towards two-loop precision level control of simple processes: 1 → 2, 1 → 3
and 2 → 2. Application: GigaZ option of electron LC’s.

1.2 A little bit of history

There are two historical sources of CalcPHEP project:
1. From one side it roots back to many codes written by Dubna group aimed at a theo-
retical support of HEP experiments in the past:
1975 – 1986: support of CERN DIS experiments (BCDMS, EMC, NMC), creation
of program TERAD; support of CERN neutrino experiments (CHARM-I, CDHSW and
CHARM-II), creation of programs NUDIS, INVMUD, NUFITTER.
1983 – 1989: Foundation of the DZRCG — “Dubna–Zeuthen Radiative Correction
Group”, creation of EW library DIZET; creation of the program ZBIZON — the fore-runner
of ZFITTER [5].
1989 – 1997: support of the DIS experiments at HERA, creation of the program HECTOR;
participation in SMC experiment at CERN with the program μela.
1989 – 2001: Theoretical support of experiments at LEP, SLC (DELPHI, L3, ALEPH,
OPAL and SLD).
2. From the other side, a monograph “The Standard Model in the Making” was writ-
ten [6]. While working on the book, the authors wrote hundreds of “book-supporting”
form-codes, which comprised the proto-type of future CalcPHEP system.

Like well known codes of LEP era: TOPAZ0 [7], ZFITTER [5], KKMC [8], CalcPHEP is
supposed to be a tool for precision calculations of pseudo- and realistic observables. Let’s
remind these definitions that arose in depth of LEP community:

Definition 1. Realistic Observables are the (differential) cross-sections (more general
event distributions) for a reaction, e.g.

e+e− → (γ, Z) → ff(nγ)

calculated with all available in the literature higher order corrections (QCD, EW), in-
cluding real and virtual QED photonic corrections, possibly accounting for kinematical
cuts.

Definition 2. Pseudo-Observables are related to measured quantities by some de-convo-
lution or unfolding procedure (e.g. undressing of QED corrections). The concept itself of
pseudo-observability is rather difficult to define. One way say that the experiments measure
some primordial distributions which are then reduced to secondary quantities under some
set of specific assumptions (definitions).

Z decay partial width represents typical example of pseudo-observables, i.e. it has to
be defined. At the tree level, we define it as a quantity described by the square of one
diagram:

f

Z

f

13



2 LEP, Precision High Energy Physics and its Future

One may say that during recent years a new physical discipline was born. We call it
PHEP, Precision High Energy Physics. Experimentally, it finally shaped in the result of
glorious 12 year LEP era: measurements at Z resonance in 1989 – 1995, and reaching
an unprecedented experimental accuracy ≤ 10−3, and measurements above Z resonance
in 1995 – 2000, at higher energies, where high enough experimental accuracy was also
reached ≤ 1%. By 2/11/2000 LEP2 possibly saw hints of “God blessed” particle — Higgs
boson, but was stopped, unfortunately, mainly due to lack of financing.

For the first time huge HEP facility challenged for theoreticians to perform calculations
with uncertainty better than experimental errors of O (10−3) and, eventually, efforts of
many groups of theoreticians allowed the achievement of the theoretical precision of the
order 2.5 · 10−4 at the Z resonance and 2 − 3 · 10−4 at LEP2 energies.

This, in turn, greatly contributed to the success of precision tests of the SM, the main
result of LEP era, which laid the foundation of the Precision High Energy Physics. This
is why our project got this suffix PHEP.

2.1 Future of PHEP

PHEP has good perspectives and after the end of LEP. Several Input parameters of the
Standard Model (SM) are expected to be improved in near future.

Recent discrepancy in the muon amm:

aSM

μ = 116591661(114) × 10−11

aEXP

μ (Average) = 116592023(151)

aEXP

μ − aSM

μ = 362(189) 2σ difference

exp. error (151) should be improved soon up to ∼ (50), (1)

necessitates an improvement of the knowledge of the hadronic contribution of Δα
(5)
h

(
M2

Z

)
to the running e.m. coupling. An experimental input for σ (e+e− → hadrons) at cms
energies (1-4 GeV) is expected from BES-II, BEPC (Beijing), VEPP2000 (Novossibirsk)
and DAFNE at cms energies around φ-meson.

Very important should be projected improvements of mass measurements: M
W

, mt.
LEP1 finished with indirect result for the top mass: mt = 169+10

−8 GeV; while LEP1 ⊕
TEVATRON constraint yielded: mt = 174.5+4.4

−4.2 GeV.
LEP2 reached for W mass M

W
: M

W
= 80.450 ± 0.039, in the direct measurements

and M
W

= 80.373 ± 0.023 as indirect result.
TEVATRON in RUN-I reached: M

W
= 80.454 ± 0.060 GeV, mt = 174.3 ± 5.1 GeV.

Much better precision tags are expected to be reached at TEVATRON, RUN-II (re-
cently started): ΔM

W
∼ 20MeV, Δmt ∼ 2 GeV; and later at LHC (not so sooner than

in 2006, however): ΔM
W

∼ 15 MeV, Δmt ∼ 1 GeV.
Where, when and with which mass Higgs boson might be discovered?

− TEVATRON has a serious chance to see Higgs up to mass 180 GeV; however it will
require very high integrated luminosity:

∫ L ≥ 5fb−1;
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− LHC, will cover all allowed mass range up to 500 GeV (not so soon, after 2007);
− LC’s and muon factories (after 2010–2012).

New horizon of PHEP will be opened with experiments at electron LC’s: TESLA
(DESY) particularly with GigaZ option, i.e. coming back to Z resonance with statistics
109; CLIC (CERN); JLC (KEK), NLC(SLAC, LNBL, LLNL, FNAL) and Muon Storage
Rings (Higgs Factory) — all that more than in ten years from now.

One expects fantastic precision tags there in:
− Δ sin2 θeff ∼ 0.00002;
− ΔM

W
∼ 6 MeV, Δmt ∼ 100 − 200MeV;

− ΔM
H
∼ 100 MeV (from e+e− → ZH);

− and detail study of Higgs boson properties.
Given our LEP1 experience one should definitely state that 2-loop precision level

control will be absolutely necessary for the analysis of these data!
One may conclude that PHEP has a bright future: all future colliders — TEVATRON,

LHC, electron LC’s (TESLA, NLC, CLIC) and muon factories will be, actually, PHEP
facilities! For data analysis, they will surely require qualitatively new level of both theo-
retical predictions and principally new computer codes.

3 Necessary notion

In order to understand the language of CalcPHEP one has to introduce many notions and
notations.

3.1 Input Parameter Set, IPS

The Minimal Standard Model (MSM), contains large number of Input Parameters:
25 = 2 interaction constants α and α

S

⊕ 8 mixing angles (CKM and possible lepton analogs)
⊕ 15 masses (12 fundamental fermions and 3 fundamental bosons Z, W, H).
However, the number 25 is minimal. MSM is unable to compute its IPS from first

principles; MSM is able to compute any observable Oexp
i in terms of its IPS:

Oexp
i (measured) ↔ Otheor

i (calculated, as a function of IPS) . (2)

This is the way how precision measurements set constraints on IPS.

3.1.1 Number of free parameters in fits of Z resonance observables

At Z resonance, not all 25 parameters matter. Actually only 5 parameters:

Δα
(5)
h

(
M2

Z

)
, α

S

(
M2

Z

)
, mt , M

Z
, M

H
, (3)

which we call the Standard LEP1 IPS, matter.
Using M

Z
, measured at Z peak itself with the precision ∼ 2 × 10−5, and also reach

information from the other measurements for:

α
S

(
M2

Z

)
, mt , M

W
, (4)
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we approach one-parameter fit, with Higgs boson mass M
H

being the only fitted parameter.
The result of such a fit was shown in the Blue band figure, the most celebrated LEP era
figure, derived with the aid of TOPAZ0 [7] and ZFITTER [6] codes.

3.2 Quantum Fields of the SM

Here we sketch all fundamental quantum fields of the SM in one of the most general
gauges — Rξ, with three arbitrary gauge parameters ξ

A
, ξ

Z
, ξ.

Three generation of fermions or matter fields:

f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ν
l

)
=

(
U
D

)
=

(
νe

e−

)
(

u
d

)
(

νμ

μ

)
(

c
s

)
(

ντ

τ

)
(

t
b

)
possess masses, mf , charges, Qf , and third projections of weak isospin, I

(3)
f :

mf , Qf =

⎛⎜⎝ ν l U D

0 −1 +
2

3
−1

3

⎞⎟⎠ , I
(3)
f =

⎛⎜⎝ ν l U D

+
1

2
−1

2
+

1

2
−1

2

⎞⎟⎠ .

Gauge fields:

Vector bosons Unphysical scalars Faddeev–Popov ghosts

A Y A

Z (M
Z
) φ0 Y Z

W±(M
W

) φ± X±

Gluon
possesses strong interaction

g Y G

possess physical charges and physical masses
possess physical charges and unphysical masses

and unphysical charges.
Higgs field:

H (M
H
) is a scalar, neutral, massive field.
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3.2.1 The Lagrangian in Rξ gauge, Feynman Rules

At the ground level of CalcPHEP system one has this Lagrangian

L = L(IPS of 25 parameters, 17 fields, 3 gauge parameters), (5)

from which one derives primary Feynman rules for vertices.

3.2.2 Propagators in Rξ gauge

Here we list propagators in Rξ gauge, the other important bricks of CalcPHEP system.
Propagator of a fermion, f :

f

−i/p + mf

p2 + m2
f

Vector boson propagators:

A
1

p2

{
δμν +

(
ξ2

A
− 1
) pμpν

p2

}
Z

1

p2 + M2
Z

{
δμν +

(
ξ2

Z
− 1
) pμpν

p2 + ξ2
Z
M2

Z

}
W± 1

p2 + M2
W

{
δμν +

(
ξ2 − 1

) pμpν

p2 + ξ2M2
W

}
Propagators of unphysical fields:

Y A

ξ
A

p2

φ0

1

p2 + ξ2
Z
M2

Z

,
Y Z

ξ
Z

p2 + ξ2
Z
M2

Z

φ±
1

p2 + ξ2M2
W

,
X±

ξ

p2 + ξ2M2
W

Propagator of the physical scalar field, H-boson

H

1

p2 + M2
H

3.3 Scalar A0, B0, etc functions

For calculation of one-loop integrals CalcPHEP uses the standard scalar A0, B0, C0 and
D0 functions [6].
One-point integrals or A0 functions, are met in tadpoles diagrams:

m
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We give its defining expression:

iπ2 A0 (m) = μ4−n

∫
dnq

1

q2 + m2 − iε
, (6)

and the answer in the dimensional regularization:

A0 (m) = m2

(
−1

ε̄
− 1 + ln

m2

μ2

)
+ O (ε) , (7)

where the ultraviolet pole is:

1

ε̄
=

2

ε
− γ − ln π , n = 4 − ε . (8)

Two-point integrals or B0-functions are met in self-energy diagrams:

p1 →
m1

m2

We limit ourselves by giving its defining expression:

iπ2B0

(
p2

1; m1,m2

)
= μ4−n

∫
dnq

1

d0d1

,

d0 = q2 + m2
1 − iε, d1 = (q + p1)

2 + m2
2 − iε . (9)

Three-point integrals, C functions, are met in vertices:

m1

m2

m3

p1

p3

p2

Its defining expression reads:

iπ2 C0

(
p2

1, p
2
2, Q

2; m1,m2,m3

)
= μ4−n

∫
dnq

1

d0d1d2

, (10)

d0 = q2 + m2
1 − iε, d1 = (q + p1)

2 + m2
2 − iε, d2 = (q + p1 + p2)

2 + m2
3 − iε, (11)

where Q2 = (p1 + p2)
2 is one of the Mandelstamm variables: s, t or u.

Four-point integrals, D-functions, are met in boxes.
Presently, CalcPHEP knows ALL about reduction of up to four-point functions up to

third rank tensors and of the so-called special functions, which are due to peculiar form
of the photonic propagator in the Rξ gauge, see [6].
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3.4 Processes in the SM

One should be aware of a hierarchical classification of processes accepted in CalcPHEP

and of a relevant notion of independent structures, or independent amplitude form factors,
which number is deeply related to the number of independent helicity amplitudes by which
a process may be described (below we present these numbers for unpolarized cases).

3.4.1 Decays 1 → 2

There are B → ff and 3B decays:

• H → ff (one structure)

• Z → ff , (γ → ff) (three structures)

• W → ff̄ ′, (t → W+b) (four structures)

• H → ZZ, W+W−

• Z → W+W−

3.4.2 Processes 2 → 2

There are 2f → 2f processes, which in turn are subdivided into Neutral Current (NC)
and Charged Current (CC) ones:

• NC: ff → (γ, Z,H) → f ′f ′ (4,6) 10 structures depending on whether initial and
final state fermion masses are ignored

• CC: f1f 2 → (W ) → f3f 4

Next, there are many processes of a kind V f → f ′V ′, in particular

• compton-effect: γe → γe, Z → ffγ

• e+e− → W+W−, ZZ, Zγ, γγ

Decays 1 → 3 are cross-channels of the previous processes and their one-loop descrip-
tion in terms of independent objects, mentioned above, one gets for free. Present level of
CalcPHEP has a lot of preparations for all above processes, but far not all is put into the
working areas of the site brg.jinr.ru.

3.4.3 Processes 2 → 3

They comprise a very reach family, for instance:

• e+e− → (γ, Z,H) → ffγ .

Their implementation is one of main goals of the second phase of CalcPHEP project.
Corresponding decays 1 → 4 are again cross-channels of the previous processes and need
not be studied separately.
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3.4.4 Processes 2 → 4

To this family belongs 4 fermion processes of LEP2. Their study is not foreseen at the
second phase of CalcPHEP project, but might be a subject of its third phase.

4 Building Blocks and knowledge storing

4.1 Simplest decay: Z → ff

4.1.1 Amplitude of Z → ff decay at tree level

Its tree level diagram was already presented at the end of Section 1.2; the corresponding
amplitude reads:

V Zff
μ = (2π)4 i

ig

2 c
W

γμ

[
I

(3)
f

(
1 + γ5

)− 2Qfs
2
W

]
, (12)

with vector and axial coupling constants: vf = I
(3)
f − 2Qfs

2
W

, af = I
(3)
f . Note appearance

of the two structures in Eq. (12), which might be termed as L and Q structures, corre-
spondingly. Note also, that Eq. (12) as well as all below, are written in Pauli metrics that
is used by CalcPHEP.

4.1.2 Amplitude of Z → ff decay with loop corrections

It might be schematically depicted as a sum of one-loop vertices and counter terms:
f p1

Z

f p2

=

f

Z

f

+

f

Z

f

In the most general case (but for unpolarized study) the one-loop amplitude may be
parameterized by the three scalar form factors:

V Zff
μ = (2π)4 i

g3

16 π2 2 c
W

γμ

[
iI

(3)
f FLγ+ − 2iQfs

2
W

FQ + mf (p1 − p2) FD

]
. (13)

Given similarity of Eqs. (12) and (13), the latter is called sometimes Improved Born
Approximation (IBA) amplitude.

4.1.3 QED diagrams and corrections

The QED diagrams comprise gauge invariant subsets, this is why they are considered
sometimes separately:
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f

Z

f

γ +

f

Z

f

γ
+

f

Z

f

γ

Their contribution to the partial Z widths, in the case when no photon cuts are imposed,
reads:

ΓQED
f = Γf

(
1 +

3α

4π
Q2

f

)
. (14)

4.2 Process e+e− → ff

Coming to a more complicated case of a 2f → 2f process, we will illustrate how building
blocks, derived for a study of a lower level process, might be use at a higher level.

4.2.1 Tree-level diagrams and amplitudes of e+e− → ff

Consider first the two tree-level diagrams with γ and Z exchanges in order to introduce
basis of relevant structures.

e+ f

A

e− f

+

e+ f

Z

e− f

ABorn
γ

=
e2QeQf

s
γμ ⊗ γμ ,

ABorn
Z

=
e2

4s2
W

c2
W

χZ(s) γμ

(
ve + aeγ5

)⊗ γμ

(
vf + afγ5

)
=

e2

4s2
W

c2
W

χZ(s) γμ

[
I(3)
e γ+ − 2Qes

2
W

]⊗ γμ

[
I

(3)
f γ+ − 2Qfs

2
W

]
, (15)

where γ± = 1 ± γ5 and symbol ⊗ stands for a short-hand notation

γμ (v1 + a1γ5) ⊗ γν (v2 + a2γ5) = v̄ (p+) γμ (v1 + a1γ5) u (p−) ū (q−) γν (v2 + a2γ5) v (q+)

and
χZ(s) =

1

s − M2
Z

+ isΓ
Z
/M

Z

. (16)

This amplitude is characterized by four structures:

LL = γμγ+ ⊗ γμγ+ , LQ = γμγ+ ⊗ γμ , QL = γμ ⊗ γμγ+ , QQ = γμ ⊗ γμ . (17)
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4.2.2 One-loop amplitude for e+e− → ff

“Dressed” with one-loop vertices and counterterms, the γ and Z exchanges may be sym-
bolically depicted as:

e+ f

(Z, γ)

e− f

=

e+ f

(Z, γ)

e− f

+

e+ f

(Z, γ)

e− f

And similarly for the initial state vertex:

e+ f

(Z, γ)

e− f

=

e+ f

(Z, γ)

e− f

+

e+ f

(Z, γ)

e− f

Where one can easily recognize building blocks already known from the calculation of
one-loop radiative corrections for Z decay, however, now we need to dress γ → ff vertex
too and add into consideration “dressing” of propagators:

e+ f

(Z,A) (Z,A)

e− f

=

e+ f

(Z,A) (Z,A)

e− f

+

e+ f

(Z,A) (Z,A)

e− f

To complete calculations of one-loop EWRC for the process e+e− → ff one should
add WW and ZZ boxes:

e+ W d

νe u

e− W d

+

e+

W
u

νe d

e−
W

ue+ (Z, γ) f

e f

e− (Z, γ) f

+

e+ (Z, γ) f

e f

e− (Z, γ) f
ZZ, γγ and Zγ boxes comprise gauge invariant subset of diagrams. Moreover, γγ and

Zγ boxes QED, vertices and QED bremsstrahlung for NC 2f → 2f processes often are
separated into a gauge invariant QED subset of diagrams.
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Virtual QED one-loop diagrams together with four QED bremsstrahlung diagrams
form an Infra-Red Divergence (IRD) free subset.

This example clearly shows how the principle of knowledge storing is implemented
within CalcPHEP project: one starts from the simplest decays and collects all relevant
building blocks, BB’s (off-shell with respect to boson mass). Then one moves to next
level of complexity where all BB’s computed at the previous level are requested, but on
top one needs more complicated objects (here boxes).

This strategy was realized in our recent calculations of the EWRC to the e+e− → ff̄
process, which are completely done with the aid of CalcPHEP system [9]. There is another
study accomplished with CalcPHEP [10].

5 Status of the project

Before discussing what is already available at the site brg.jinr.ru, we present some
general information about CalcPHEP system.

5.1 Basic information about CalcPHEP, keywords

CalcPHEP is four-level computer system for automatic calculation of pseudo- and
realistic observables (decay rates, event distributions) for more and more complicated
processes of elementary particle interactions, using the principle of knowledge storing.

At each of the four levels there are:

1. Codes (written in FORM3), realizing full chain of analytic calculations from the SM
Lagrangian LSM to the Ultra Violet Free Amplitudes, UVFA, parameterized by a
minimal set of scalar form factors;

2. Codes (written in FORM3), realizing analytic calculations of a minimal subset of
Helicity Amplitudes, HA’s, followed by an automatic procedure of generation of
codes for numerical calculations of HA’s (presently FORTRAN codes, and in a near
perspective C++ codes).

3. Codes, realizing the so-called “infrared rearrangement” of HA’s. This is needed if the
multiple photon emission is being exponentiated at the amplitude level. Currently,
bremsstrahlung photons are added in the lowest order and the third level is skipped.

4. Codes, that use HA’s derived at the second (or third) level together with tree-level
HA’s for one-photon (or multiple-photon) emission, within a Monte Carlo event
generator, which is supposed to compute realistic distributions (presently FORTRAN

codes, and in a near perspective C++ codes.)

It is an Internet based and Database based system. The latter means that there
is a storage of source codes written in different languages, which talk to each other. They
are placed into a homogeneous environment written in JAVA.

It follows Intermediate access principle i.e. full chain “from the Lagrangian to
realistic distribution” should work out completely in real time, if someone requests this,
however, it is supposed to have several “entries”, say after each level, or just providing
the user with its final product — a Monte Carlo event generator.
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5.2 Some technical data about CalcPHEP

1. Address http://brg.jinr.ru/

2. For realization of the site one used:

− Apache web server under Linux,

− form3 compiler,

− mySQL server for relational databases.

3. In the current version, user-interface is realized with the use of PHP.

4. Nowadays, everything is being rewritten in JAVA in order to reach better “interac-
tivity” and to use reach possibilities of already written in this language libraries.
Main goal of this rewriting is to create a homogeneous environment both
for accessing our codes from the database and for offering a possibility for
simultaneous work of several members of the group and external users.

5.3 Present and nearest versions of CalcPHEP system

In 2001, we released two test-versions of CalcPHEP:

1. v0.01 from March’01 realizes analytic calculations of one-loop UVFA for de-
cays 1 → 2 (level-1).

2. v0.02 from September’01 returns numbers for one-loop decay widths (levels-1,2)
via temporary bypass of level 4. It realizes also levels-1,2 for 2f → 2f NC process.

3. One has very many almost finished “preparations” for the other processes 2 → 2
and decays 1 → 3 (level-1). All this should comprise v0.03 of Summer 2002.

4. An active work is being realized on implementation of level-4 for decays 1 → 2, this
should complete full chain “from the SM Lagrangian to pseudo-observables” for the
simplest decays.

5. There are many problems to be solved at the second or later phases of the project.
Among them one should mention:
– automatic generation of Feynman Rules from a Lagrangian,
– automatic generation of topologies of Feynman diagrams,
– graphical representation of the results.

6 Conclusion

At a Symposium in honor of Professor Alberto Sirlin’s 70th Birthday was said: A new
frontier is as the horizon: most likely it is goodbye to the one man show. Running a new
Radiative Correction project will be a little like running an experiment [11].

Indeed, projects of such a kind as CalcPHEP are definitely long term projects. Remem-
ber, that ZFITTER took about 12 years, about the same time exists already FeynArts [12].

Our nearest goal is the realization of the second phase of the project upon completion
of which we plan to have a complete software product, accessible via an Internet-based
environment, and realizing the chain of calculations “from the Lagrangian to the realistic
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distributions” at the one-loop level precision including some processes 2 → 3 and decays
1 → 4. Plans also assume to perform an R&D for the third phase of the project (see
also [13]–[16]) which should begin in 2004.

Second phase is basically oriented on a common work of theoreticians of the Dubna
group and the Knoxville–Krakow collaboration [8].

United group proposes to realize in 2002-2004 an important phase of CalcPHEP
project: oriented toward a merger of analytic results to be produced by Dubna team
with MC event generators to be developed by Knoxville–Krakow collaboration1.

Among most important milestones of first year, one should mention: realization of the
levels 2-4 for the simplest Z(H,W ) → ff̄ decays; completion of level 1 for the radiative
Z decay, Z → ff̄γ, work on which is already under way; completion of levels 2-4 for the
radiative Z decay.
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The problem of the separation of radioactive substances from radioactive mixture is
connected with data processing obtained from the experimental measurements. The rules of
decomposition of the radioactive chemical elements are described by exponential functions.
It is natural that the problem of the best approximation of a finite set of measurements
by the exponential functions is adequate, which fundamental parameters are half-life of
unknown components of the radioactive mixture.

In 60-th XX century the known American mathematician C. Lanczos pointed in [1]
two problems of great practical importance:

Problem 1. Find hidden periodicities in the polyharmonic processes, given in big sets
of measurements.

Problem 2. It is necessary to determine the hidden exponents in processes of the
radioactive disintegration, represented by massive measurements.

Both of these problems are related to so called ”ill posed problems” [2] and hence if
solutions exist, there are several solutions.

The functional, that one has to minimize for determining the unknown parameters,
is transcendental. More ever, the number of parameters also is unknown, which com-
plicate one more the problem. C. Lanczos has solved both of these problems for the
simplest models: the measurements are realized on equidistant time grid and the number
of parameters is known [1].

The first problem for non-uniform division of time and with unknown number of
parameters has been solved by E.A. Grebenikov and S.V. Mironov[3]. They constructed
the so called method of two dimensional iteration, that has been successfully used in
problems of the cosmic dynamics.

In our paper is proposed a new algorithm of the pick-out of the exponential functions,
based on the approximation discreet experimental measurements by exponent polynomi-
als. It is possible to realize this algorithm on the non-equidistant time grid.

Let be done N points

(tk, yk) ∈ R2, 0 ≤ tk ≤ T, (k = 0, 1, 2, ..., N).

We are looking for a function f(t), t ∈ [0, T ] , the graph of which contains these
points. More ever, this function must be of the form:
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f(t) =
m∑

k=1

αke
λkt, t ∈ [0, T ] , (1)

where α = (α1, α2, ..., αm), λ = (λ1, λ2, ..., λm) the natural number m are to be deter-
mined, usually m is much less then N , i.e. m << N . More ever, in order to solve this
problem it is necessary to determine the lower and upper bound of m (m1 ≤ m ≤ m2).

To find the vectors α and λ, first of all we fix the natural number m = m0. In order
to use the method of least squares, we must construct the functional

Ψ (α,λ, f) =
N∑

k=0

(
yk −

m0∑
i=1

αie
λitk

)2

(2)

and we have to find the minimum of that

min
α,λ

Ψ (α,λ, f) �−→ 0. (3)

Like this found solutions are supposed roots and require laborious analyses.
The problem (3) is referred to as the problem of absolute (unconditional) minimization.

In such kind main difficulty consists in finding the initial point. In what follows we put
in evidence an algorithm to solve this problem.

For this we generate a set of pseudo-random vectors:

{α,λ} = (αs
1, α

s
2, ..., α

s
m, λs

1, λ
s
2, ..., λ

s
m) , s = 1, ..., N̄ (4)

where N̄ is big number about 106 − 107. We calculate the values of our functional in
these points, and so, we obtain a finite set of values of Ψ in the points (4). Let denote
them by Ψs, s = 1, ..., N . From this set we choose the minimal value Ψmin, and then we
filter the set (4) in such way, we drop out the points, which does not satisfy the following
inequality:

Ψs ≤ Ψmin + ε (5)

where ε is sufficiently small.
On this way we select a subset of the set (4), on which the values of the functional

is small enough, and which accumulate in clusters around the points of minima. If the
functional has at least one point of minimum, then there is at least one isolated cluster.
We divide this cluster on other accumulations groups, enumerate them and denote by
c1, c2, ..., cp, where p represents the number of these small clusters. Let l1, l2, ..., lp denote
the number of points in each cluster.

After this we find for each groups ci, (i = 1, 2, ..., p) the centroid (center of gravity) of
the derivatives from the points of minimum and denote them by Xci

. This point can be
determined by formula:

Xci
=

li∑
k=1

xk (Ψi
max − Ψk)

31

li∑
k=1

(Ψi
max − Ψk)

31

(6)
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where xk, (k = 1, 2, ..., li) are points of the cluster ci, Ψi
max is the maximum value of the

functional on these points. The values of Xci
, found in this way will, represent the first

approximation (initial point). The more exact solution will be determined by the method
of steepest descent. Each solution is probably one of the problem (3).

This construction has been purposed actually for that case, when one has a very big
number of measurements, and to find a good first approximation (initial point) for one of
the iteration algorithm for finding the points of minima of the quadratic functional. To
be certain, that the obtain values of parameters {α,λ} give us the solution we have to
do further analyses.

We proposed to divide the interval [0, T ] in to m0 parts and for each subinterval to
repeat the above algorithm all over again. If the new values of the parameters are close
enough to previous one, then we can conclude, that the find solutions is the corrects one.
If not, then we increase the number m0 (i.e. increases the number of exponential functions
in the term (1)) and we repeat the process for the new value of m0 from the beginning.

This process one has to repeat until:
a) Either after some steps of iteration we obtain desired result;
b) Either we continue the calculations until we achieve the maximal number m0.
A numerical experiment was realized to estimate an efficiency of the suggested algo-

rithm. It was calculated the values of functional (2) at the 6 ·106 points and was obtained
good approximations of a vector activity α and the coefficients of decomposition λ. Based
on made calculations we can conclude, that it is possible to use above algorithm for not
only numerical experiments.
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Equivalence Transformations for
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We present a polynomial method for deciding the equivalence of two given Abel equa-
tions and to compute then the corresponding equivalence transformation.

We consider the class of Abel differential equations

y′ = A0(x) + A1(x)y + A2(x)y2 + A3(x)y3,

which is invariant with respect to coordinate transformations (x, y) → (u, v) of the form
u = F (x), v = G(x)y + H(x), which form the so called structure group G of this class.
Structure groups of such classes of ODE’s may be computed effectively in terms of the
corresponding infinitesimal generators ∂ = ξ(x, y)∂x + η(x, y)∂y. In the above case the
structure group is given by generators ∂ with ξy = 0, ηyy = 0.

The question investigated here is to decide whether two Abel equations DE1 and DE2

are equivalent under the action of the structure group G. For polynomial computations
we restrict this problem at first to the case of rational function coefficients Ak(x), later
the procedure may be generalized to the case of algebraic functions as coefficients.

The following method is based on ideas in of M.Berth and uses two differential invari-
ants ABS1 and ABS2 for Abel equations with respect to the structure group G. For abbre-
viation we give the corresponding values only for an Abel equation y′ = A0(x)+A1(x)y +
A3(x)y3, that means A2(x) = 0. This form may be realized easily by a “Tschirnhaus”-
transformation belonging to the structure group

ABS1 =
(3A0A1A3 + A0A

′
3 − A′

0A3)
3

A5
0A

4
3

,

ABS2 =
(3A2

0A3 − A′
0A3y + A0A

′
3y + 3A0A1A3y + 3A0A

2
3y

3)

A3
3y

6
.

The polynomial method presented now works as follows: Write the Abel equations
DE1 and DE2 in variables x, y, z = y′ and u, v, w = v′ respectively. By evaluation of
ABS1, ABS2 with respect to both ODE’s we get equations

G1(x, u) = 0, G2(x, y, u, v) = 0.

Elimination, Factorization and cancelling exponents of prime factors as well as nonessen-
tial factors leads to several candidates for the equivalence transformation. These can-
didates are then checked to realize an equivalence transformation from DE1 to DE2 or
not.
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By corresponding calculations with minimal polynomials this method may be extended
to the case of algebraic coefficient functions.

Furthermore we consider examples from a special class of “Lie equations” of the form

y′′ = A0(x, y) + A1(x, a)y′ + A2(x, y)y′2

with corresponding invariants and analogous computations. Here the structure group is
given by ξy = 0, ηyyy = 0 (fibre preserving transformations which are Moebius transfor-
mations with respect to y).
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1 Introduction

It is well known that the mathematical models of many problems in science and tech-
nology are described by boundary value problems(BVP) for partial differential equations
(PDEs) and most frequentely they can be solved only numerically. There are a num-
ber of numerical methods for solution of PDEs and the most common of them are the
Finite-Difference Methods (FDM). Some disadvantages of these methods are well known
too.

The solution of boundary-values problems is usually needed in numerical form. The
authors propose an analytic approach for numerical solution of linear (local and nonlocal)
BVP for the heat and related equations. It is based on an extension of the Duhamel
principle from the time variable to space variables.

In order to remind the Duhamel principle, let us consider the simplest case of its
application. If we are looking for the solution of the BVP

ut = uxx

u(0, t) = 0, u(1, t) = ϕ(t)
u(x, 0) = 0

(1)

in the strip 0≤x≤1, t≥0 , then we can reduce it to the same problem but for the special
choice ϕ(t) ≡ 1. Denoting this special solution by U(x, t), the general solution of (1) is
given by

u(x, t) =
∂

∂t

∫ t

0

U(x, t − τ) ϕ(τ)dτ. (2)

In order to outline the idea of the following considerations, let us consider the BVP

ut = uxx

u(0, t) = 0, u(1, t) = 0
u(x, 0) = f(x)

(3)

in the same strip 0≤x≤1, t≥0 .
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Usually, this problem is solved by the Fourier method using the Fourier sine-transform.
However, from the standpoint of the numerical analysis this method is not quite satis-
factory, since it includes time-consuming operations, such as Fourier series expansion of
the function f(x) and the numerical summation of the series obtained for u(x, t) in many
points. It is well known that these series are very slow convergent. Using an analogue of
(2) (see Example 1), it could be avoided the both time-consuming stages.

2 Extension of the Duhamel principle to space vari-

ables

In order to make clear the basic idea of the approach, we shell consider a rather general
nonlocal BVP with a Stieltjes boundary value condition of the following type.

Let P be a polynomial of one variable, and let us consider the evolution equation

ut = P

(
∂2

∂x2

)
u (4)

in the strip 0≤x≤1, t≥0. Let Φ be a non-zero linear functional in C1 [0, 1] . Then we are
looking for a solution of (4) satisfying the boundary values conditions

d2j

dx2j
u(0, t) = 0, Φξ{ d2j

dx2j
u(ξ, t)} = 0, (j = 0, 1, 2, . . . , deg P − 1) (5)

and the initial condition
u(x, 0) = χ(x),

where χ(x) is a given function from C1 [0, 1].
As it is well known, each functional Φ in C1 [0, 1] can be represented in the form:

Φ {f} = af(0) +

∫ 1

0

f ′(ξ)dα(ξ),

where a is a constant and α is a function with bounded variation.
Further we consider only the special cases:

Φ(f) = f(1) (local case) and Φ(f) =

∫ 1

0

f(ξ)dξ (nonlocal case) .

All our further considerations are based on the following

Theorem 1. Let Φ be a linear functional in C1 [0, 1] , such that Φξ {ξ} = 1. Then the
operation

(f � g)(x) = −1

2
Φξ

{∫ ξ

0

h(x, ξ)dξ

}
, (6)
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where

h(x, ξ) =

∫ x

ξ

f(x + ξ − η)g(η)dη −
∫ x

−ξ

f(|x − ξ − η|)g(|η|)sgn(x − ξ − η)ηdη (7)

is a bilinear, commutative and associative operation in C [0, 1] such that the right inverse
operator L of d2/dx2 which satisfies the boundary value conditions (Lf)(0) = 0, Φ(Lf) = 0
has the form Lf = {x} � f.

Operation (6) bears the name convolution of the operator L .
For a proof, see [Dim1] , pp. 176-177.
By means of the convolution (7) it can be proposed the following extension of the

classical Duhamel principle for problem (4)-(5):

Theorem 2. Let U(x, t) be a solution of (4) for the special choice χ(x) ≡ x . Then

u(x, t) =
∂2

∂x2
(U(x, t) � χ(x)) (8)

is a solution of (4) provided χ satisfies the boundary value conditions of (4) .

The proof can be obtained either by a direct check, or using operational calculus
approach (see [Dim2], p. 140).

3 Examples

Examples illustrating the application of the presented approach are described. All
computations related to them are performed with the computer algebra system Mathe-
matica [SW].

3.1 Example 1

We are looking for the solution of the BVP

ut = uxx, 0≤x≤1, t≥0
u(0, t) = 0, u(1, t) = 0
u(x, 0) = f(x).

From Theorem 2, when Φξ {u(ξ, t)} = u(1, t) we obtain

u(x, t) =

∫ 1

0

[U(1 − x − ξ, t) − U(1 + x − ξ, t)] f(ξ)dξ,

where

U(x, t) =
∞∑

n=1

(−1)n exp(−n2π2t) cos nπx.

A numerical solution using the above formulas for f(x) = xsin(πx) has the following
graphical image shown by Figure 1.
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Figure 1: Example 1, f(x) = xsin(πx)

A similar solution of this problem is considered in [Wid] for the strip 0 ≤ x ≤ π, t > 0.
Widder obtains the representation

u(x, t) =

∫ π

0

[θ(x − y, t) − θ(x + y, t)] f(y)dy,

where θ(x, t) is the classical θ-function

θ(x, t) =
1

2π
+

1

p

∞∑
n=1

(−1)nexp(−n2π2t) cos nπx.

This representation is not essentially different from our representation. A graphical image
of such a numerical solution for f(x) = sin(x) follows (Figure 2).

Examples 2 and 4 are connected with the same boundary value functional
Φ {f} = f(1).

3.2 Example 2

This example is described in [Lat], p.47. It is obtained by the quasi-reversibilily
method of Lattes and Lions, applied to the backward heat equation.

We are looking for the solution v = v(x, t) of the fourth order PDE

∂v

∂t
+

∂2v

∂x2
+ ε

∂4v

∂x4
= 0, 0 ≤ x ≤ 1, t ≥ −τ,
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Figure 2: Example 1, f(x) = sin(x)

under the boundary and initial value conditions

v(0, t) = v(1, t) = 0,

∂2v

∂x2
(0, t) =

∂2v

∂x2
(1, t) = 0,

v(x, 0) = χ(x)

Let V (x, t) be the solution of the above BVP under the special choice χ(x) ≡ x . It is
easy to obtain

V (x, t) =
2

π

∞∑
m=1

(−1)m−1

m
exp m2π2(1 − εm2π2)t sin mπx

By representation (8) we have

v(x, t) =
∂2

∂x2
(V �χ)

= −1

2

∂

∂x

∫ 1

0

[V (1 + x − η, t) + V (1 − x − η, t)] χ(η)dη
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+
1

2

∂

∂x

∫ x

0

[V (1 + x − η, t) + V (1 − x + η, t)] χ(η)dη

If we denote

Ω(x, t) =
∂V

∂x
=

2

π

∞∑
m=1

(−1)m−1 exp(m2π2(1 − εm2π2)t) cos mπx,

we obtain

v(x, t) = −1

2

∫ 1

0

[Ω(1 + x − η, t) − Ω(1 − x − η, t)] χ(η)dη

i.e. almost the same representation as in Example 1 but with Ω(x, t) instead of U(x, t).
The computed numerical solution using these formulas for the special choice χ(x) = x

and ε = 0.01 has the following graphical image (Figure 3).
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Figure 3: Example 2

3.3 Example 3

We are looking for the solution u = u(x, t) of the following Samarskii-Ionkin problem
[Ion], which bears the name ”Samarskii-Ionkin problem”:
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ut = uxx

u(0, t) = 0,

∫ 1

0

u(x, τ)dτ = 0

u(x, 0) = f(x)

As it is shown in [Dim1] (Theorem 3.4.8 on p. 174), the solution u(x, t) can be
represented in the form

u(x, t) = −2

∫ x

0

U(x − ξ, t)f(ξ)dξ −
∫ 1

x

U(1 + x − ξ, t)f(ξ)dξ

+

∫ 1

−x

U(1 − x − ξ, t)f(|ξ|)sgnξdξ,

where

U(x, t) =
∞∑

n=1

{−2x cos 2nπx + 8πnt sin 2nπx} exp(−4n2π2t)

Here U(x, t) is the solution of the same problem for χ(x) = x
This representation can be obtained from the representation (8) (Theorem 2 for

Φ {f} =
∫ 1

0
f(ξ)dξ).

In [Baz] a generalization of the Samarskii-Ionkin problem for the fractional diffusion-
wave equation is considered.

A comparison of the numerical solution of the problem for f(x) = sin 2πx+3x cos 2πx
with the exact solution

(3 x cos(2 π x) + (1. − 12. π t) sin(2 π x)) e4 π2 t

was made. Accuracy of order 10−14 was achieved.
A visualization of the computed numerical solution follows (Figure 4 ).

3.4 Example 4

Find the solution of the time-nonlocal BVP

∂w

∂t
+

∂2w

∂x2
+ ε

∂4w

∂x4
= 0

∫ τ

−τ

w(x, t)dt = χ(x)
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Figure 4: Example 3

w(0, t) = w(1, t) =
∂2w

∂x2
(0, t) =

∂2w

∂x2
(1, t) = 0

in the strip 0 ≤ x ≤ 1, t ≥ −τ .
In the book of Lattes and Lions [Lat] a difference approach to the problem is developed.

We propose an analytic approach, based on Theorem 2.
First, we shall find a solution W (x, t) of the described problem for the special choice

χ(x) = x. To this end, we use the finite Fourier sine-transform

Sn {f} =

∫ 1

0

f(ξ) sin nπξdξ, n = 1, 2, . . .

Denoting Wn(t) =
∫ 1

0
W (ξ, t) sin nπξdξ, we obtain the ordinary differential equation

dWn

dt
− (n2π2 − εn4π4)Wn =

(−1)n−1

nπ
, n = 1, 2, . . . ,

where Wn(t) should satisfy the nonlocal BVC:∫ τ

−τ

Wn(σ)dσ =

∫ 1

0

ξ sin nπξdξ =
(−1)n−1

nπ

By an easy calculation one obtains
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Wn(t) =
(−1)n−1

nπ

n2π2 − εn4π4 + 2π

2 sinh(n2π2 − εn4π4)
exp{(n2π2 − εu4π4)t} +

(−1)n−1

nπ(n2π2 − εu4π4)

Then the special solution W (x, t) has the following series expansion

W (x, t) = 2
∞∑

n=1

Wn(t) sin nπx

According to Theorem 2, the solution of the considered BVP can be represented in
the form

w(x, t) =
∂2

∂x2
(W (x, t) � χ(x))

After differentiating, we obtain the same representation as in Example 2, but with
W (x, t) instead of V (x, t):

w(x, t) = −1

2

∫ 1

0

[Ω(1 + x − η, t) − Ω(1 − x − η, t)] χ(η)dη

where

Ω(x, t) =
∂W

∂x
= 2π

∞∑
n=1

Wn(t) cos nπx

Graphical image of the computed numerical solution for χ(x) = x and ε = 0.01 follows
(Figure 5).

4 Concluding remarks

The use of Duhamel-type representations of the solutions of linear BVP for partial
differential equations has evident advantages in comparison with the known numerical
methods. We would like to point out some of them:

• Compairing with the use of difference methods:

i) the values of the solution can be obtained for the points where they are needed
only;

ii) the accuracy can be controled by the chosen quadratic formulas parameters;

iii) never any numerical instability occur.

• Compared with the Fourier’s method, the time-consuming operations mentioned
above are avoided. In such a way, the approach proposed here has all the advantages
of the Fourier methods and avoids most of it shortcommings.
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Figure 5: Example 4

• The performance of the computations related to the application of the presented
approach in the environment of the computer algebra system Mathematica gives
additional advantages: high accuracy of the numerical computations, visualization
of the resuts and convenient use of the implemented approach.
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The paper describes the computer algebra application of the normal form method to
bifurcation analysis of a low resonant case of the generalized Henon - Heiles system. A
behavior of all local families of periodic solutions in system parameters is determined.
Corresponding approximated solutions were checked by a comparison with the numerical
solutions of the system.

1 Introduction

Normal form methods use a nonlinear change of variables to transform a nonlinear system
of ordinary differential equations to a simpler form. In this paper we use an algorithm
based on an approach developed by A.D. Bruno [1] for computing the resonant normal
form. An important advantage of this approach is its algorithmic simplicity: there are
direct recurrence formulas for coefficients of the transformation and of the transformed
system, and thus the storage of large intermediate results is not necessary. This approach
does not require solving any intermediate systems and there are no restrictions on low
resonance cases.

2 The Generalized Henon–Heiles System

The generalized Henon–Heiles system is a couple of second order differential equations:

ẍ + l1 · x + 2 · d · x · y = 0 ,
ÿ + l2 · y + d · x2 − c · y2 = 0 .

(1)

This system is known to be integrable [3] when:

1. l1 = l2, c/d = −1;

2. c/d = −6;

1Supported by the RFBR grant for the Scientific Schools support (the School by Academician
A.A.Logunov)
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3. 16l1 = l2, c/d = −16.

Below we discuss the case with the same pure imaginary eigenvalues of the linear part
of (1). I.e. we suppose that l1 = l2 > 0. By changing the time variable we choose
l1 = l2 = 1 and thus rewrite (1) to the ”low resonant form”.

Take into account the fact that if d = 0 the system can be integrated in an analytical
form because equations for x and y will be independent:

ẍ + x = 0 , ÿ + y − c · y2 = 0 .

The first equation above has an exponential solution and the second one has a solution
in terms of elliptic functions [9], example 6.10:

x(t) = C1 · exp(it) + C2 · exp(−it), C1, C2 ∈ C ,

t =

∫
dt√

2
3
· c · y3 − y2 + C3

, C3 ∈ R . (2)

Thus, let us assume that d 
= 0. Then with changing d · x → x, d · y → y and c/d → c
we obtain (1) in the form:

ẍ + x + 2 · x · y = 0 ,
ÿ + y + x2 − c · y2 = 0 ,

(3)

with the Hamiltonian:

h =
1

2
[(ẋ)2 + (ẏ)2 + x2 + y2] + x2y − c

3
y3 . (4)

A linear change of variables:

x = y1 + y2 , ẋ = −i (y1 − y2)
y = y3 + y4 , ẏ = −i (y3 − y4) ,

(5)

transforms (3) to the form required by the method:

ẏ1 = −i y1 − i (y1 + y2) (y3 + y4) ,
ẏ2 = i y2 + i (y1 + y2) (y3 + y4) ,
ẏ3 = −i y3 − i

2
[(y1 + y2)

2 − c(y3 + y4)
2] ,

ẏ4 = i y4 + i
2

[(y1 + y2)
2 − c(y3 + y4)

2] ,

(6)

The eigenvalues of this system are two pairs of complex conjugate imaginary units: Λ =
(−i, i,−i, i) 2. So this is a deeply resonant problem, i.e. the most difficult (and interesting)
type of a problem.

2Remark that in paper [6] the other order of variables is used. The corresponding vector of eigenvalues
is Λ = (−i,−i, i, i) there. It corresponds to interchanging y2 ↔ y3 for agreement with notation of the
present paper.
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3 A Normal Form for the Generalized Henon–Heiles

System

For a pure resonance of the generalized Henon–Heiles system the ratios of all pairs of
eigenvalues are ±1 and the normal form for (6) is:

żk = zkGk
def
= λkzk + zk

∑
qk ≥ −1 ,

q1, . . . , qk−1, qk+1, . . . , q4 ≥ 0 ,
q1 + q3 = q2 + q4 > 0

0 ≤ p ≤ q1 + q2 + q3 + q4

gk,q1,q2,q3,q4,p zq1

1 zq2

2 zq3

3 zq4

4 cp, k = 1, . . . , 4 . (7)

Gk = Gk(z, c) are series in z1, . . . , z4 and polynomials in c, gk,q1,q2,q3,q4,p are numeric
coefficients which can be calculated by the LISP based program NORT [4].

The set A in a phase space of system (7) is defined by the system of equations [1], [7]:

A = {z1, z2, z3, z4 :
λkzkω = λkzk + zk

∑
gk,q1,q2,q3,q4,c zq1

1 zq2

2 zq3

3 zq4

4 cp}, k = 1, . . . , 4 ,
(8)

where ω is a series in z1, . . . , z4 and polynomials in c. ω does not depend on index k along
the set A.

Searching for all local periodic families of solutions of system (6) is equivalent to
searching for the set A which contains all of them. It is important that along the set A
formal series in formulae above have a basis which consists of convergent power series in zk

variables 3 [1]. So the families of periodic solutions of (8) can be expressed (approximated)
in terms of convergent series.

Equations (8) can be recast (by eliminating ω which is non zero for non-trivial solu-
tions) in the form:

P1
def
= z1z2 · [G1(z, c) + G2(z, c)] = 0 ,

P2
def
= z3z4 · [G3(z, c) + G4(z, c)] = 0 ,

P3
def
= z1z4 · [G1(z, c) + G4(z, c)] = 0 ,

P4
def
= z2z3 · [G2(z, c) + G3(z, c)] = 0 .

(9)

Of course no more than 3 equations above are independent, but the form (9) is symmetric.
Because of (8) all families of periodic solutions of (7) have the form:

zj = aj exp(−iωt) , zj+1 = aj+1 exp(iωt) , j = 1, 3 . (10)

The aj above are integration constants and ω is time independent and plays the role of
frequency. It depends on constants c and aj only.

With (10) we can rewrite (9) as an algebraic problem of solving a system of equations

3The parameter c is not supposed to be small.
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over the ring of formal power series in ak:

P1
def
= a1a2 · [G1(a1, . . . , a4, c) + G2(a1, . . . , a4, c)] = 0 ,

P2
def
= a3a4 · [G3(a1, . . . , a4, c) + G4(a1, . . . , a4, c)] = 0 ,

P3
def
= a1a4 · [G1(a1, . . . , a4, c) + G4(a1, . . . , a4, c)] = 0 ,

P4
def
= a2a3 · [G2(a1, . . . , a4, c) + G3(a1, . . . , a4, c)] = 0 .

(11)

Searching for all local families of periodic solutions of system (7) is equivalent to deter-
mining all solutions of system (11).

The original system (3) is real, thus real solutions of (7) satisfy the reality conditions:

zj+1 = zj, j = 1, 3
or
aj+1 = aj, j = 1, 3

(12)

so we can fix (by neglecting a trivial time shift) a2 = a1 as pure real.
Because system 3 is even in time all families of solutions arise by couples.

4 Calculation of Results

By using our program NORT for system (6) we have calculated the normalizing transfor-
mation and normal form till the 10th order in zk (i.e. till 12th in ak for Pk series). We
calculated periodic solutions and compared them with corresponding numerical solutions
at different values of parameters. Below we discuss the bifurcation picture and the phase
portrait of system (3) following this analysis 4.

It is proved in [2] that for any reversible resonant system of the 4th order, both the
series P1 and P2 have the same factor:

P1(z) = (zr
1z

s
4 − zr

2z
s
3) · Q1(z) ,

P2(z) = (zr
1z

s
4 − zr

2z
s
3) · Q2(z) ,

where r and s are smallest positive integers which satisfy the equation λ1 · r = λ3 · s.
For our case s = r = 1, but the system has an additional symmetry and we can find

by factoring that the P1 and P2 series calculated by the NORT program have a more
complicated factor:

P1 = 2i· (a2
1a

2
4 − a2

2a
2
3)·

·
[
1 +

1

6
c +

(
133

18
− 95

108
c − c2

)
a1a2+

+

(
4

9
− 172

27
c +

23

18
c2 +

89

108
c3

)
a3a4 + O(a4)

]
,

P2 = −2i· (a2
1a

2
4 − a2

2a
2
3)·

·
[
1 +

1

6
c +

(
13

2
− 95

108
c − 1

9
c2

)
a1a2+

+

(
20

9
− 148

27
c − 1

2
c2 − 7

108
c3

)
a3a4 + O(a4)

]
,

(13)

4All calculations below were carried out for the mechanical energy h = 1/12.
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where (and in some places below) we adduce for simplicity first terms of the calculated
series only.

Recall that we are interested only in local solutions, i.e. in such solutions of (11) which
can include the stationary point ak = 0, k = 1, . . . , 4 as a particular case.

Thus, instead of the first pair of equations in (11), we have the equation:

a2
1a

2
4 − a2

2a
2
3 = 0 ,

because the brackets in (13) cannot add any nontrivial local solution as they contain
constant terms at c 
= −6, and at c = −6 these both brackets are proportional to a1a2 +
4a3a4, which is a sum of squares of modules (see (12)).

So, if we now fix a1 = a2 = a as a pure real, then the first couple of equations (13)
has two solutions:

1. a3 = a4 = b has a pure real value;

2. a3 = −a4 has a pure imaginary value. Let a3 = ib.

4.1 Case of Pure Real a3

In this case the second pair of equations (13) gives a single equation:

P3 = −P4 = α1 · a · b · [a2 − (c + 2)b2] ·
[
c − 1 −

(
2431

180
− 29

90
c +

217

60
c2

)
a2−

−
(

67

90
− 1289

180
c +

233

45
c2 − 157

36
c3

)
b2 + O(a4) + O(b4) + O(a2b2)

]
= 0 .

(14)

α1 here is a nonzero numerical constant. Let us discuss the families of periodic solutions
which correspond to zeroing each factor of the product above.

A couple of families of periodic solutions which corresponds to a = 0 exists at any
values of c and lies in the plane x = 0. This is a family with a single internal parameter.
We choose the mechanical energy h from (4) as this parameter. At c = 1 this family
corresponds to family 5 of the classic Henon–Heiles system [8], see Fig. 1 and paper [6].

In Fig. 1, the intersections of periodic solutions of the Henon–Heiles system with Sur-
face Of Section (SOS) [8], which is defined by equations SOS = {x = 0, ẋ = ẋ(x, y, ẏ, h) >
0}, are displayed in coordinates y, ẏ. The periodic solutions of families 5 lie entirely in
the plane x = ẋ = 0. For this case there is an analytical solution of type 2 in elliptic
functions.

The families which correspond to b = 0 also exist at any values of c. They look like
family 4 of the Henon – Heiles system (Fig. 1). The corresponding intersection flows
slowly from left to right at increasing c. The frequency of these periodic families is:

ω4 = 1 − 5ρ/3 + ρ2(−281 + 504c)/108+
+ρ3(−13913 + 645024c − 323488c2)/19440+
+ρ4(33903721 + 134318856c − 137045376c2 + 59393664c3)/699840
+ρ5(103971857615 + 172223295216c − 402212367472c2+
+294216077568c3 − 105272265984c4)/220449600 + O(ρ6) ,
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Figure 1: Intersections of periodic solutions of the Henon–Heiles system (c = 1) with the
surface of section (SOS) at the energy level h = 1

12
.

where:
ρ = h/2 + 7h2/72 + h3(−1099 − 1184c)/3456+

+h4(−1830221 − 1187297c + 208324c2)/777600+
+h5(−64702312929 − 10993351152c + 19241890208c2−
−4382098944c3)/6718464000 + O(h6) .

These are one-parametric families.
Let us define a relative error as the maximum of relative difference between the tabu-

lated series (of tenth order) x(t)app, yapp(t), ẋapp(t), ẏapp(t) and the corresponding numerical
solution during one period:
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ferr
def
= supt ∈ [0, 2π/ωi]√

(xnum(t)−xapp(t))2+(ynum(t)−yapp(t))2+(ẋnum(t)−ẋapp(t))2+(ẏnum(t)−ẏapp(t))2

x2
num(t)+y2

num(t)+ẋ2
num(t)+ẏ2

num(t)

The relative error of the approximation of this case is about 6% at c = −1; 0.3% at c = 1
and 0.23% at c = 2.

The next case is a2 = (c+2) · b2. At c = 1 it corresponds to 2 and 2’ families in fig. 1.
The families are real if c ≥ −2 only. It is one parametric case also. With increasing c it
slowly flows to the abscissa axis. At c = −2 it coincides with curve 5. The frequency is:

ω2 = 1 − 20h1/3 − 380h2
1/3 − 878960h3

1/243−
−88121780h4

1/729 − 3203319760h5
1/729 + O(h6

1)

where h1 = h/(2(3 + c)). The relative error is about 4% at c = 0; 0.4% at c = 1 and
0.06% at c = 2.

Zeroing the last brackets in (14) is possible near the point c = 1, when the corre-
sponding distance c − 1 is about a square of amplitudes a or b, or, say, about energy h.
So we can suppose that c = 1 + ε · h and the corresponding solution exists at least at
ε lower or about 1. This case agrees with families 1 and 1′ in Fig. 1. The intersection
with SOS flows to the abscissa axis and from right to left with increasing ε. These are
one parametric families. The frequency is: ω1 = 1−25εh/252+O(h2) . The relative error
here is 0.09% at ε = −1; 0.09% at ε = 1 and 0.2% at ε = 2. A small value of error may
say about possibility of spreading this case into wider domain of the parameter ε.

4.2 Case of Pure Imaginary a3

Let a3 = ib. In this case the second pair of equations (13) also gives a single equation:

P3 = P4 = α2 · a · b · (c + 1)·
·[7a2 − (5c + 2)b2 + O(a4) + O(b4) + O(a2b2)] = 0 .

(15)

α2 here is a nonzero numerical constant. Let us one more discuss families of periodic
solutions, which correspond to zeroing factors of the product (15).

Cases a = 0 and b = 0 have been discussed. Case c = −1 is a specific one. It is
an essential two parametric case, but it is better to choose parameters from a physical
meaning. Let us introduce the energy as one of parameters. We will suppose that the
amplitudes a and b connected with the energy h in this way:

a2 + b2 = p(h), a2 = β · p(h), β ∈ [0, 1] ,

where p(h) is the series:

p(h) = h/2 + 7h2/72 + 85h3/3456−
−2173h4/3888 − 240679781h5/53747712 + O(h6) .
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This parameterization is good because it displays that frequency depends on p(h), i.e. on
energy only:

ω−1 = 1 − 5p(h)/3 − 785p2(h)/108 − 65495p3(h)/1296−
−59370835p4(h)/139968 − 4971155135p5(h)/1259712 + O(p6(h)) .

At the beginning of the interval (β = 0) a behavior of these periodic families looks like
solution 5 in fig. 1. Then the solutions cross the SOS look like 3 and 3′ on the segment
β ∈ (0, 1) and at the end of the interval (β = 1) these 3 and 3′ join each other in the point
which corresponds to solution 4. Relative error here equals 6% at β = 0; 5% at β = 0.5
and again 6% at β = 1.

The case when the last bracket in (15) is equal to zero is close to the last case of the
previous subsection. It is one-parametric case and it is real only when c ≥ −2

5
. The case

corresponds to families 3 and 3′ in the Figure. Frequency is:

ω3 = 1 + 2/3h(1 + 6c)/(9 + 5c)+
+1/3h2(−135 − 1051c − 2694c2 − 1503c3−
−105c4)/(729 + 1215c + 675c2 + 125c3) + O(h3)

The families start from a shape of 5 at c = −2/5, and then go along abscissa to the origin
likewise couple 3, 3′. Relative errors equal 6 · 10−6% at c = −2/5; 6 · 10−5% at c = 0;
4 · 10−3% at c = 1 and 0.08% at c = 1.5.

There is also a couple of two-parametric local families of complex periodic solutions
at zero energy h with frequencies equal to ±1. Such solutions were discussed in [5], [6].

5 Conclusions

In the normal form method a bifurcation analysis for local families of periodic solutions
was carried out for the low resonant case of the generalized Henon–Heiles system (3). We
have found 6 pairs of real families of local periodic solutions. In terms of Figure 1 they
are :

1. a couple of families looks like solutions 5 in the Figure, with one internal parameter
(mechanical energy h). Here and below we neglect dependence on a trivial time
shift. These families exist at any value of external parameter c;

2. a couple of families looks like solutions 4 in the Figure, with one internal parameter.
The families exist at any value of external parameter c;

3. a couple of families looks like solutions 2 and 2′ in the Figure, with one internal
parameter. The couple exists at the value of external parameter c ≥ −2;

4. a couple of families looks like solutions 1 and 1’ in the Figure, with one internal
parameter. The couple exists at least near the value of external parameter c = 1;

5. a couple of families looks like solutions 3 and 3′ in the Figure, with two internal
parameters. The couple exists at the single value of external parameter c = −1;
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6. a couple of families looks like number 3 and 3′ in the Figure also, with one internal
parameter. The couple exists at the value of external parameter c ≥ −2/5.

There are two local two-parametric complex families of periodic solutions at the energy
h = 0 also.
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Computer Algebra at KELDYSH
Institute of Applied Mathematics

G.B.Efimov, I.B.Tshenkov, E.Yu.Zueva
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Brief retrospective review and main references concerned Computer Algebra (CA) re-
searches and applications at famous Keldysh Institute of Applied Mathematics (Russia
Academia of Science) are presented. At the Institute CA was used in various areas: Ap-
plied Celestial Mechanics, Mathematics, Robotics, Hydromechanics, Applied Calculation
Methods. Some original program sys-tems were elaborated. During several years the work
devoted to classification of existing systems and their possibilities was done. Conferences
and seminars concerned CA applications in mechanics were organized. A language of
recur-sive functions, REFAL, was generated at the Institute. Later it was modified and
intensively used in various fields, in particular CA. Many ideas and results, which one
can find in researches on CA and close fields implemented at Keldych Institute, are still
interesting today. The work was supported by RFBI, grants No 01-01-00015 and No 00-
15-96036.

Keldysh Institute of Applied Mathematics of Russian Academia of Science (RAS) was
founded in 1952 by M.V.Keldysh for solving difficult scientific problems of national impor-
tance, such as nuclear physics, cybernetics, space mechanics and others. At the Institute
experts on different areas - mathematicians, physicists, mechanicians, computer scientists
- were working together, in close contacts with each others. Such famous scientists as
A.N.Tichonov, K.I.Babenko, I.M.Gelfand, A.A.Liapunov, I.B.Zeldovich,D.E.Okhozimsky,
A.A.Samarsky, V.S.Yablonsky, M.R.Shura-Bura, A.N.Miamlin, M.L.Lidov, V.V.Beletsky,
S.P.Kurdiumov, T.M.Eneev were among them.

Numerous difficult problems required various mathematical methods for their solution.
Active pioneer’s using of first computers, enthusiasm caused by early successes in this
new field - all this gave many interesting ideas. The idea of symbolic computations arose
just after computer’s appearance, as a will to learn computer to interact with the human
person via ordinary mathematical language, to facilitate the job of physicist or mecanician.
Reviews of early soviet researches on Computer Algebra (or Symbol Manipulations, as
it was called initially) are presented in the publications [1-13]. These old works may be
interesting -not all of them were known sufficiently at the time when they were carried
out; some ideas are still valuable now.

First experiments with Symbol Manipulations were made in Russia as early as the
beginning of sixties. In 1956 at the first National Conference devoted to computer science
A.A.Dorodnitcin formulated the task which we can consider as the beginning of Symbol
Manipulation in Soviet Union [14]. This task was concerned with the investigation of
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nuclear explosion in the atmosphere. It was proposed to built the solution in the form
of two asymptotic power series (near the center of the explosion and far from it). These
assimptotics should be conjugated by common numerical solution in the regular area.
Thus it was the combined analytical/numerical approach. D.E.Okhozimsky applied this
approach to cosmodynamics problem [15]. He also built two assimptotics conjugated by
common numerical part. Assimptotics construction on one of the first soviet computers
”Strela” was pioneer too.

At the same time in Leningrad department of Steklov Mathematical Institute Nobel
laureate L.V.Kantorovich investigated some types of symbolic notation for Computer
Algebra. His follower T.N.Petrova created the program ”Polynomial Prorab”, used later
for the tasks of theory of elasticity and others [16].

The formulation of Dorodnitcin is referred by A.A.Stogny [17], the follower of V.A.
Glushkov in Kiev. He proposed an algorithm to obtain the polynomial solution of differ-
ential equation. It was probably the first result of the famous Kiev Computer Algebra
school.

N.N.Yanenko investigated Cartan’s methods of analysis of compatibility of systems of
differential equations in partial derivations and realized it on computer ”Strela” [18].

Solutions in series of some problems of Celestial Mechanics were built in Leningrad
by V.A.Brumberg and his colleages [19]. This approach was elaborated and extended
later. Similar work was done by I.B.Zadyhajlo and Z.P.Vlasova in KIAM, Moscow. The
similar approach to the tasks of the theory of elasticity was elaborated by the group of
L.V.Kantorovich in Leningrad and V.K.Kabulov in Tashkent [20].

Let us return to KIAM. Here the first attempts to use Symbol Manipulations were done
in the area of Applied Celestial Mechanics. As it was mentioned above, manipulations
with trigonometric and power series were implemented on soviet computer ”Strela” by
Z.P.Vlasova and I.B.Zadyhajlo (non-published). In 1964 D.E.Okhozimsky initiated the
work on semi-analytical solution of one cosmodynamics problem, the low-thrust flight in
central field of gravitation [15]. G.B.Efimov realized this approach for simplest Poisson
series (1970) [21].

From 1970 A.P.Markeev used CA for Gamilton’s systems normalization and periodic
solution stability analysis [22]. The next steps in this direction were done by his fol-
lower A.G.Sokolsky [23-25]. This work was continued by the same group in MAI and
later by A.G. Sokolsky in ITA RAS (Leningrad) [26-29], where the well known school of
V.A.Brumberg did work already. In MAI Computer Algebra applications to education
were developed as well [30].

V.A.Saryshev and S.A.Gutnik used CA for the problem of sputnik equilibrium stability
(1984) [31-32]. Some important results were obtained last years by A.D.Bruno and his
group (see below).

From 1963 M.L.Lidov with his group did numerous experiments concerned CA applica-
tion to sputnik dynamics problems [33]. A method united both analytical and numerical
approaches was proposed [34-35]. For elliptic orbits and distortions of different sorts,
analytical approach was used to construct the Hamilton disturbing function H*. Then,
coordinate transformation and calculation of right parts of disturbed motion equations in
every step of integration, was done via Hamilton function differentiation. This approach
provides high accuracy method of motion calculation and allows to avoid labor-consuming
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calculations [36-38]. Infortunately, requirements to CA systems to be used in this scheme
were rather high, and available CA systems were not capable to satisfy them. Thus, these
very interesting experiments didn’t produce practically usable integrated (analytically-
numerical) system. From the other hand, it was impossible to use ready CA systems
of general purpose, very primitive at this time, to solve such complicated problems. As
a result, very sophisticated special algorithms and programs were elaborated, but these
investigations didn’t stimulate the development of CA systems for common usage.

The very interesting page in russian cybernetics is the history of REFAL. In 1969
V.F.Tourchin created an original computer language REFAL based on new principle of
programming - associative text processing on the base of recursive function theory, without
directly addressed control of the program [39-41]. From the beginning Computer Algebra
was among potential areas of REFAL applications [42]. However, first REFAL realiza-
tion was rather ”scientific” then practical, since it was isolated and not compatible with
”ordinary” software - numerical packages, library support, memory allocation and so on.
Additional efforts of many people required to make REFAL modifications practically us-
able, in particular for Computer Algebra Applications. S.N.Florentcev, S.A.Romanenko,
A.V.Klimov were the first who wrote high-effective compiler from REFAL.

The first REFAL program realized some CA features was elaborated by V.F. Tourchin
and others to solve some problems of Nuclear Physics in series [43]. I.B. Tshenkov elabo-
rated general purpose SAM named SANTRA and later modified it [44-45]. On this base
the special applied system DISPLAN was made for processing non-standard difference
schemes, by I.B.Tshenkov and M.Yu.Shashkov [46]. M.L.Lidov and L.M. Bakuma were
among the first REFAL’s users in applied area. They did some attempts to process Pois-
son series. Analogous attempts in the group theory were done by H.C.Ibragimov and
I.B.Tshenkov.

Some enthusiasts of REFAL were united by KIAM and worked in close contact with it.
V.L.Topunov with his colleagues from Moscow Institute of Pedagogy used REFAL-based
CA system in differential geometry [47]. Together with V.P.Shapeev and the others fol-
lowers of N.N.Yanenko (Novosibirsk) they realized method of H.Cartane and investigated
the characteristics of difference schemes [48,17]. L.V.Provorov in N.Jukovsky Central
Air-Hydrodynamics Institute and in Bauman High Technology University used CA sys-
tem ALCOR in large area applications in engineering [49]. In mechanics, O.M.Gorodeskiy
(Grodno) and A.V.Korlyukov created CA system for simulation in dynamics of Gyroscope
systems (used by ac. D.M.Klimov) [50]. As a first stage of the work, the equations of the
motion were automatically derived. Usage of REFAL allowed to present the equations
in convenient form near to human presentation. L.F.Belous and I.R.Akselrod (in Khar-
cov) used REFAL for integration several different programming systems and numerical
packages into a united system, including in this system the well known REDUCE and
domestic Computer Algebra package SIRIUS [51].

In Keldysh Institute the possibilities to create REFAL-processor were investigated.
A.N.Miamlin, I.B.Zadyhajlo and V.K.Smirnov were the leaders of the project [52-54].
L.K. Eisymont analyzed REFAL efficiency for both program and apparatus realization,
in particular from the CA application point of view [55,56]. REFAL processor EC-2702
was simulated by V.K.Smirnov with his group on the computer EC-2635 with micropro-
gramming [54,57-60]. This processor was compatible with EC-series computers, it was

54



used for CA problems as well as for translators [61].
REFAL was initially planned as a ”meta language”. It was used indeed in wide scope

of textual tasks, more or less near to CA. V.A.Fisun, A.I.Choroshilov and others realized
computer languages Simula-1, DYNAMO [62,63], complex for cosmic training TRIKS,
ALGOL-FORTRAN converter for physical packages - all based on REFAL. Yu.F.Golubev
simulated the work of on-board sputnik computer. In this direction the automate scaling
of calculation was introduced, to compensate the lost of accuracy caused by fixed point
usage. This work was carried out by several authors, in particular L.K.Eisymont and
I.B.Zadyhajlo. A.N.Andrianov and K.H. Efimkin automated the calculation of difference
schemes in NORMA system [64].

At the beginning of eighties, CA popularization and systems comparison became im-
portant, in particular for mechanical tasks which required computer experiment for their
investigation and solution [5,7-8,65,66]. CA was successively used for difference schemes
construction in the area of non-regularity [67]. The result of the last work was positively
evaluated by A.A.Samarsky, leader in soviet mathematical modeling. With the aid of
A.A. Samarsky KIAM became one of the main organizer of the First National Conference
on Computer Algebra Applications in Mechanics in Gorky (Nijniy Novgorod) in 1984 [6].
The results of about 20 years research, as well as future plans and perspective directions,
were discussed.

To generalize the experience of common work of mathematicians, mechanicians and
programmers, some classification work was done by G.B.Efimov and M.V.Grosheva [68-
71]. There were reviews of CA systems and CA applications for mechanical problems
[5,7,8,66,72-75]. Tables of CA systems features were presented for users [5,8,68,69]. These
reviews provided convenient tool for CA systems comparison and selection for potential
users - experts in applied areas. Such analysis was useful for CA developers as well.
First CA systems were usually specialized and elaborated for concrete task solution. For
example, in the area of dynamics of multi-bodies systems many various CA systems
were created, so the classification and comparison of their features became important
[69,71]. Later the well known modern universal systems, such as REDUCE and others,
appeared and were used for various algorithms realization. For example, S.A.Gutnik,
M.Yu.Shashkov and others used REDUCE [31,76,85-87,90]. Currently CA is used as
necessary standard tools in big program complex, often without any special mention.

A number of problems were investigated and solved in KIAM with aid of CA during
about 25 years. The investigation of difference schemes was continued [45,67], partly in
contact with the followers of N.N.Yanenko [75]. In the area of fluid and gas dynamics some
works were carried out. Several Hydrodynamics problems were resolved by I.B.Tshenkov
and Ya.M. Kajdan with aid of REFAL-based CA program and by M.Yu.Shashkov and
L.N.Platonova in REDUCE [76,77]. In the area of dynamics of complicated multi-bodies
systems (robotics, spacecraft) CA is used for deriving the equations of motion, stability
investigation, automatic generation of program of numerical analysis, and others. The
PAS and others systems were created which was used for deriving the equations of mo-
tion and for solving some problems of the theory of control [78-82]. Computer Algebra
applications to mechanical education were developed by D.Yu.Pogorelov, the follower of
V.V.Beletsky [83,84]. Reviews of the works, concerning CA application in mechanics,
dynamics of multi-bodies systems and theory of control were issued [5,7,8,66,72-75].

55



Most important results of last years at Keldysh Institute are obtained by A.D.Bruno
and his followers. It concerned some algorithms of normalization in Hamilton systems and
Newton polyhedra investigation [85-90]. S.Yu.Sadov and V.P.Varin investigated stability
of motion for celestial mechanics problems [86,87,90]. There are several publications
devoted to the history of CA and its applications in KIAM [13,91-93].
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Conception of Universality of the
Huygens Resonance Synchronization
Principle and Model for Structural

Pecularities of Superconducting
Systems and Biomolecules

F.A. Gareeva, G.F. Gareevab
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Schrödinger wrote that an interaction between microscopic physical objects is con-
trolled by specific resonance laws. According to these laws, the difference between two
eigenenergies (eigenfrequencies) in one system should be equal to each other: hν1−hν ′

1 =
hν2−hν ′

2, ν1−ν ′
1 = ν2−ν ′

2, which can be generalized for a complex system as
∑

qijνj = 0
(qij is the integer number matrix). Therefore, the eigenfrequencies are additive. In other
words, the resonance condition is formulated in the following way: Oscillations partici-
pating in an interaction process should be constituents of the same frequency. Thus, we
come to the conclusion: In a whole interacting self-consistent wave system the hierarchy
of frequencies is established. So, the sum of all partial frequencies is an integral of motion.
Any interaction in a microscopic hierarchic wave system exhibits the resonance charac-
ter. Due to the above-said the corresponding partial motions are determinate. As the
resonance condition arises from the fundamental energy conservation law, the rhythms
and synchronization of the majority of phenomena to be observed are the reflection of
the universal property of self-organization of the Universe. The Huygens synchronization
principle is substantiated at the microscopic level and its universality is established. The
universal Huygens resonance synchronization principle is independent of substance, fields,
matter and interactions for micro- and macrosystems. It is well known in optics (in quan-
tum mechanics too) that the transition coefficient of light through the layer is equal to
one if the following relations between the thickness d of layer and wave length λ exist

d = (n/4)λ, n = 1, 2, 3, ... (1)

It is interesting to note that: 1)the Tomasch quantization conditions for tunneling are the
same as (1), 2)the Bohr quantization conditions λN = Nλe for a hydrogen atom and the
quantization conditions λN = Nλ4He for superfluid 4He coincide with (1) if N = n/4. We
carry out a systematic analysis of interatomic distances for a huge number of systems using
(1) in which λ = λe is the electron wave length in the ground state of hydrogen atoms. We
come to the conclusion that the superconductivity can be explained by the assumption:
channel motions in such systems and electron motion in the ground state of a hydrogen
atom are exactly synchronous. Therefore, superconductive systems represent coherent
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synchronized states — complex of coupled resonators with the commensurable frequencies.
The parameter-free formula for interatomic distances in biomolecules, superconductors
and sizes of nanostructures has been obtained which establishes some bridge between
the structures of different phenomena (conductivity, superconductivity, insulator-metal
transitions, quantum Hall effect, superfluidity, quantization of nanostructure cluster sizes,
sizes of biomolecules). This connection can be considered as indication of existence of the
same physical phenomena in the structures of the superconducting and living systems.
The electron wave length in these systems plays a role of a standard one for distances
between atoms in such systems.

Interest of our results is not only in their closeness to experimental data, but also
in the derivation of a formula from the fundamental laws of Nature — the conserva-
tion law of energy-momentum and Huygens resonance synchronization principle. These
observations allow us to formulate a strategy of experimental searches for a new class
of high-temperature superconductors. Thereby, we bring some arguments in favour to
mechanism — ORDER from ORDER, declared by Schrodinger.

It means that our method can be used in a different fields of the fundamental re-
search and also in applications: construction of a new materials, say, high-temperature
superconductors (control Tc), medicine, a new devices in analogy with biomolecules.
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Analytic Calculations for Some ODE
with Quadratic Nonlinearity by
Continuous-Group Methods and

Vector-Field Analysis

A.G. Galperin, V.M. Dubovik, V.S. Richvitsky

Laboratory of Information Technologies,
Laboratory of High Energies,

Joint Institute for Nuclear Research, 141980 Dubna,Russia;
e-mail: rqvtsk@cv.jinr.ru

Analytic calculations allow a systematic analysis of various kinds of the Lotka-Volterra
ODE together with classical systems (the Euler top, etc.) by the continuous ODE group
calculation and the vector field analysis. Owing to the equations being homogeneous (or by
restating the equation to a similar one), the analysis of a vector field leads to the graphic
representation of its behavior on a sphere at all the characteristic points.

1 The Model

The system of equations
ẋ = x(az − by),
ẏ = y(bx − cz),
ż = z(cy − ax)

(1)

was introduced in the paper [1] as a model of the pre-election fight of two parties with
participation of non-party people. As was discovered further, the system also describes the
lines of the potential level in Henon-Hayles equations [8], the boundary of the 3-particle
decay diagram [9], the formal kinetic [3] of chemical (abstract autocatalytic) reactions.

z + x
a−→ 2x,

x + y
b−→ 2y,

y + z
c−→ 2z.

(2)

System (1) has essential features as compared with the Lotka-Volterra system of
predator-prey on the one hand, and the Euler top equations on the other hand, in spite
of great external similarity. The conservation law for the sum of the components is built
in the system according to the sense of the model.

For instance, interpretation of the discussed model as that of the pre-election fight leads
us to recognition that the non-party electors could be considered as the third party. We
postulate that the number of participants of the election campaign is constant, considering
that the latter is short-term and without mortality.

64



We are interested in studying discrete and continuous symmetries of the system (1)
and the full classification of its solutions in [5] (at the rate the authors succeeded in it). It
is noticeable that the considered system, unlike others (for example, the Lotka - Volterra
system of predator-prey) could not have limit cycles, i.e. self-oscillating solutions, but
contains systems of cycles only.

2 First integrals and singular points

Further study of the system is based on the knowledge of the first integrals

I1 = x + y + z = A,
I2 = xcyazb = C

(3)

and the analysis of its behavior in the vicinities of the singular points.
The homogeneity of the system (1) in phase variables and parameters allows one to

determine the first continuous symmetry - the similarity of the phase curves (homothety)
with the group generator

x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z (4)

and their independence of homothety of the space of parameters with the generator of
the group

a ∂
∂a

+ b ∂
∂b

+ c ∂
∂c

. (5)

This allows one to make two conclusions, leading to two different approaches.
First, it is enough to consider phase space in two invariant planes: I1 = x + y + z = 1

and I1 = x + y + z = 0. Second, it is natural to switch to homogeneous coordinates in
both the spaces, i.e. to the projection spaces.

2.1 Evolution on the invariant planes

If we rewrite the system (1) as follows

ṙ = F (r), (6)

where
r = (x, y, z)T ,

F (r) = (axz − bxy, byx − cyz, czy − azx)T (7)

is the list of the singular points, the solution of the system of equations

F (r) = 0 (8)

easily comes into the system of analytic calculations as well as the solution of the system
of the characteristic equations

det

(
dF

dr
− λI

)
= 0, (9)

in the vicinities of the mentioned singularities.
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The solutions of the characteristic equations

{x = A, y = 0, z = 0}, λ = {−a, b},
{x = 0, y = A, z = 0}, λ = {−b, c},
{x = 0, y = 0, z = A}, λ = {−c, a},

{x =
c

a + b + c
, y =

a

a + b + c
, z =

b

a + b + c
}, λ2 = − abc

a + b + c
,

(10)

show us that there are always (in general) three singular points, two of which are of the
node type, and one is of the saddle type, and also the fourth point - the centre or the
saddle, which depends in what region of the state space it hits. According to this, in fact,
space partition into the regions occurs. Since it is connected with the set of parameters,
the space of parameters is divided into the regions exactly in the same way, and the
conformity between the regions of these spaces is determined.

The knowledge of the first integrals allows us to calculate the generator of the dif-
feomorphism group that transforms certain phase curves on the invariant plane into the
others when parameter values are constant, according to the formulae

(0, 1, 0) (F ,∇rI2,∇rI1)−1
(

∂
∂x , ∂

∂y ,
∂
∂z

)T

, (11)

It also allows one to calculate three generators of the diffeomorphism group that
connect the change of the parameters a, b, c with the change of the phase curves

(0, ∂I2

∂a , 0) (F ,∇rI2,∇rI1)−1 ( ∂
∂x , ∂

∂y ,
∂
∂z)

T + ∂
∂a ,

(0, ∂I2

∂b , 0) (F ,∇rI2,∇rI1)−1 ( ∂
∂x , ∂

∂y ,
∂
∂z)

T + ∂
∂b ,

(0, ∂I2

∂c , 0) (F ,∇rI2,∇rI1)−1 ( ∂
∂x , ∂

∂y ,
∂
∂z)

T + ∂
∂c .

(12)

2.2 Evolution in the projection space

The equation (1) does not provide the consistent motion in the homogeneous coordinates,
but the time rescaling (which depends on coordinates)

ṙ = F 1(r) = 1√
x2+y2+z2

F (r), (13)

allows us to coordinate them and thus to speak about the motion equations (13) in the
projection space.

The covering manifold of a 2-dimensional projection space is the 2-dimensional sphere
x2 + y2 + z2 = 1. The vector field projection of equations (13) onto a sphere results in a
projection onto a sphere of phase curves together with singularities to which fixed points
corresponding to the solution asymptotes are added.

By means of analytic calculations there was obtained the vector field projection onto
a sphere

F s(r) = 1
|r|(F 1(r) − rF 1(r)

rr r). (14)

Coordinates and types of singular points together with the figures of the vector field
in the vicinity of each singularity (when a=1, b=1, c=1) are represented in Appendix A.
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3 Classification of solutions

The most usual type of a manifest representation of the solution evolution on the phase
space is the phase portrait. It is obviously implied that other pictures are similar to the
given one. It is most likely true only in the vicinity of the produced solution. Similarity
relation - the relation of equivalence - defines the partition of the phase space into the
classes of equivalence, i.e. regions, within which the phase trajectories are similar. The
meaning of the similarity conception will be defined while answering specific questions.

When the parameters are present, the similarity of the phase curves is asserted in the
same way, at least, for a certain vicinity of the parameter space. The mentioned similarity
is also the ratio of equivalence in the space of parameters, and it divides the latter into the
regions - classes of equivalence of the similar behavior of the system. Thus, the ensembles
of systems are chosen.

When looking at the system (1), one can notice that the discriminant set a,b,c, a+b+c
1 of the population (10) of types of all the singular points gives the parameter space
partition into the regions (it is easy to see that there are 14 of them).

The coordinates of the fourth singularity from the population (10) naturally set one-
to-one correspondence between the space of parameters a:b:c and the phase space x:y:z.
Thus, partition of the space of parameters into the regions is transferred on the phase
space.

One can notice that the phase curves in the phase space turn out to be kept within
one of the regions (i.e. there are no curves that proceed from one region to the other,
which is not obvious because of the partition construction). The latter becomes clear by
virtue of that the boundaries between the regions themselves are phase curves, invariant
under any parameter changes (this is verified by the direct substitution).

When defining (see above) the meaning of the similarity, we notice that the curves
within each region (of the phase space) are related in the sense that when the param-
eters a:b:c are fixed, there exists the family of the diffeomorphisms with the generator
(11), that transfers each phase curve of a certain (and each) region of the phase space
into a certain phase curve of the same region; when the set of the parameters a:b:c is
changed continuously within the region (of the parameters), there exists the family of the
diffeomorphisms with the generator of the group (12).

The relationship of the phase curves of various regions is revealed in the sense that the
diffeomorphism of the parameter space conserving the partitions will be the diffeomor-
phism of the phase curves in case the latter is a composition of the permutation of phase
space regions and the diffeomorphisms of the phase curves within the regions described
earlier. In this case, the permutation of regions of the phase space is induced by one of the
regions of the parameter space so that the singularity types remain constant in mapping.

There are fixed points corresponding to the asymptotes of the initial phase space in
the projection phase space x:y:z.

The vector field will be fully described if the plot of it in the vicinity of each point with
the indication of the characteristic curve leading to each adjacent singularity is given. In
this case, the latter task is simplified by that the separatrixes are characteristic in the

1Each time when one of the variables a, b, c or the sum a+b+c alternates, the type of one of the
particular points is changed.
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case of a saddle (at the fourth point), and so are the boundary phase curves (straight
lines in our case) that are stable at any parameter values and connect the rest points -
knots and saddles.

4 Appendix A

The projection interpretation of the vector field of the equations (1) has singular points
on a sphere and the corresponding characteristic equations

0 : 0 : 1 (λ − a)(λ + c)
0 : 1 : 0 (λ − c)(λ + b)
1 : 0 : 0 (λ − b)(λ + a)
c : a : b λ2 + abc(a + b + c)

−1 : 0 : 1 (λ
√

2 + a)(λ
√

2 + (a + b + c))

−1 : 1 : 0 (λ
√

2 − b)(λ
√

2 − (a + b + c))

0 : −1 : 1 (λ
√

2 − c)(λ
√

2 − (a + b + c)).

(15)

Figure 1: The development of the sphere. Phase portraits when a=1, b=1, c=1

Figure 2: The development of the sphere. Phase portraits when a=1, b=-1, c=1

It is obvious that the discriminating expressions that divide the parameter sphere
a2 + b2 + c2 = 1 into the regions of different behavior of the system are a,b,c, a+b+c.
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5 Appendix B

Euler equations
aẋ = (b − c)yz,
bẏ = (c − a)xz,
cż = (a − b)xy

(16)

are of the same homogeneity as (1) and could be studied by the same methods. In
particular, there are groups of the similarity of the phase space and the parameter space
with the generators of the groups (4) and (5).

Figure 3: The development of the sphere. Phase portraits when a=1, b=2, c=3

Figure 4: The development of the sphere. Phase portraits when a=1, b=2, c=1.5

The projection interpretation of a vector field of the equations (16) has the following
singular points

0 : 0 : 1 λ2 + (b−c)(a−c)
ab

0 : 1 : 0 λ2 + (b−c)(b−a)
ac

1 : 0 : 0 λ2 + (a−c)(a−b)
bc

(17)

It is obvious that the discriminating expressions that divide parameter sphere a2 +
b2 + c2 = 1 into the regions of the diverse behavior of the system are a, b, c, a-b, b-c, a-c.

The first integrals of the equations are

I1 = a(c − a)x2 − b(b − c)y2 = C1,
I2 = b(a − b)y2 − c(c − a)z2 = C2,

(18)

that allow one to calculate the generators of the groups of the phase curve similarity
according to formulae (11) and (12).
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In this paper we present a version of the general polynomial involutive algorithm for
computing Janet bases specialized to toric ideals. The relevant data structures are Janet
trees which provide a very fast search for a Janet divisor. We broach also efficiency issues
in view of application of the algorithm presented to computation of toric ideals.

1 Introduction

We consider the problem of computing a Janet basis of a toric ideal IA in K[x] ≡
K[x1, . . . , xn] generated by binomials of the form [1]

IA = { xu − xv | u,v ∈ Nn, π(u) = π(v), gcd(xu,xv) = 1 } .

Here u,v ∈ Nn and π is the semigroup homomorphism

π : Nn → Zd, u = {u1, . . . , un} → u1a1 + · · · + unan

where ai ∈ Zd (1 ≤ i ≤ n).
Given a set of binomials generating a toric ideals, the problem of constructing its

Gröbner basis is usually (except small problems) rather expensive from the computational
point of view [2]. In practice, for this particular problem, one typically deals with a large
number n of variables and their degrees. If d is the maximal degree of the initial binomials,
then the degree of a reduced Gröbner basis is bounded by [3]

2 ·
(

d2

2
+ d

)2n−1

.

But for all that the reduced Gröbner basis is also binomial since the binomial structure is
preserved during the Buchberger algorithm [4, 5]. Similarly, the involutive algorithms [6]
based on the sequential multiplicative reductions of nonmultiplicative prolongations of
the intermediate polynomials preserve the binomial structure. The output involutive
basis which is also a Gröbner basis though generally redundant.
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Thus, unlike construction of reduced Gröbner bases or involutive bases for general
polynomial ideals, the integer arithmetics which may take most of computing time is not
important for binomial ideals. In this case a fast search of monomial divisors for perform-
ing reductions of S-polynomials may become crucial in acceleration of computations.

Recently [8, 8] we designed and implemented involutive algorithms specialized to con-
structing Janet bases of monomial and polynomial ideals. Janet division as well as any
other involutive division [6] provides uniqueness of an involutive divisor in a polynomial
set with co-prime leading monomials. This allows one to organize a very fast search for a
Janet divisor using special data structures for intermediate polynomial sets called Janet
trees.

The main goal of this paper is to discuss the issue of practical efficiency in computing
Janet bases of toric ideals based on the use of Janet trees. Since one of the most important
applications of toric ideals is integer programming we shortly describe this application [9]
in the next section.

2 Toric Ideals and Integer Programming

Let A be a matrix of dimension m×n with integer entries and b ∈ Zm, c ∈ Zn be vectors.
The following optimization problem

min{ cTx | x ∈ Nn, Ax = b }

is called a problem of integer programming.
We shall assume that c ∈ Nn. If there exists vector x0 satisfying Ax0 = b, x0 ∈ Nn,

then the problem of finding minimum of function cTx can be reduced to all kinds of
transformation of the initial vector state x0 using ker(A).

The problem of determining ker(A) can be formulated in terms of toric ideals. Indeed,
every vector u ∈ ker(A) may be uniquely represented as u = u+−u− where both u+ and
u− are nonnegative and have disjoint support. Associate symbol vi with the i-th column
of matrix A. Then the ideal

IA = { vu+ − vu− | u+ − u− = u ∈ ker(A) }

associated with ker(A) is toric. Given the initial solution x0, the optimal solution can be
found as follows [9]:

1. Construct a basis of the toric ideal IA.

2. Construct a reduced Gröbner basis or an involutive basis of IA with respect to the
admissible monomial ordering �c generated by vector c.

3. Reduce monomial vx0 modulo the constructed basis to obtain the optimal solution.

Therefore, the reduced Gröbner basis or any involutive basis of the associated toric ideal
IA provide an algorithmic tool for solving the problem of integer programming.
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3 Janet Bases of Toric Ideals

3.1 Definition of Janet Basis

In our papers [6] the Gröbner bases of special type, called involutive and based on the
concept of involutive division were introduced. Given a set of coprime monomials and
an involutive division, any monomial may have at most one involutive divisor in the set.
This property of the involutive division allows one to design an efficient search for the
involutive divisor using the method of separative monomials [10] for a general involutive
division or Janet trees [7] for Janet division.

Because of a larger number of variables and unimportance of integer arithmetical
operations over coefficients of the binomials, the practical complexity of an algorithm for
construction of Gröbner or Janet bases is caused by an enormous number of binomials
arising in computation of the basis. A faster search for divisors may accelerates the
computation substantially.

By definition of Janet division [6] (which formalizes the pioneering ideas of Janet [11])
induced by the order

x1 � x2 � . . . � xn (1)

on x, a polynomial set F is partitioned into the groups labeled by non-negative integers
d1, . . . , di:

[d1, . . . , di] = { f ∈ F | dj = degj(lm(f)), 1 ≤ j ≤ i }
where degi(u) denotes the degree of xi in monomial u and lm(f) denotes the leading
monomial of f . A variable xi is called (Janet) multiplicative for f ∈ F if i = 1 and

deg1(lm(f)) = max{ deg1(lm(g)) | g ∈ F },
or if i > 1, f ∈ [d1, . . . , di−1] and

degi(lm(f)) = max{ degi(lm(g)) | g ∈ [d1, . . . , di−1] } .

If a variable is not multiplicative for f ∈ F , it is called (Janet) nonmultiplicative for f .
In the latter case we shall write xi ∈ NMJ(f, F ). u ∈ lm(F ) is a Janet divisor of w ∈ M,
if u | w and monomial w/u contains only multiplicative variables for u. In this case we
write u |J w.

Let lm(F ) = { lm(f) | f ∈ F }. Then a polynomial set F is called Janet autoreduced
if each term in every f ∈ F has no Janet divisors among lm(F ) \ lm(f). A polynomial h
is said to be in the Janet normal form modulo F if every term in h has no Janet divisors
in lm(F ). In that follows NFJ(f, F ) denotes the Janet normal form f modulo F .

A Janet autoreduced set F is called a Janet basis if

(∀f ∈ F ) (∀x ∈ NMJ(f, F )) [ NFJ(f · x, F ) = 0 ] . (2)

A Janet basis G is called minimal if for any other Janet basis F of the same ideal the
inclusion lm(G) ⊆ lm(F ) holds. If both G and F are monic this inclusion implies G ⊆ F .
A Janet basis is a Gröbner one, though generally not reduced. However, similarly to a
reduced Gröbner basis, a monic minimal Janet basis is uniquely defined by an ideal and
a monomial order. In that follows we deal with minimal Janet bases only and omit the
word ”minimal”.
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3.2 Janet Trees and Search for Janet Divisor

Consider now a binary Janet tree [7] whose structure reflects the above partition of ele-
ments in U into the groups which sorted in the degrees of variables within every group.
Before description of the general structure of Janet trees we explain it in terms of the
concrete example [7]

U = {x2y, xz, y2, yz, z2}, (x � y � z)

and portray it in the form of Janet tree as shown below. In doing so, the monomials
in set U are assigned to the leaves of the tree. The monomial with increased by one
degree of the current variable is assigned to the left child whereas the right child points
at the next variable with respect to chosen ordering. In contrast to Janet tree presented
in paper [7], the below tree takes into account sparseness of monomials that is inherent in
toric ideals. The related information is given in pairs of integers placed in brackets where
the first element represents the number of current variable and the second one represents
its degree.
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(1,1)

(1,2)

(2,0)

(2,0)

(2,1)

Consider now the structure of Janet tree of the general form as a set JT := ∪{ν} of internal
nodes and leaves which corresponds to a nonempty binomial set. To every element ν of
the tree we shall assign the set of five elements ν = {v, d, nd, nv, nb} with the following
structure:

var(ν) = v is the index of the current variable
dg(ν) = d is the degree of the current variable
ndg(ν) = nd is the pointer to the next node in degree
nvr(ν) = nv is the pointer to the next node in variable
bnm(ν) = bn is the pointer to binomial
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In the absence of a child we shall assign the value nil to the corresponding pointer.
Wherever it does not lead to misunderstanding we shall identify the pointers nd and nv
with the nodes they point out. To the root of JT we assign ν0 with var(ν0) = 1 in
accordance with labeling (1) and dg(ν0) = 0.
The internal nodes and leaves of tree JT are characterized by the states:

Internal node: ((nv 
= nil ∧ v < var(nv)) ∨ (nd 
= nil ∧ d < dg(nd))
∧ bn = nil

Leaf: nv = nil ∧ nd = nil ∧ bn 
= nil ∧ d = dg(lm(bn)).

For a fast search for Janet divisor in the given tree one can use the following algorithm
J-divisor which is an adaptation to the above structure of Janet tree of the algorithm
described in [7].

Algorithm: J-divisor(JT, w)

Input: JT , a Janet tree; w, monomial
Output: bn, a binomial such that lm(bn) |J w,

or nil, otherwise
1: ν := ν0

2: while degvar(ν)(w) ≥ dg(ν) do
3: while ndg(ν) and degvar(ndg(ν))(w) ≥ dg(ndg(ν)) do
4: ν := ndg(ν)
5: od
6: if nvr(ν) then
7: ν := nvr(ν)
8: elif ndg(ν) then
9: return nil

10: else
11: return bnm(ν)
12: fi
13: od
14: return nil

Apparently, the next theorem formulated and proved in [7] is valid for the adapted algo-
rithm as well.

Theorem 1. Let d be the maximal total degree of the leading monomials of binomials in
n variables which constitute the finite set U . Then the complexity bound of the algorithm
J − divisor and the binary search algorithm is given by

tJ−divisor = O(d + n),

tBinarySearch = O(n((d + n) log(d + n) − n log(n) − d log(d))).

Thus, the complexity bound for the search of Janet divisor is O(n + d) where n is the
number of variables and d is the maximal degree of the leading monomials in the binomial
basis. Since this bound is even lower than that for the binary search algorithm, one can
expect that the involutive completion of binomial ideals may be faster than the reduced
Gröbner basis completion.
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3.3 Algorithms for Binomial Janet Bases

Given the generating binomial set F of a toric ideal IA, the following algorithm Binomi-
alJanetBasis which is a special form of the general polynomial algorithm [6, 8] constructs
a Janet basis of IA.

Algorithm: BinomialJanetBasis(F, ≺)

Input: F ∈ R \ {0}, a finite binomial set; ≺, an admissible
ordering

Output: G, a Janet basis of the ideal generated by F
1: choose f ∈ F with the lowest lm(f) w.r.t. �
2: T := {f, lm(f), ∅}
3: Q := { {q, lm(q), ∅} | q ∈ F \ {f} }
4: Q :=JanetReduce(Q, T )
5: while Q 
= ∅ do
6: choose p ∈ Q with the lowest lm(bin(p)) w.r.t. �
7: Q := Q \ {p}
8: if lm(bin(p)) = anc(p) then
9: for all { r ∈ T | lm(bin(r)) � lm(bin(p)) } do

10: Q := Q ∪ {r}; T := T \ {r}
11: od
12: p := NFJ(bin(p), T )
13: fi
14: T := T ∪ {p}
15: for all q ∈ T and x ∈ NMJ(bin(q), T ) \ nmp(q) do
16: Q := Q ∪ { {bin(q) · x, anc(q), ∅} }
17: nmp(q) := nmp(q) ∩ NMJ(bin(q), T ) ∪ {x}
18: od
19: Q :=JanetReduce(Q, T )
20: od
21: return G := { bin(f) | f ∈ T }

As well as in [8] to apply the involutive criteria and avoid repeated prolongations we shall
endow with every binomial f ∈ F the triple structure

p = {f, u, vars}

such that

bin(p) = f is binomial itself,
anc(b) = u is the leading monomial of a binomial ancestor of f in F
nmp(p) = vars is a (possible empty) subset of variables.

Here the ancestor of f is a polynomial g ∈ F with u = lm(g) and such that u | lm(p).
Moreover, if deg(u) < deg(lm(p)), then every variable occurring in the monomial lm(p)/u
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is nonmultiplicative for g. Besides, for the ancestor g the equality anc(g) = lm(g) must
hold. These conditions mean that polynomial p was obtained in the course of the below
algorithm BinomialJanetBasis from g by a sequence of nonmultiplicative prolongations.
This tracking of the history in the algorithm allows one to use the involutive analogues
of Buchberger’s criteria to avoid unnecessary reductions.

The set vars contains those nonmultiplicative variables that have been already used
in the algorithm for construction of nonmultiplicative prolongations. This set serves to
prevent repeated prolongations.

In order to provide minimality of the output Janet basis we separate [6, 8] the whole
polynomial data into two subsets which are contained in sets T and Q. Set T is a part
of the intermediate binomial basis. Another part of the intermediate basis is contained
in set Q together with all the nonmultiplicative prolongations of polynomials in T which
must be examined in accordance to the above definition (2) of Janet bases. In so doing,
after every insertion of a new element p in T all elements r ∈ T such that

lm(bin(r)) � lm(bin(p))

are moved from T to Q as the for-loop 6-11 in algorithm BinomialJanetBasis does.
Such a displacement guaranties that the output basis is minimal [6].

It should also be noted that for any triple p ∈ T the set vars must always be a subset
of the set of nomultiplicative variables for bin(p)

vars ⊆ NMJ(bin(p), T ) . (3)

In the description of algorithm JanetBinomialBases we use the contractions:

NMJ(bin(p), T ) ≡ NMJ(bin(p), {bin(f) | f ∈ T}) ,

NFJ(bin(p), T ) ≡ NFJ(bin(p), {bin(f) | f ∈ T}) ,

The insertion of a new polynomial in T may generate new nonmultiplicative prolongations
of elements in T which are added to Q in line 16. To avoid repeated prolongations
the set nmp(q) of Janet nonmultiplicative variables for g has been used to construct its
prolongations is enlarged with x in line 17. The intersection placed in this line preserves
the condition (3).

The subalgorithms JanetReduce and NFJ perform Janet reduction of polynomials
in Q modulo polynomials in T and presented below. In addition to reductions in lines
4 and 19, the Janet normal form computation is placed in line 12. This is because the
replacement of elements from T to Q may lead to the tail reducibility of the binomial in
p. Such a reducibility may be caused by converting of some nonmultiplicative variables
for binomials in T into multiplicative due to the replacement.

In subalgorithm JanetReduce computation of the Janet normal form h is done in
line 6 for every binomial bin(p) in T . If h is nonzero, then line 8 checks if lm(bin(p)) was
subjected by reduction. If the reduction took place lm(h) cannot be multiple [6] of any
monomial in the set

{ lm(bin(g)) | g ∈ T }.
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Therefore, one has to insert the triple with h in the output set Q as shown in line 9 as h can-
not have ancestors among polynomials in T and one must also examine all nonmultiplica-
tive prolongations of h. If lm(bin(p)) is Janet irreducible modulo {lm(bin(g)) | g ∈ T},
then the triple {h, anc(p), nmp(p)} is added to Q in line 11.

Algorithm: JanetReduce(Q, T )

Input: Q and T , sets of triples
Output: Q whose polynomials are Janet head reduced modulo T
1: S := Q
2: Q := ∅
3: while S 
= ∅ do
4: choose p ∈ S
5: S := S \ {p}
6: h := NFJ(p, T )
7: if h 
= 0 then
8: if lm(bin(p)) 
= lm(h) then
9: Q := Q ∪ {h, lm(h), ∅}

10: else
11: Q := Q ∪ {h, anc(p), nmp(p)}
12: fi
13: fi
14: od
15: return Q

Subalgorithm NFJ(p, T ) performs the Janet reduction of a binomial g = bin(p) modulo
polynomial set in T .

For the head reducible input binomial bin(f) the two criteria are verified in line 5:

• CriterionI(f, g) is true iff anc(f) · anc(g) | lm(bin(f)).

• CriterionII(f, g) is true iff deg(lcm(anc(f) · anc(g))) < deg(lm(bin(f)).

These criteria are the Buchberger criteria [12] adapted to the involutive completion pro-
cedure. If any of the two criteria is true, then NF (bin(f), T ) = 0 [8].

It should be noted that the Janet normal form is uniquely defined and, hence, uniquely
computed by the above subalgorithm. This uniqueness hold because of the uniqueness of
a Janet divisor among the leading terms of binomials in T at every step of intermediate
computations [6].
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Algorithm: NFJ(f, T )

Input: f = {bin(f), anc(f), nmp(f)}, a triple; T , a set of triples
Output: h = NFJ(bin(f), T ), the Janet normal form of the

binomial in f modulo binomial set in T
1: G := {bin(g) | g ∈ T}
2: h := bin(f)
3: if lm(h) is Janet reducible modulo G then
4: choose g ∈ T such that lm(bin(g)) |J lm(h)
5: if lm(h) 
= anc(f) and

CriterionI(f, g) or CriterionII(f, g) then
6: return 0
7: fi
8: else
9: while h 
= 0 and h has a term t Janet reducible modulo G do

10: choose q ∈ G such that lm(q) |J t
11: h := h − q · t/ lm(q)
12: od
13: fi
14: return h

4 Examples

As we emphasized in Sect.3.1, in the course of involutive completion of the initial binomial
generators for a toric ideal the reduction can be performed very fast due to the fast search
for a Janet divisor, This fast search is provided by the use of the Janet tree structures for
intermediate binomial set. Our computer experiments with C/C++ codes implementing
polynomial algorithms for Janet bases [8] perfectly strengthen this theoretical fact. In
particular this fast reduction in addition to suppressing swell of intermediate integer
coefficients results in high computational speed observed for the benchmark collection used
for testing Gröbner bases software [8]. These benchmarks, however, are not very ”sparse”
with respect to degrees of variables occurring in the generating set. By contrast, the
generating binomial sets for toric ideals especially for those arising in integer programming
problem are usually highly sparse. This may lead to much larger cardinality of a Janet
basis than that of the reduced Gröbner basis and thereby annihilate the advantages of
involutive reduction.

Consider the example taken from [13]

IA = { x0x1x2x3x4 − 1, x29
2 x5

3 − x14
1 x20

4 , x39
1 − x25

2 x14
3 } .

Our C++ package [8] generates the degree-reverse-lexicographical Janet basis of IA with
7769 binomials whose sorting with respect to the ordering chosen gives

{ x0x
3
1x3x

281
4 − x1x

280
2 , x0x

61
2 x2

3x
221
4 − x1x

279
2 , x0x

2
1x3x

281
4 − x280

2 , . . . , x0x1x2x3x4 − 1 }
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where we explicitly show only three highest ranking binomials and the lowest one. The
computing time on a Pentium III 700 Mhz based PC running under RedHat Linux 6.2 is
6 seconds that is noticeably larger than the running time for direct computation of the
reduced Gröbner basis which contains 19 binomials only:

{ x0x1
2x3x4

281 − x2
280, x2

281 − x1x4
280, x0x3

2x4
221 − x1x2

218, x1
2x2

219 − x3x4
220,

x0x3
3x4

161 − x1
4x2

156, x1
5x2

157 − x3
2x4

160, x0x3
4x4

101 − x1
7x2

94, x1
8x2

95 − x3
3x4

100,

x0x1
4x4

61 − x2
61, x2

62x3 − x1
3x4

60, x0x3
5x4

41 − x1
10x2

32, x1
11x2

33 − x3
4x4

40,

x0x2
26x3

15x4 − x1
38, x1

39 − x2
25x3

14, x0x1
15x4

21 − x2
28x3

4, x2
29x3

5 − x1
14x4

20,

x0x3
10x4

21 − x1
24x2

3, x1
25x2

4 − x3
9x4

20, x0x1x2x3x4 − 1 } .

Accordingly, such a computer algebra system as Singular [17] needs much less than 1
second to compute this Gröbner basis on the same computer.
Having ascertained this drawback of the involutive method with respect to the Gröbner
basis one in computing toric ideals we designed another algorithmic approach to com-
puting Gröbner bases [14]. This approach preserves the Janet-like tree structure and
uniqueness of a divisor though underlying division is not involutive since it does not sat-
isfy the axioms in [6]. On the other hand the resulting bases unlike Janet bases are often
reduced as Gröbner bases and their cardinality is always less or equal to the cardinality of
Janet bases. For toric ideals the new bases are much more compact then Janet bases. We
have not implemented yet the new algorithm and so we demonstrate the compactness of
its output in comparison with algorithm BinomialJanetBasis by the following simple
example taken from [2]:

IA = { x7 − y2z, x4w − y3, x3y − zw } .

The reduced Gröbner basis and Janet basis of this toric ideal for the degree-reverse-lexico-
graphic order induced by x � y � z � w are

{ x7 − y2z, x4w − y3, x3y − zw, y4 − xzw2 }

and

{ x7 − y2z, x6y − x3zw, x6w − x2y3, x5y − x2zw, x2y4 − x3zw2, x5w − xy3,

x4y − xzw, x2zw2 − xy4, x4w − y3, x3y − zw, y4 − xzw2 } ,

respectively. Their cardinalities are 4 and 11. The new basis contains 5 elements

{ x7 − y2z, x4y − xzw, x4w − y3, x3y − zw, y4 − xzw2 }

and contains only single extra element in comparison with the reduced Gröbner basis.
It should be noted that there are also a number of other efficient algorithms computing

Gröbner bases of toric ideals (see, for example, [2, 15, 16]) which are differ greatly from
just completion of a generating binomial set to a Gröbner basis. After implementation
of our new algorithm we are planning to run the underlying code for collection of large
examples given in [1, 2] and other references.
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We study the classical dynamics of mechanical model obtained from the light-cone
version of SU(2) Yang-Mills field theory under the supposition of the gauge potential
dependence only on “time” along the light-cone direction. The computer algebra system
Maple was used strongly to compute and separate the complete set of constraints. In
contrast to the instant form of the Yang-Mills mechanics the constraints here represent
a mixed form of first and second-class constraints and reduce the number of the physical
degrees of freedom up to four canonical one.

1 Introduction

Notion of the evolution of observables is the key element in analyzing of the physical
properties of any relativistic field theory. After Dirac’s famous work entitled “Forms
of Relativistic Dynamics” [1] it has been recognized that the different choices of the
time evolution parameter can drastically change the content and interpretation of the
theory. The simplest and well-known example illustrated this observation is the light-cone
dynamics of free scalar field. In contrast to the corresponding instant time model, in this
case, owing to the choice of time evolution parameter along the light-cone characteristics,
theory becomes degenerate, the corresponding Hessian is zero [2]. Dealing with gauge
theories on the light-cone we encounter much more complicated description than for the
ordinary instant form dynamics (see e.g. recent reviews [3]-[7]).

In the present talk we would like to state some results concerning the light-cone de-
scription of simple mechanical model originated from the SU(2) Yang-Mills theory under
assumption of spatial homogeneity of the fields on the light-cone. This means that we
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shall consider the light-cone action for SU(2) Yang-Mills model with the gauge potential
only light-cone time depending. The dynamical system, obtained under such a supposi-
tion contain finite number of degrees of freedom and possesses gauge invariance. Our aim
is to study its Generalized Hamiltonian dynamics [2, 8, 9] and to compare it with the
corresponding instant form of the Yang-Mills mechanics, intensively studed during the
last decades (see e.g [11]-[17] and references therein).

Using the Generalized Hamiltonian formalism for degenerate systems [2, 8, 9] and
exploiting the Maple package [10] implementing algorithm Dirac-Gröbner for computation
and separation of constraints we found the complete set of constraints and performed their
separation into the sets of first and second-class constraints.

Our calculations demonstrate that the light-cone version of Yang-Mills mechanics dif-
fers from its instant form counterpart in the character of the local gauge invariance and
therefore the corresponding unconstrained Hamiltonian systems describe different canon-
ically non-equivalent models.

2 Description of the model

Let us start with a general formulation of the Yang-Mills theory on four-dimensional
Minkowski space M4, endowed with some arbitrary metric gP , tensor field of type (0, 2),

gP = gμν ωμ ⊗ ων . (1)

Here we use a basis ωμ , μ = 0, . . . , 3 of 1-forms in the cotangent space T ∗
P (M4). The

metric defines a inner product between two vectors in the tangent space TP (M4) and if
one fixes a basis eμ in TP (M4), dual to the basis of 1-forms ωμ, the components of the
metric tensor are given as

gμν = gP (eμ, eν) .

Using this geometric settings, the action of the Yang-Mills field theory can be repre-
sented in coordinate free form

I :=
1

g2

∫
M4

tr F ∧ ∗F . (2)

Here the SU(2) algebra valued curvature 2-form

F := dA + A ∧ A

is constructed from the connection 1-form A = Aμ ωμ. The connection and curvature as
Lie algebra valued quantities are expressed in terms of the Pauli matrices σa , a = 1, 2, 3 1

A = Aa σa

2i
, F = F a σa

2i
.

1The Pauli matrices are defined to satisfy

[σa, σb] = 2 i εabc σc , trσaσb = 2 δab .
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The metric g enters the action through the dual field strength tensor defined in accordance
to the Hodge star operation

∗Fμν =
1

2
εμναβ Fαβ .

If one fixes Lorentzian coordinates in Minkowski space M4 xμ = (x0, x1, x2, x3) and
choose a coordinate basis for the tangent vectors eμ = ∂

∂xμ , we have the conventional
Minkowskian metric g = ‖1,−1,−1,−1‖ and the corresponding action (2) will provide
Yang-Mills equations in the instant form with a time variable t = x0.

To formulate the light-cone version of the theory let us introduce basis vectors in the
tangent space T ∗

P (M4)

e± :=
1√
2

(e0 ± e3) , e⊥ := (ek , k = 1, 2) .

The first two vectors are tangent to the light-cone and the corresponding coordinates are
referred usually as the light-cone coordinates xμ =

(
x+, x−, x⊥) with

x± :=
1√
2

(
x0 ± x3

)
, x⊥ :=

(
xk , k = 1, 2

)
.

The light-cone basis vectors (e±, ek) determine, according to (1), the so-called light-cone
metric, whose non-zero elements are

g+− = g−+ = −g11 = −g22 = 1

and thus the 1-form connection in the light-cone formulation is given as

A = A+ dx+ + A− dx+ + Ak dxk . (3)

Now we are ready to define the Lagrangian corresponding to the light-cone Yang-
Mills mechanics. By definition the Lagrangian of Yang-Mills mechanics follows from the
Lagrangian of Yang-Mills theory if one suppose that 1-form connection A depends only
on light-cone “time variable” x+

A = A(x+) .

Using the definition (2) and (3) we find the Lagrangian of the Yang-Mills light-cone
mechanics

L :=
1

2g2

(
F a

+− F a
+− + 2 F a

+k F a
−k − F a

12 F a
12

)
, (4)

where the field-strength tensor light-cone components are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F a
+− =

∂Aa
−

∂x+ + εabc Ab
+ Ac

− ,

F a
+k =

∂Aa
k

∂x+ + εabc Ab
+ Ac

k ,

F a
−k = εabc Ab

− Ac
k ,

F a
ij = εabc Ab

i Ac
j , i, j, k = 1, 2 .

(5)
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3 Hamiltonian formulation of SU(2) Yang-Mills

mechanics on the light-cone

In this section we present the main results of this paper. The underlying computations
were done with the Maple package implementing algorithm Dirac-Gröbner [10] for com-
putation and separation of constraints for Lagrangian dynamical systems of polynomial
type. Some computational details are described in the next section.

The choice of the light-cone time variable

τ = x+

as the evolution parameter prescribes a certain Legendre transformation of the dynamical
variables (A+, A−, Ak)

2⎧⎨⎩ π−
a = ∂L

∂Ȧa
−

= 1
g2

(
Ȧa− + εabc Ab

+ Ac
−
)

,

πk
a = ∂L

∂Ȧa
k

= 1
g2 εabc Ab

− Ac
k .

(6)

Given this set of equations the Dirac-Gröbner algorithm designed in [10] and leads to the
the primary constraints

ϕ(1)
a := π+

a = 0 , (7)

χa
k := g2 πa

k + εabc Ab
−Ac

k = 0 . (8)

Then, the canonical Hamiltonian is given by

HC =
g2

2
π−

a π−
a − εabc Ab

+

(
Ac

− π−
a + Ac

k πk
a

)
+ V (Ak) (9)

with a potential term in (9)

V (Ak) =
1

2g2

[(
Ab

1A
b
1

)
(Ac

2A
c
2) −
(
Ab

1A
b
2

)
(Ac

1A
c
2)
]

.

The non vanishing Poisson brackets are

{Aa
± , π±

b } = δa
b ,

{Aa
k , πl

b} = δl
kδ

a
b .

With respect to these fundamental Poisson brackets the primary constraints
(
ϕ

(1)
a , χa

k

)
obey the algebra

{ϕ(1)
a , ϕ

(1)
b } = 0 ,

{ϕ(1)
a , χb

k} = 0 ,

{χa
i , χb

j} = −2 g2εabc Ac
− gij .

2To simplify the formulas we shall use overdot to denote derivative of functions with respect to light-
cone time variable x+. Further we shall treat in equal footing the up and down isotopic indexes, denoted
with a, b, c, d.

86



According to the Dirac’s prescription, the dynamics for degenerate theories is governed by
the total Hamiltonian which differs from the canonical one by linear combination of the
primary constraints. In case of the light-cone Yang-Mills mechanics the total Hamiltonian
has the form

HT = HC − 2 tr
(
U(τ) ϕ(1)

)− 2 tr (Vk(τ) χk) , (10)

where U(τ) and Vk(τ) are arbitrary SU(2) valued functions of the light-cone time τ =
x+. Using this Hamiltonian it is necessary to check the dynamical self-consistence of
the primary constraints. ¿From the requirement of conservation in time of the primary
constraints ϕ

(1)
a the following equations follows

0 = ϕ̇(1)
a = {π+

a , HT} = εabc
(
Ab

−π−
c + Ab

kπ
k
c

)
.

It follows that there are three secondary constraints ϕ
(2)
a

ϕ(2)
a := εabc

(
Ab

−π−
c + Ab

kπ
k
c

)
= 0 , (11)

which obey the SO(3, R) algebra

{ϕ(2)
a , ϕ

(2)
b } = εabc ϕ(2)

c .

The same procedure for the primary constraints χa
k gives

0 = χ̇a
k = {χa

k , HC} − 2 g2 εabc V b
k Ac

− . (12)

Because the matrix ‖εabc Ac
−‖ is degenerate, its rank is

rank‖ εabc Ac
− ‖ = 2 ,

one can determine among the Lagrange multipliers V k
b only four ones. The unit null

vector of the matrix na‖ εabc Ac
− ‖ = 0 is

na =
Aa

−√
(A1−)2 + (A2−)2 + (A3−)2

.

Using this null vector one can can decompose the six primary constraints χa
k

χa
k⊥ := χa

k −
(
nbχb

k

)
na ,

ψk := naχa
k .

Constraints χa
k⊥ are functionally dependent due to the conditions

na χa
k⊥ = 0 (13)

and choosing among them any four independent constraints we are able to determine four
Lagrange multipliers V k

b⊥. The two constraints ψk satisfy the Abelian algebra

{ψi , ψj} = 0 .
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One can verify that the Poisson brackets of ψk and ϕ
(2)
a with the total Hamiltonian on

the constraint surface (CS) are zero

{ψk , HT} |CS = 0 , (14)

{ϕ(2)
a , HT} |CS = 0 (15)

and thus there are no ternary constraints. One can now summarize: we arrive at the set

of constraints
(
ϕ

(1)
a , ψk, ϕ

(2)
a , χb

k⊥
)
. The Poisson bracket algebra of the three first one is

{ϕ(1)
a , ϕ(1)

a } = 0 , (16)

{ψi , ψj} = 0 , (17)

{ϕ(2)
a , ϕ

(2)
b } = εabc ϕ(2)

c , (18)

{ϕ(1)
a , ψk} = {ϕ(1)

a , ϕ
(2)
b } = {ψk , ϕ(2)

a } = 0 . (19)

The constraints χb
k⊥ satisfy the algebra

{χa
i⊥ , χb

j⊥} = −2 g2 εabc Ac
− gij (20)

and the Poisson brackets between these two sets of constraints are

{ϕ(2)
a , χb

k⊥} = εabc χc
k⊥ , (21)

{ϕ(1)
a , χb

k⊥} = {ψi , χ
b
j⊥} = 0 . (22)

From this algebra of constraints we conclude that we have eight first-class constraints(
ϕ

(1)
a , ψk, ϕ

(2)
a

)
and four second-class constraints χa

k⊥. According to counting of the de-

grees of freedom eliminated by all these constraints, after reduction to the unconstrained
phase space, instead of 24 degrees of freedom possessing the Yang-Mills mechanics on the
light-cone we arrive at 24 − 4 − 2(3 + 3 + 2) = 4 unconstrained degrees of freedom.

Thus one can conclude that in contrast to the instant form of the Yang-Mills mechanics,
where the number of the unconstrained canonical pairs is 12, in the light-cone version we
have only 4 physical canonical variables. It is important to note that such a decreasing
of the numbers of the physical coordinates has two reasons: as well as the presence of
the second-class constraints as the additional first-class constraint. As it is well-known
the presence of the first-class constraints in the theory means the existence of a certain
gauge symmetry. Our analysis shows that in the light-cone Yang-Mills mechanics the
original SU(2) gauge symmetry of the field theory, after supposition of the gauge fields
homogeneity, transforms into SU(2) × U(1) × U(1) symmetry.

4 Computational aspects

The system of Euler-Lagrange equations for the Lagrangian (4) with the generalized
coordinates (5) as well as the system of Hamiltonian equations which are obtained by the
Legendre transformation (6) is under-determined. Just under-determinacy is inherent in
constrained dynamical systems [1, 2, 8, 9], and to study such systems one has to compute
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their ”hidden” constraints. For the quantization purposes one has also to separate the
constraints into disjoint sets of first-class and second-class constraints.

In the paper [10] a general algorithm for computing and separating constraints for
polynomial Lagrangians was devised. The algorithm combines the constructive ideas of
Dirac [8] with the Gröbner bases techniques and called Dirac-Gröbner algorithm. Its
implementation was done in Maple and in this section we characterize briefly the main
computational steps one needs to obtain the results of the previous section as they were
done by the Maple code. In so doing the below described computational steps is nothing
else than concretization of the Dirac-Gröbner algorithm to our model described in Sect.2.

Denote by qi and q̇i (1 ≤ i ≤ 12), respectively, the generalized Lagrangian coordinates
in (4) listed as

A1
+, A2

+, A3
+, A1

1, A
2
1, A

3
1, A

1
2, A

2
2, A

3
2, A

1
−, A2

−, A3
−

and their velocities (time derivatives). Then momenta are

pi =
∂L

∂q̇i

(1 ≤ i ≤ 12) . (23)

To compute the primary constraints it suffices to eliminate velocities q̇i from the system
(23) polynomial in q̇i, qi, pi. The elimination are performed by computing a Gröbner
basis [18, 19] for the generating polynomial set

{ pi − ∂L

∂q̇i

| 1 ≤ i ≤ 12 }

for an ordering (in Maplelexdeg) eliminating velocities q̇i. In the obtained set all al-
gebraically dependent constraints [18] are ruled out. Thus (7)-(8) is the algebraically
independent set.

The canonical Hamiltonian (9) is determined as reduction of

piq̇i − L

modulo the Gröbner basis computed. Then computation of the Poisson brackets between
the Hamiltonian variables (generalized coordinates and momenta) as well as computation
of the total Hamiltonian (10) is straightforward.

Next step is construction of the secondary constraints (11)-(12). It is done by reduction
of the Poisson brackets of the primary constraints with the total Hamiltonian modulo
the set of primary constraints. Again the Gröbner basis technique provides the right
algorithmic tool for doing such computations. Thus, the complete set of algebraically
independent constraints consists of twelve elements

F = { ϕ(1)
a , ψk, ϕ

(2)
a , χb

k⊥ } , (a, b = 1, 2, 3; k = 1, 2) , (24)

where from the six constraints χb
k⊥ only four algebraically independent are included in

(24) in accordance with the two relations (13).
Next, to separate the complete set of constraints into first and second classes one computes
the 12 × 12 Poisson bracket matrix on the constraint surface

M := ‖ {fi , fj} |CS ‖ ,
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where fi, fj ∈ F . Since rank‖M‖ = 4 the complete constraint set F can be separated in
four second-class constraints and eight first-class ones. To select the first-class constraints
it suffices to compute a basis

A = {a1, . . . , a8}
of the null space for the matrix ‖M‖ and then construct the first-class constraints as

(ai)kfk (1 ≤ i ≤ 8) .

To extract the second-class constraints from F one constructs 8×12 matrix ‖ (ai)j ‖ from
the components of the vectors in A and finds a basis

B = {b1, . . . ,b4}
of the null space of the constructed matrix. Then every vector b ∈ B yields a second-class
constraint:

(bi)kfk (1 ≤ i ≤ 4) .

As a result, eight first-class constraints are
(
ϕ

(1)
a , ψk, ϕ

(2)
a

)
, whereas four algebraically

independent constraints from χa
k⊥ are of the second-class.

Relations (16)-(19) revealing the structure of the gauge group generated by the first
class constraints can also be computed fully algorithmically. To do this we extended of
Maple package [10] with a general procedure that computes the Poisson bracket of any two
first-class constraints fi and fj as linear combination of elements in the set of first-class
constraints:

{fi , fj} = ck
ij fk . (25)

With that end in view and in order to cope the most general case we implemented the
extended Gröbner basis algorithm [19]. Given a set of polynomials Q = {q1, . . . , qm}
generating the polynomial ideal < Q >, this algorithm outputs the explicit representation

gi = hik qk (26)

of elements in a Gröbner basis G = {g1 . . . , gn} of this ideal in terms of the polynomials
in Q. Having computed a Gröbner basis G for the ideal generated by the first-class
constraints and the corresponding polynomial coefficients hik for the elements in G as given
in (26), the local group coefficients ck

ij (which may depend on the generalized coordinates
and momenta) in (25) are easily computed by reduction [18, 19] of the Poisson brackets
modulo Gröbner basis expressed in terms of the first-class constraints.

However, the use of this universal approach may be very expensive from the computa-
tional point of view. For this reason our Maple package tries first to apply the multivariate
polynomial division algorithm [18] modulo the set of first-class constraints. Due to the
special structure of the primary first-class constraints that usually include those linear
in momenta as in (7), this algorithm often produces the right representation (26); but
unlike the extended Gröbner basis algorithm does it very fast. Correctness of the output
is easily verified by computing of the reminder. If the last vanishes, then the output of the
division algorithm is correct. Otherwise the extended Gröbner basis algorithm is applied.

In our case the division algorithm just produces the correct formulas (16)-(19) for the

Poisson brackets of the first-class constraints
(
ϕ

(1)
a , ψk, ϕ

(2)
a

)
. Similarly, one obtains the

formulas (20)-(22).
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In this paper we show that the involutive algorithm for computation of Janet bases for
polynomial ideals admits an efficient parallelism based on the shared memory architecture.
We present explicit computational results obtained for parallel modular computations on an
two-processor computer. As benchmarks we use those widely exploited for testing Gröbner
bases software.

1 Introduction

The goal of this paper is to study efficiency of parallelism of the algorithm developed in [1]
for computing Janet bases of polynomial ideals. Janet bases, whose structure goes back
to the original Janet concept of involutive systems of partial differential equations [2], are
typical representatives of involutive bases [3, 4, 5, 6, 7]. They have found a number of
applications to mathematics and physics [9].

As well as other involutive bases, Janet bases are (generally redundant) Gröbner
bases [3] and, hence, have an exponential and even subexponential complexity bound [10].
Though in practice, the modern computational algorithms for these bases terminate on
many problems much quicker than one might expect from the worst-case estimation, the
running time and storage space are still very high for polynomial systems of real practical
interest. By this reason parallelization of these algorithms is a problem of great practical
importance.

In the last decade quite a number of attempts have been made to parallelize (see, for
example [11, 12, 13]) the classical Buchberger algorithm for computing Gröbner bases [15].
It turned out that a reasonable scalability cannot be achieved. One of the main reasons is
a very high sensitivity in the course of the Buchberger algorithm on the selection strategy
for critical pairs (S−polynomials). Such a strong dependence inhibits effectiveness of the
parallelization.

In the present paper, by example of Janet bases, we argue that unlike the Buchberger
algorithm, the involutive algorithm [1] admits an effective parallelism.
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2 Polynomial Janet bases

In this paper we use notations and definitions given in [1, 8]: N is the set of non-negative
integers; M = {xd1

1 · · ·xdn
n | di ∈ N} is the set of monomials in the polynomial ring

R = K[x1, . . . , xn] over zero characteristic field K; degi(u) is the degree of xi in u ∈ M;
deg(u) =

∑m
i=1 degi(u) is the total degree of u; � is an admissible [10, 15] monomial

ordering compatible with
x1 � x2 � · · · � xn .

If monomial u divides monomial v we write u | v. A divisor u of a monomial v is called
a proper divisor if deg(u) < deg(v). The leading monomial and the leading term of the
polynomial f ∈ R with respect to � are denoted by lm(f) and lt(f), respectively. If
F ⊂ R is a polynomial set, then lm(F ) denotes the leading monomial set for F , and
Id(F ) denotes the ideal in R generated by F .

Given a finite polynomial set F ⊂ R and a polynomial f ∈ F , the Janet separation
of variables into multiplicative and nonmultiplicative with respect to f is done as follows.
For each 1 ≤ i ≤ n divide F into groups labeled by non-negative integers d1, . . . , di:

[d1, . . . , di] = { f ∈ F | dj = degj(lm(f)), 1 ≤ j ≤ i }.
A variable xi is called (Janet) multiplicative for f ∈ F if i = 1 and

deg1(lm(f)) = max{deg1(lm(g)) | g ∈ F},
or if i > 1, f ∈ [d1, . . . , di−1] and

degi(lm(f)) = max{degi(lm(g)) | g ∈ [d1, . . . , di−1]}.
If a variable is not multiplicative for f ∈ F , it is called (Janet) nonmultiplicative for f .
In the latter case we shall write xi ∈ NMJ(f, F ). u ∈ lm(F ) is a Janet divisor of w ∈ M,
if u | w and monomial w/u contains only multiplicative variables for u. In this case we
shall write u |J w.

A finite polynomial set F is called Janet autoreduced if each term in every f ∈ F has
no Janet divisors among lm(F ) \ lm(f). A polynomial h ∈ R is said to be in the Janet
normal form modulo F if every term in h has no Janet divisors in lm(F ). In that follows
NFJ(f, F ) denotes the Janet normal form of polynomial f modulo F . If the leading
monomial lm(f) of f has no Janet divisors among elements in lm(F ), then we say that f
is in the Janet head normal form modulo F and write f = HNFJ(f, F ).

A Janet autoreduced set F is called a Janet basis of Id(F ) if any nonmultiplicative
prolongation ( multiplication by a nonmultiplicative variable ) of any polynomial in F has
vanishing Janet normal form modulo F :

(∀f ∈ F ) (∀x ∈ NMJ(f, F )) [ NFJ(f · x, F ) = 0 ] . (1)

A Janet basis G of ideal Id(G) is called minimal if for any other Janet basis F of the ideal
the inclusion lm(G) ⊆ lm(F ) holds. If both G and F are monic this inclusion implies
G ⊆ F . A Janet basis is a Gröbner one, though generally not reduced. However, similarly
to a reduced Gröbner basis a monic minimal Janet basis is uniquely defined by an ideal
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and a monomial order. In that follows we deal with minimal Janet bases only and omit
the word ”minimal”.

The below described algorithm JanetBasis for computation of polynomial Janet bases
derived from that described in [1], where one can find more algorithmic details. For pur-
poses of parallelism we added one more input variable: a maximal number of simultaneous
reductions to be done in parallel on an available environment.

As well as in [1] to apply the involutive criteria and avoid repeated prolongations we
shall endow with every polynomial f ∈ F the triple structure

p = {f, u, vars}
such that

pol(p) = f is polynomial f itself,
anc(p) = u is the leading monomial of a polynomial ancestor of f in F,
nmp(p) = vars is a (possible empty) subset of variables.

Here the ancestor of f is a polynomial g ∈ F with u = lm(g) and such that u | lm(p).
Moreover, if deg(u) < deg(lm(p)), then every variable occurring in the monomial lm(p)/u
is nonmultiplicative for g. Besides, for the ancestor g the equality anc(g) = lm(g) must
hold. These conditions mean that polynomial p was obtained in the course of the below
algorithm JanetBasis from g by a sequence of nonmultiplicative prolongations. This
tracking of the history in the algorithm allows one to use the involutive analogues of
Buchberger’s criteria to avoid unnecessary reductions.

The set vars contains those nonmultiplicative variables which have been already used
in the algorithm for construction of nonmultiplicative prolongations. This set serves to
prevent repeated prolongations.

In order to provide minimality of the output Janet basis we separate [1, 4] the whole
polynomial data into two subsets which are contained in sets T and Q. Set T contains a
part of the intermediate basis. Another part of the intermediate basis is contained in set
Q together with all the nonmultiplicative prolongations of polynomials in T which must
be examined in accordance to the above definition (1) of Janet bases. In so doing, after
every insertion of a new element p in T all elements r ∈ T such that

lm(pol(r)) � lm(pol(p))

are moved from T to Q. Such a displacement guaranties that the output basis is mini-
mal [4].

It should also be noted that for any triple p ∈ T the set vars must always be a subset
of the set of nomultiplicative variables of pol(p)

vars ⊆ NMJ(pol(p), T ) . (2)

In the description of algorithm JanetBases we use the following contractions

NMJ(pol(p), T ) ≡ NMJ(pol(p), {pol(f) | f ∈ T}) ,

NFJ(pol(p), T ) ≡ NFJ(pol(p), {pol(f) | f ∈ T}) ,

HNFJ(pol(p), T ) ≡ HNFJ(pol(p), {pol(f) | f ∈ T}) .
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Algorithm: JanetBasis(F, ≺, JMP )

Input: F ∈ R \ {0}, a finite polynomial set; ≺, an admissible
ordering; JMP , the maximal number of simultaneous reduc-

tions
to be done in parallel

Output: G, a Janet basis of Id(F )
1: choose f ∈ F with the lowest lm(f) w.r.t. �
2: T := {f, lm(f), ∅}
3: Q := {{q, lm(q), ∅} | q ∈ F \ {f}}
4: Q :=JanetHeadReduce(Q, T, JMP )
5: while Q 
= ∅ do
6: choose p ∈ Q such that lm(pol(p)) has no proper divisors

among {lm(pol(q)) | q ∈ Q \ {p}}
7: if lm(pol(p)) = 1 then
8: return {1}
9: else

10: Q := Q \ {p}
11: if lm(pol(p)) = anc(p) then
12: for all {r ∈ T | lm(pol(r)) � lm(pol(p))} do
13: Q := Q ∪ {r}; T := T \ {r}
14: od
15: fi
16: pol(p) := NFJ(pol(p), T )
17: fi
18: T := T ∪ {p}
19: for all q ∈ T and x ∈ NMJ(pol(q), T ) \ nmp(q) do
20: Q := Q ∪ {{pol(q) · x, anc(q), ∅}}
21: nmp(q) := nmp(q) ∩ NMJ(pol(q), T ) ∪ {x}
22: od
23: Q :=JanetHeadReduce(Q, T, JMP )
24: od
25: return G := {pol(f) | f ∈ T}

The initialization step is done in lines 1-4. The next subalgorithm JanetHeadReduce
performs Janet reduction of the leading terms of polynomials in Q modulo polynomials
in T and under specification of the number of threads for parallel reductions.

In the main loop 5-22 an element in Q is selected in line 6. The correctness of this
selection strategy proved in [14]. In practice the number of elements in Q at intermediate
steps of the algorithm is rather large and easily runs up to hundreds and thousands. At
the same time there may be different polynomials in Q with identical leading monomials.
Therefore, the restriction in line 6 still admits some arbitrariness. In our implementation
in [1] for the degree-reverse-lexicographical ordering a triple p ∈ Q with the minimal
deg(lm(pol(p))) was chosen. In the case of several such polynomials in Q that with the
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minimal number of terms was picked up. In our parallel implementation described in the
next section we use similar selection strategy.

Line 8 break computations in the case when inconsistency is revealed during the head
term reduction in Q and returns the unit basis. In line 16 the tail Janet reduction is done
and then the Janet reduced polynomial in p is inserted in T which is released from the
higher ranking polynomials in loop 12-14 if any. Actually the release takes place only if
polynomial in p has been subjected by the head term reduction in line 23. Otherwise,
pol(p) � pol(r) holds for any r ∈ T . The insertion of a new polynomial in T may generate
new nonmultiplicative prolongations of elements in T which are added to Q in line 20. To
avoid repeated prolongations the set nmp(q) of Janet nonmultiplicative variables for g has
been used to construct its prolongations is enlarged with x in line 21. The intersection
placed in this line preserves the condition (2).

Since the Janet head reduction of an element in Q does not exert influence upon
reduction of other its elements, the reduction in lines 4 and 20 admits a natural and
easy parallelism adjusted to a number of processors available. It is remarkable that just
Janet reduction done in lines 4 and 20 spends overwhelming majority of running time for
examples large enough as our experiments with the sequential code [1] show.

The following algorithm JanetHeadReduce realizes these facilities for parallel re-
ductions. It is part of algorithm JanetBasis and uses light weigth processes or threads.

Algorithm: JanetHeadReduce(Q, T, JMP )

Input: Q and T , sets of triples; JMP , a number of threads
Output: Q whose polynomials are Janet head reduced modulo T
1: create JMP threads for computing HNFJ

2: S := Q
3: Q := ∅
4: while S 
= ∅ do
5: while number of free threads 
= 0 do
6: choose p ∈ S
7: S := S \ {p}
8: send p in a free thread to compute h := HNFJ(p, T )
9: if h 
= 0 then

10: if lm(pol(p)) 
= lm(h) then
11: Q := Q ∪ {h, lm(h), ∅}
12: else
13: Q := Q ∪ {p}
14: fi
15: fi
16: od
17: od
18: return Q

Every particular thread is used to compute the Janet head normal form h that is done
in line 8 for the polynomial pol(p) in a triple p chosen in line 6. If h is nonzero then line
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10 checks if pol(p) was subjected to the head term reduction. If the reduction took place,
then lm(h) is not multiple of any monomial in the set {lm(pol(g)) | g ∈ T} [3]. Therefore,
one has to insert the triple with h in the output set Q as shown in line 11 since h cannot
have ancestors among polynomials in T . One must also examine all nonmultiplicative
prolongations of h as the empty set in the triple signals. If lm(pol(p)) is Janet irreducible
modulo {lm(pol(g)) | g ∈ T , then p itself is added to Q in line 13.

Subalgorithm HNFJ(f, T ) of algorithm JanetHeadReduce performs the Janet head
reduction of the polynomial in f modulo polynomial set in T :

Algorithm: HNFJ(f, T )

Input: f = {pol(f), anc(f), nmp(f)}, a triple; T , a set of triples
Output: h = HNFJ(pol(f), T ), the Janet head normal form

of the polynomial in f modulo polynomial set in T
1: G := {pol(g) | g ∈ T}
2: if lm(pol(f)) is Janet irreducible modulo G then
3: return f
4: else
5: h := pol(f)
6: choose g ∈ T such that lm(pol(g)) |J lm(h)
7: if lm(h) 
= anc(f) then
8: if CriterionI(f, g) or CriterionII(f, g) then
9: return 0

10: fi
11: else
12: while h 
= 0 and lm(h) is Janet reducible modulo G do
13: choose q ∈ G such that lm(q) |J lm(h)
14: h := h − q · lt(h)/ lt(q)
15: od
16: fi
17: fi
18: return h

For the head reducible input polynomial pol(f) the two criteria are verified in line 8:

• CriterionI(f, g) is true iff anc(f) · anc(g) | lm(pol(f)).

• CriterionII(f, g) is true iff deg(lcm(anc(f) · anc(g))) < deg(lm(pol(f)).

These criteria are nothing else than the Buchberger criteria [15] adapted to the involutive
completion procedure. If any of the two criteria is true, then HNF (pol(f), T ) = 0 [1].

The next subalgorithm NFJ performs the Janet tail reduction of a polynomial with
the irreducible leading term. Its output is the (full) Janet normal form NFJ(f, T ) of the
input polynomial f modulo polynomial set containing in T . This subalgorithm is called in
line 16 of the main algorithm Janet basis and performs a chain of elementary involutive
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reductions until every term in the obtained polynomial becomes Janet irreducible modulo
polynomials in T .
It should be noted that both the full Janet normal form and the Janet head normal form
are uniquely defined and, hence, uniquely computed by the corresponding subalgorithms.
This uniqueness hold because of the uniqueness of a Janet divisor among the leading
terms of polynomials in T at every step of intermediate computations [4].

Algorithm: NFJ(f, T )

Input: f , the polynomial in a triple p such that f := HNFJ(p, T );
T , a set of triples

Output: h = NFJ(f, T ), the full Janet normal form of h
modulo polynomial set in T

1: G := {pol(g) | g ∈ T}
2: h := f
3: while h 
= 0 and h has a term t Janet reducible modulo G do
4: choose g ∈ G such that lm(g) |J t
5: h := h − g · t/ lt(g)
6: od
7: return h

3 Benchmarking

As it was mentioned in the previous section we used the light weigth processes for paral-
lelizing. The above described parallel version of algorithm JanetBasis have been imple-
mented in C. We exploited the Janet trees [1, 8] as data structures for T and unsorted lists
for Q. The running times were measured for the degree-reverse-lexicographical monomial
ordering compatible with x1 � x2 � · · · � xn on a 2 processors Pentium III 700 Mhz with
1Gb RAM computer running under Red Hat Linux release 6.2. Parallelization was done
by means of the Linux Threads package along with the Intel C/C++ compiler version
5.0.1 for compiling the C code.

Unfortunately, all C packages implementing arithmetics over long integers and avail-
able at our disposal are not suitable for parallel computation since they have global buffers
and special optimizations. Thus we were able to run the parallel code only for modular
arithmetics. More preciously, in computing Janet bases we manipulated with integer co-
efficients modulo prime number 31013. As an admissible monomial ordering we chosen
the degree-reverse-lexicographical order.

To compare the sequential [1] and parallel version of our C code we used the bench-
marks taken from the collection [16, 17] and listed in the first column of the below table.
The second column contains timings obtained with our sequential code highly optimized
just for sequential computing. The other five columns show, respectively, timings for one-
thread computation, two-thread computation, speedup rate of the latter with respect to
the former, four-thread process and its speedup rate with respect to the one-thread com-
putation. Every of these timings was determined as difference between the astronomical
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running time and the system costs such as swapping, context switching, etc.
To provide correct work of the parallel code one had to turn down some optimizations

including the global variables among other things and to add some extra computational
costs: working with a circular polynomial buffer, blocking of processing at semaphores and
mutexes. That is why the optimized sequential code runs notably faster than one-thread
version.

Switching to a large number of threads does not increase the parallelism overhead.
Therefore, the running time is to decrease with a rate equal to or greater than the number
of threads in action. One can see from the table that this decreasing is especially affected
large examples. Small examples needing rather short running time have the parallelism
overhead which comes up to doubled value of the proper computing time. Thus, our
parallel code is best for large problems: the maximal speedup obtained on our two-
processor machine is about 38% that is in accordance with the portion of performing
Janet reductions which for the modular computation aggregates about 80% of the total
running time. In the case of computation over integers one can expect even greater gain
since in this case a portion of Janet reduction often exceeds 90%.

One more advantage of parallelism is its more beneficial selection strategy for poly-
nomials coming into play. If several Janet normal forms are computed at the same time,
then shorter of them (those with less number of terms and smaller coefficients) will be
earlier computed. Then these normal forms come first into play and give rise to reduction
of more lengthy polynomials. As an example of such behavior of the parallel computa-
tional process we point out extcyc7. The speedup factor obtained for this example is
above 50%.

In [13] a nondeterministic (chaotic) behavior in parallel implementation of the Buch-
berger algorithm for computing Gröbner bases was experimentally observed. This multi-
processor chaotic state led to runs which sometimes terminated in seconds while other
runs of the same examples must be killed due to memory overflow after hours. In our
implementation of parallel Janet completion we did not observe such chaotic behavior,
and variation in timing for different runs does not exceed a fraction of a percent.
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example Copt 1 thr 2 thr’s %speedup 4 thr’s %speedup
assur44 1.20 2.16 2.68 -24.07 4.33 -100.46
chemkin 2.70 4.48 4.17 6.92 5.53 -23.44
cohn3 3.55 6.10 6.10 0.00 7.02 -15.08
cyclic6 0.13 0.42 0.66 -57.14 0.97 -130.95
cyclic7 19.68 29.66 24.93 15.95 26.52 10.59
cyclic8 751.96 831.12 614.21 26.10 659.37 20.66
dl 113.90 181.85 165.14 9.19 192.68 -5.96
discret3 2.76 4.46 4.20 5.83 6.15 -37.89
eco8 0.28 0.57 0.74 -29.82 1.32 -131.58
eco9 3.11 4.35 4.02 7.59 5.90 -35.63
eco10 30.29 36.43 26.61 26.96 34.62 4.97
eco11 278.82 307.40 194.6 36.69 218.90 28.79
eco12 3 458.96 4 215.27 2 923.12 30.65 3 213.76 23.76
extcyc5 0.41 1.03 1.29 -25.24 1.84 -78.64
extcyc6 29.91 41.95 32.21 23.22 38.23 8.87
extcyc7 12 919.30 23 094.80 10 651.80 53.88 12 975.10 43.82
f744 4.20 8.88 9.72 -9.46 12.90 -45.27
f855 35.99 59.42 54.17 8.84 68.56 -15.38
hcyclic7 21.10 32.55 28.61 12.10 33.59 -3.20
hcyclic8 1 206.65 1 455.21 1 213.87 16.58 1 245.89 14.38
hietarinta1 1.11 2.63 3.57 -35.74 4.99 -89.73
i1 1.54 2.97 3.48 -17.17 5.62 -89.23
ilias k 2 18.83 31.46 26.30 16.40 31.81 -1.11
ilias k 3 28.14 40.29 34.89 13.40 41.24 -2.36
ilias12 203.86 258.92 205.35 20.69 224.64 13.24
ilias13 47.98 65.63 55.72 15.10 65.17 0.70
katsura7 0.73 1.32 1.25 5.30 1.97 -49.24
katsura8 11.06 14.37 10.02 30.27 13.41 6.68
katsura9 107.56 125.88 79.85 36.57 92.64 26.41
katsura10 1 035.79 1 191.83 733.66 38.44 759.82 36.25
noon6 0.95 1.69 2.50 -47.93 3.34 -97.63
noon7 17.34 23.56 26.36 -11.88 32.25 -36.88
noon8 560.39 621.92 600.62 3.42 642.09 -3.24
redcyc6 0.10 0.36 0.61 -69.44 0.90 -150.00
redcyc7 37.68 60.05 51.1 14.90 56.33 6.19
redeco10 12.22 16.26 13.24 18.57 17.50 -7.63
redeco11 113.70 133.67 92.13 31.08 108.96 18.49
redeco12 1 107.71 1 246.92 826.37 33.73 895.12 28.21
reimer5 0.33 0.61 0.78 -27.87 1.22 -100.00
reimer6 10.88 14.61 12.15 16.84 14.47 0.96
reimer7 818.02 978.62 781.69 20.12 805.27 17.71
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We survey some algebraic geometric aspects of mirror symmetry and duality in string
theory. Some applications of computer algebra to algebraic geometry and string theory are
shortly reviewed.

1 Introduction

This paper aims to be accessible to those with no previous experience in algebraic ge-
ometry; only some basic familiarity with linear and polynomial algebra, group theory,
topology and category theory will be assumed.
Development of theoretical physics in direction of string theory enlarged the context of
symmetry considerations and included in it the notion of duality. String theory has fol-
lowing ingredients: (i) base space (open or closed string) Σ; (ii) target space M ; (iii)
fields: X → Σ → M ; (iv) action S =

∫ L(X,ϕ). where L is a Lagrangian [1]. Let G
be a group such that G ⊃ SU(3) × SU(2) × U(1). Recall that if L(GΦ) = L(Φ) then
L is G−invariant, or G−symmetry. In string theory [1] one of the beautiful symmetries
is the radius symmetry R → 1/R of circle, known as T−duality [2, 3] and [4] and refer-
ences there in. Authors of papers [5, 6] conjectured that a similar duality might exist in
the context of string propagation on Calabi-Yau (CY) manifolds, where the role of the
complex deformation on one manifold get exchanged with the Kähler deformation on the
dual manifold. A pair of manifolds satisfying this symmetry is called mirror pair, and
this duality is called mirror symmetry. From the point of view of physicists which did
the remarkable discovery mirror symmetry is a type of duality that means that we may
take two types of string theory and compactify them in two different ways and achieve
”isomorphic” physics [7]. Or in the case of a pair of Calabi-Yau threefolds (X,Y ) P.
Aspinwall are said [8] that X and Y to be a mirror pair if and only if the type IIA string
compactified on X is ”isomorphic to” the E8 × E8 heterotic string compactified on Y. If
in the case X is Calabi-Yau threefold then Y is the product of a K3 surface and elliptic
curve and the following data specifies the theory [8].

1. A Ricci-flat metric on Y.

2. A B−field ∈ H2(K3 × E,R/Z).
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3. A vector bundle V → (K3×E) with a connection satisfying the Yang-Mills equations
and whose structure group ⊆ E8 × E8.

4. A dilation + axion, Φ ∈ C.

C. Vafa defines the notion of mirror of a Calabi-Yau manifold with a stable bundle.
Lagrangian and special Lagrangian submanifolds appear in this situation. Mathemati-
cians also work hard upon the problems of mirror symmetry, although it is difficult in
some cases to attribute to a researcher the identifier ”mathematician” or ”physicist”.
V. Batyrev gives construction of mirror pairs using Gorenstein toric Fano varieties and
Calabi-Yau hypersurfaces in these varieties [9]. M. Kontsevich in his talk at the ICM’94
gave a conjecturel interpratation of mirror symmetry as a ”shadow” of an equivalence
between two triangulated categories associated with A∞− categories [10]. His conjecture
was proved in the case of elliptic curves by A. Polishchuk and E. Zaslow [11]. The aim
of the paper is to provide a short and gentle survey of some algebraic aspects of mirror
symmetry and duality with examples - without proofs, but with (a very restricted) guides
to the literature.

2 Algebraic geometric preliminaries

This section gives a basic introduction to algebraic geometric aspects of mirror symmetry
beginning with a description of how Calabi-Yau manifolds arise from ringed spaces. A
more detailed treatment of algebraic geometric material of this section may be found
in [12, 13], the terminology and notation of which will be followed here.
Let X be a topological space and Cov(X) an open covering of X. It is well known [14]
that Cov(X) forms the category. Let Cat be a category (of sets, abelian groups, rings,
modules). The presheaf is a contravariant functor F from Cov(X) to Cat. If for example
Cat is the category Ab of abelian groups then F : Cov(X) → Ab is the presheaf of abelian
groups. Elements f ∈ F(U) is called sections of the presheaf F .
If i : U ⊂ V then we shall denote by ρV

U the morphism F(i) : F(V ) → F(U). Functor F
is the contravariant and we apply morphisms from the left to the rigth. Hence for any
open sets U ⊂ V ⊂ W

ρW
U = ρV

UρW
V .

Let U ⊂ X be any open subset of X and
⋃

Uα = U it’s open covering. A presheaf F on
a topological space X is called the sheaf if the following conditions are satisfied:
1) if ρU

Uα
s1 = ρU

Uα
s2 for s1, s2 ∈ F(U) and for any Uα, then s1 = s2;

2) if sα ∈ F(Uα) are such that ρUα

Uα
⋂

Uβ
sα = ρ

Uβ

Uα
⋂

Uβ
sβ, then there exists s ∈ F(U) such

that sα = ρU
Uα

s for all Uα.
The ringed space is the pair (X,O), where X is a topological space and O is a sheaf

of rings on X. A morphism of ringed spaces

ϕ : (X,OX) → (Y,OY )

is the class of maps (ϕ, ψU), where ϕ is the continuous map ϕ : X → Y, and ψU is a
homomorphism ψU : OY (U) → OX(ϕ−1(U)) for any open set U ⊂ Y such that the
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diagram

OX(ϕ−1(V ))
ρV

U−→ OX(ϕ−1(U))
↓ ψV ↓ ψU

OY (V )
ρV

U−→ OY (U)

is commutative for any U and V, U ⊂ V ⊂ Y. For a ringed space (X,OX) and an open
U ⊂ X the restriction of the sheaf OX on U defines the ringed space (U,OX|U).
Let OX be the sheaf of smooth functions on a topological space X. Then any smooth
manifold X with the sheaf OX is a ringed space (X,OX). Respectively let X be a Hausdorff
topological space and OX a sheaf on X. Let it satisfies conditions: (i) OX is the sheaf of
algebras over C ; (ii) OX is a subsheaf of the sheaf of continuous complex valued functions.
Let W be a domain in Cn and Oan the sheaf of analytical functions on W. The ringed
space (X,OX) is called the complex analytical manifold if for any point x ∈ X there exists
a neighbourhood U � x such that (U,OX|U) � (W,Oan) (here � denotes the isomorphism
of ringed spaces).

We shall use in contrast to [1] some another definition of Calabi-Yau (CY) manifold.
The definition is based on the theorem of Yau who proved Calabi’s conjecture that a
complex Kähler manifold of vanishing first Chern class admits a Ricci-flat metric.

Definition 1. A complex Kähler manifold is called Calabi-Yau (CY) manifold if it has
vanishing first Chern class.

Examples of the CY-manifolds include, in particular, elliptic curves E, K3−surfaces
and their products E × K3. Let (X,ω, Ω) be a complex manifold (real dimension =2n)
with

ωn/n! = (−1)n(n−1)/2(i/2)n · Ω ∧ Ω.

It is said that a n−dimensional submanifold L ⊂ X is special Lagrangian (s-lag) ⇔

Re(Ω|L) = V ol|L ⇔ ω|L = 0, Im(Ω|L) = 0.

Example 1. Let X be an elliptic curve E. Then ω = c(i/2)dz∧dz, Ω = cdz. S-lag L ⊂ E
are straight lines with slope determined by arg c.

Let (U,OX|U) � SpecA for a commutative ring A. In the case the neighbourhood
U � x is called the affine neighbourhood of the point x.
The scheme S is the ringed space (X,OX) with the condition: for any point x ∈ X there
is an affine neighbourhood V � x such that (V,OX|V ) � SpecA.

2.1 Blow-ups

Blowing up is a well known method of constructing complex manifolds M. There are points
on the manifolds that are not divisors on M. Blow up is the construction that transforms
points of complex manifolds to divisors. For instance in the case of two dimensional
complex manifolds (complex surface) N it consists of replacing a point p ∈ N by a
projective line CP(1) considered as the set of limit directions at p.
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Example 2. Let π : M2 → C2 be the blow-up of C2 at the point 0 ∈ C2. Then M2 is a
two dimensional complex manifold that defined by two local charts. In coordinates C2 =
(z1, z2),CP(1) = [l0, l1] the manifold M2 is defined in CP(1)×C2 by quadratic equations
zilj = zjli. Thus M2 is a line bundle over Riemann sphere CP(1). π−1(0) = CP(1) is
called the divisor of the blow up (the exceptional divisor).

Recently a large class of CY orbifolds in weighted projective spaces have been proposed.
C. Vafa have predicted and S. Roan [17] have computed the Euler number of all the
resolved CY hypersurfaces in a weighted projective space WCP(4).

3 Complexes, homotopy categories, cohomologies

and quasiisomorphisms

Here we recall the relevant properties of complexes, derived categories, cohomologies and
quasimorphisms referring to [13, 20] for details and indication of proofs.
Cochein complex

(K•, d) = {K0 d→ K1 d→ K2 d→ · · · }
is the sequence of abelian groups and differentials d : Kp → Kp+1 with the condition
d ◦ d = 0. For a category Cat we denote by ObCat it’s objects and by Mor Cat it’s
morphisms.

Let A be an abelian category, Kom(A) the category of complexes over A. Furthermore,
there are various full subcategories of Kom(A) whose respective objects are the complexes
which are bounded below, bounded above, bounded in both sides. Now recall (by [20])
the notion of homotopy morphism.

Lemma-definition 1. (i) Let K•, L• be two complexes over abelian category A, k =
ki, ki : Ki → Li−1 a sequence of morphisms between elements of the complexes.
Then the maps

hi = ki+1di
K + di−1

L ki : Ki → Li

form the morphism of complexes

h = kd + dk : K• → L•.

The morphism h is called homotopic to zero (h ∼ 0).
(ii) morphisms f, g : K• → L• is called homotopic, if f − g = kd + dk ∼ 0 (f ∼ g), k is
called homotopy.
(iii) If f ∼ g, then H•(f) = H•(g), where the map H• is induced on cohomologies of
complexes.

The homotopy category K(A) is defined by the following way:

Ob K(A) = Ob Kom(A),

Mor K(A) = Mor Kom(A) by the module of homotopy equivalence.
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Let X be a topological space and K•,L• be complexes of sheaves over X. Quasiisomor-
phism is the map

f : K• → L•

which induces the isomorphism of cohomological sheaves

f∗ : Hq(K•) → Hq(L•), q ≥ 0.

4 Connections

Consider the connection in the context of algebraic geometry. Let S/k be the smooth
scheme over field k, U an element of open covering of S, OS the structure sheaf on S,
Γ(U,OS) the sections of OS on U . Let Ω1

S/k be the sheaf of germs of 1−dimension differ-
entials, F be a coherent sheaf. The connection on the sheaf F is the sheaf homomorphism

∇ : F → Ω1
S/k ⊗F ,

such that if f ∈ Γ(U,OS), g ∈ Γ(U,F) then

∇(fg) = f∇(g) + df ⊗ g.

There is the dual definition. Let F be the locally free sheaf, Θ1
S/k the dual to sheaf Ω1

S/k,

∂ ∈ Γ(U, Θ1
S/k). The connection is the homomorphism

ρ : Θ1
S/k → EndOS

(F ,F),

ρ(∂)(fg) = ∂(f)g + fρ(∂).

4.1 Integration of connections

Let Ωi
S/k be the sheaf of germs of i−dimensional differential forms on S. Particularly Ω1

S/k

is the cotangent bundle over S. Let ω ∈ Ωi
S/k, f ∈ Γ and

∇i(ω ⊗ f) = dω ⊗ f + (−1)iω ∧∇(f).

Hence, ∇i define the sequence of homomorphisms of sheaves

F ∇−→ Ω1
S/k ⊗F ∇1−→ Ω2

S/k ⊗F −→ · · ·
The sequence is the complex if ∇ ◦∇1 = 0. In this case the connection ∇ is integrable.

Example 3. Let F = OS be the structural sheaf on S. Then

∇ : OS → Ω1
S/k ⊗OS � Ω1

S/k.

Hence ∇(f) = df, ρ : ΘS/k → OS. This connection ∇ is integrable because it defines the
de Rham complex

Ω•
S/k : OS → Ω1

S/k → Ω2
S/k → · · ·
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Example 4. Let LC be a locally constant sheaf on S/k such that LC � kn (local coef-
ficients) as sheaves. Let F = LC ⊗ OS, v ∈ Γ(U,LC), f ∈ Γ(U,F). Then there is a
canonical connection ∇(v ⊗ f) = df ⊗ v:

∇ : F → Ω1
S ⊗F .

For a connection ∇ : F → Ω1
S ⊗F a section s ∈ Γ(U,F) is horizontal if ∇(s) = 0.

Let now S be a complex manifolds, ShC(S/k) the category of sheaves with a connec-
tion and LC(S) the category of local coefficients over S. Let (F ,∇) ∈ ShC(S/k) be a
sheaf with connection. We can define the functor

Fn : (F ,∇) �→ {the sheaf of germs of horizontal sections of F}.
and it’s inverse Fn−1.

Proposition 1. The functors Fn and Fn−1 give the equivalence of category ShC(S/k)
and LC(S).

5 Moduli spaces in string theory

Mirror symmetry connects with geometrical deformations of complex and Kähler struc-
tures on CY-manifolds. So we have to know moduli spaces of complex and Kähler struc-
tures on CY-manifolds.

5.1 Moduli spaces

The theory of moduli spaces [15, 16] has, in recent years, become the meeting ground of
several different branches of mathematics and physics - algebraic geometry, instantons,
differential geometry, string theory and arithmetics. Here we recall some underlieing alge-
braic structures of the relation. In previous section we have reminded the situation with
vector bundles on projective algebraic curves X. On X any first Chern class c1 ∈ H2(X,Z)
can be realized as c1 of vector bundle of prescribed rank (dimension) r. How to classify
vector bundles over algebraic varieties of dimension more than 1? This is one of impor-
tant problems of algebraic geometry and the problem has closed connections with gauge
theory in physics and differential geometry. Mamford [15] and others have formulated
the problem about the determination of which cohomology classes on a projective variety
can be realized as Chern classes of vector bundles? Moduli spaces are appeared in the
problem. What is moduli? Classically Riemann claimed that 3g−3 (complex) parameters
could be for Riemann surface of genus g which would determine its conformal structure
(for elliptic curves, when g = 1, it is needs one parameter). From algebraic point of view
we have the following problem: given some kind of variety, classify the set of all varieties
having something in common with the given one (same numerical invariants of some kind,
belonging to a common algebraic family). For instance, for an elliptic curve the invariant
is the modular invariant of the elliptic curve.

Let B be a class of objects. Let S be a scheme. A family of objects parametrized by
the S is the set of objects
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Xs : s ∈ S,Xs ∈ B

equipped with an additional structure compatible with the structure of the base S. Pa-
rameter varieties is a class of moduli spaces. These varieties is very convenient tool for
computer algebra investigation of objects that parametrized by the parameter varieties.
We have used the approach for investigation of rational points of hyperelliptic curves over
prime finite fields [22].

Example 5. Let ω1, ω2 ∈ C, Im(ω1/ω2) > 0, Λ = nω1 + mω2, n,m ∈ Z be a lattice.
Let H be the upper half plane. Then H/Λ = E be the elliptic curve. Let

y2 = x3 + ax + b = (x − e1)(x − e2)(x − e3), 4a3 + 27b2 
= 0,

be the equation of E. Then the differential of first kind on E is defined by formula

ω = dx/y = dx/(x3 + ax + b)1/2.

Periods of E :

π1 = 2

∫ e2

e1

ω, π2 = 2

∫ e3

e2

ω.

The space of moduli of elliptic curves over C is A1(C). Its complation is CP(1).

For K3−surfaces the situation is more complicated but in some case is analogous [19]:

Theorem 1. The moduli space of complex structure on market K3−surface (including
orbifold points) is given by the space of possible periods.

Some computational aspects of periods and moduli spaces are considered in author’s
note [23].

6 Some categorical constructions

Every compact symplectic manifold Y, ω with vanishing first Chern class, one can associate
a A∞−category whose objects are essentially the Lagrangian submanifolds of Y, and whose
morphisms are determined by the intersections of pairs of submanifolds. This category is
called Fukaya’s category and is denoted by F(Y ) [10]. Let (X,Y ) be a mirror pair. Let
M be any element of the mirror pair. The bounded derived category Db(M) of coherent
sheaves on M is obtained from the category of bounded complexes of coherent sheaves on
M [20]. In the case of elliptic curves A. Poleshchuk and E. Zaslov have proved [11]:

Theorem 2. The categories Db(Eq) and F0(E
q
) are equivalent.

Recently A. Kapustin and D. Orlov have suggested that Kontsevich’s conjecture must
be modified: coherent sheaves must be replaced with modules over Azumaya algebras,
and the Fukaya category must be ”twisted” by closed 2-form [21].
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7 Computer algebra aspects

Computer algebra applications to classical algebraic geometry are well known. Most of
them are based on the method of Gröbner bases [24, 25]. They include the decomposition
of algebraic varieties, rational parametrization of curves and surfaces [26, 27], inversion of
birational maps [28], the normalization of affine rings [18]. Some computer algebra results
presented on CAAP-2001 can be used for computations in algebraic geometry and string
theory. These are results on computation of toric ideals presented by V. Gerdt [29] and on
computation of cohomology presented by V. Kornyak [30]. Talks of V. Gerdt include also
result on computation in Yang-Mills mechanics [31]. Some recent papers include descrip-
tion of efficient algorithms computing the homology of commutative differential graded
algebras [32] and computing the complite Hopf algebra structure of the 1-homology of
purely quadratic algebra [33].
For the future research let us mention that it might be as well to have a tool, namely
computer algebra for computation with (i) various moduli spaces; (ii) deformations (defor-
mation of complex structure and deformation of Kähler structure); (iii) A∞−categories;
(iv) geometric Fourier transform.

Conclusions

In the paper we tried to give an algebraic geometric framework for some aspects of mirror
symmetry. This framework includes rather restricted context of mirror symmetry and
string theory. But it is based on a simple and unified mathematical base. Some applica-
tions of computer algebra to algebraic geometry and string theory are shortly reviewed.
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1 Introduction

In this paper, we propose an algorithm which, given a characteristic set A of a prime differ-
ential ideal I w.r.t. some ranking ≤1, and another ranking ≤2, constructs a characteristic
set B of I w.r.t ≤2.

The problem addressed in this paper can be solved using either of the Rosenfeld-
Gröbner algorithm [19] or the Specialized Rosenfeld-Gröbner algorithm [21]. In both
cases, however, the algorithms proceed by direct computation of the target characteristic
set w.r.t. ranking ≤2. Since this may be very inefficient, especially in case when ≤2 is an
elimination ranking, an algorithm (called DFGLM) based on an adaptation of the FGLM
method [7] to differential algebra is proposed in [20]. However, as it is pointed out in [20],
this algorithm is only applicable to differential systems whose solutions depend on finitely
many constants. The Kähler algorithm [20] is applicable to any differential systems but,
as it is noticed in [20], it is less efficient than DFGLM.

The case when solutions of a differential system depend on finitely many constants
is completely analogous to the case of a zero-dimensional ideal in a polynomial ring R,
to which the original FGLM algorithm is applicable. But even in this restricted case,
the complexity of the algorithm grows with the dimension of quotient vector space R/I.
Experiments in [9, 10] show that apart from very simple cases the Gröbner walk algorithm
[8] is at least as fast as FGLM, and as the dimension of R/I grows, the Gröbner walk
becomes much faster. Besides, the Gröbner walk approach is applicable to any polynomial
ideals.

The key concepts needed for Gröbner walk are the ones of parametrization of all
possible monomial orders by weight matrices [3, 11], monomial preorders defined by weight
vectors [3, 11, 18], and the Gröbner fan [4, 11] of a polynomial ideal. In the differential
case, the parametrization of rankings, in general, is very complex [18, 17]. Therefore, we
restrict ourselves to the case of Riquier rankings [12, 18] which includes important cases
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of orderly and elimination rankings [15, 20]. The Theorem of Mora and Robbiano about
the finiteness of the Gröbner fan [4, 11] cannot be directly generalized to the differential
case — in fact, the differential Gröbner fan may be infinite. Despite that, we will show
that differential Gröbner walk always terminates.

We generalize the key Gröbner walk Lemmas [8, Lemmas 3.1–3.3] to the differential
case, where they acquire a significantly different form. In particular, the polynomial ideal
generated by the set of initial forms plays a key role for the polynomial Gröbner walk,
but it cannot be generalized directly to the differential case. Instead, we consider the sets
of initial forms themselves. However, the computation of characteristic sets for them is
still algorithmically possible.

In the end, we discuss some open problems which should be addressed before the
differential Gröbner walk can be implemented.

2 Differential algebra

Here we only give a short presentation of the basic concepts in differential algebra and
refer the reader to [13, 14, 15].

Let R be a commutative ring. A derivation over R is a mapping δ : R → R which for
every a, b ∈ R satisfies

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + aδ(b).

A differential ring is a commutative ring endowed with a finite set of derivations Δ =
{δ1, . . . , δm} which commute pairwise. The commutative monoid generated by the deriva-
tions is denoted by Θ. Its elements are derivation operators θ = δi1

1 · · · δim
m , where i1, . . . , im

are nonnegative integer numbers.
A differential ideal I of differential ring R is an ideal of R stable under derivation, i.e.

∀A ∈ I, δ ∈ Δ δA ∈ I.

For a subset A ⊂ R, denote by [A] the smallest differential ideal containing A. For
A,B ∈ R, and differential ideal I, we shall write A ≡ B mod I, if A − B ∈ I.

Let U = {u1, . . . , un} be a finite set called the set of differential indeterminates.
Derivation operators apply to differential indeterminates giving derivatives θu. We denote
by ΘU the set of all derivatives.

Let K be a differential field of characteristic zero. The differential ring of differential
polynomials K{U} is the ring of polynomials of infinitely many variables K[ΘU ] endowed
with the set of derivations Δ.

3 Rankings

Let m be a nonnegative integer and n be a positive integer. Let

N = {0, 1, 2, . . .}, Nn = {1, . . . , n}.
A ranking is a total order ≤ of Nm × Nn such that for all a, b, c ∈ Nm, i, j ∈ Nn,
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• (a, i) ≤ (b, j) ⇐⇒ (a + c, i) ≤ (b + c, j)

• (a, i) ≥ (0, i).

Rankings on Nm × Nn correspond to those on the set of derivatives ΘU :

δi1
1 · · · δim

m uj ≤ δk1
1 · · · δkm

m ul ⇐⇒ (i1, . . . , im, j) ≤ (k1, . . . , km, l).

A ranking is a Riquier ranking, if for all a, b ∈ Nm, i, j ∈ Nn

(a, i) ≤ (b, i) ⇐⇒ (a, j) ≤ (b, j).

Note that Nm × Nn may be embedded into Nn+m by

(i1, . . . , im, j) �−→ (i1, . . . , im, 0, . . . ,
(m+j)

1 , . . . , 0).

Using this embedding, we can characterize Riquier rankings.

Theorem 1. [18, Theorem 6] A Riquier ranking is a ranking ≤ for which there exists a
positive integer s and an s × (m + n) real matrix M such that

• for k = 1, . . . ,m, kth column ck of M satisfies

ck ≥lex (0, . . . , 0) (1)

• (i1, . . . , im, j) ≤ (k1, . . . , km, l) if and only if

M
(
i1, . . . , im, 0, . . . ,

(m+j)

1 , . . . , 0
) ≤lex M

(
k1, . . . , km, 0, . . . ,

(m+l)

1 , . . . , 0
)
.

Vice versa, any s×(m+n) real matrix M of rank m+n satisfying (1) defines a Riquier
ranking ≤M .

In a particular algorithm, for a ranking ≤, one makes finitely many comparisons w.r.t.
≤. In this case, ranking ≤ may be defined by an integer matrix, since the following
theorem holds.

Theorem 2. [18, Theorem 8] Let ≤ be a Riquier ranking on Nm × Nn, and let R be a
finite subset of (Nm×Nn)2 such that for all (u, v) ∈ R, u ≤ v. Then there exists a positive
integer s and an s× (m + n) integer matrix M satisfying (1) such that for all (u, v) ∈ R,
u ≤M v.
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4 Characteristic sets

Let ≤ be a Riquier ranking on the set of derivatives ΘU , A ∈ K{U}, A 
∈ K. The
derivative θuj of highest rank present in A is called the leader of A (denoted as ld≤ A).

Let u = ld≤ A and d = degu A. Then A =
∑d

i=0 Iiu
i, where I0, . . . , Id are uniquely defined

polynomials free of u. The differential polynomial IA = Id is called the initial of A, and
the differential polynomial SA =

∑d
i=1 iIiu

i−1 is called the separant of A. The leading
polynomial lp≤ A is IA(ld≤ A)d.

Let A,B ∈ K{U}. We shall say that A has lower rank than B (and write A < B) if
either A ∈ K, B 
∈ K, or ld≤ A ≤ ld≤ B, or ld≤ A = ld≤ B = u and degu A < degu B. In
case when neither A < B, nor B < A, we will write rk≤ A = rk≤ B.

Let A,F ∈ K{U}, A 
∈ K. The differential polynomial F is called partially reduced
w.r.t. A, if F is free of every proper derivative θu of the leader u = ld≤ A of A. If F
is partially reduced w.r.t. A and degu F < degu A, then F is said to be reduced w.r.t.
A. A nonempty subset A ⊂ K{U} is called autoreduced if any element of A is reduced
w.r.t. any other element of A. Every autoreduced set is finite. If A = {A1, . . . , Ar} is an
autoreduced set, then any two leaders ld≤ Ai, ld≤ Aj for 1 ≤ i 
= j ≤ r are distinct, and
we shall suppose that elements of any autoreduced set are arranged in order of increasing
rank of their leaders ld≤ A1 < ld≤ A2 < · · · < ld≤ Ar.

Let A be an autoreduced subset of K{U} w.r.t. ≤. If F ∈ K{U}, then there exists a
differential polynomial F0 called the remainder of F (denoted rem≤(F,A)) and rA, tA ∈ N

(A ∈ A) such that F0 is reduced w.r.t. A, the rank of F0 is no higher than that of F , and∏
A∈A IrA

A StA
A F ≡ F0 mod [A]. For a subset B ⊂ K{U}, denote by rem≤(B,A) the set of

remainders of the differential polynomials in B w.r.t. A.
Let A = {A1, . . . , Ar},B = {B1, . . . , Bs} be two autoreduced sets. We shall say

that A has lower rank than B and write A < B, if either there exists k ∈ N such that
rk≤ Ai = rk≤ Bi (1 ≤ i < k) and Ak < Bk, or r > s and rk≤ Ai = rk≤ Bi (1 ≤ i ≤ s).
If r = s and rk≤ Ai = rk≤ Bi (1 ≤ i ≤ s), then A is said to have the same rank as B
(rk≤A = rk≤ B). Any nonempty set of autoreduced subsets contains an autoreduced set
of the lowest rank. For a subset I ⊂ K{U}, an autoreduced subset of I of the lowest rank
is called a characteristic set of I. An autoreduced set A is a characteristic set of I if and
only if I contains no nonzero elements reduced w.r.t. A. If I is a differential ideal, and
A is a characteristic set of I, then for each nonzero F ∈ I, lp≤ F is not reduced w.r.t. A.

5 Differential Gröbner fan

At this point, we are interested in a description of all possible characteristic sets w.r.t. dif-
ferent rankings. Contrary to the polynomial case, there are infinitely many characteristic
sets of a differential ideal for a fixed ranking. However, the following lemma holds.

For a subset A ⊂ K{U}, let

ld≤(A) = {ld≤(A) | A ∈ A}

be the set of leaders of elements of A.
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Lemma 1. Let ≤ be a (Riquier) ranking. Then all characteristic sets have the same sets
of leaders.

Proof. Let A = {A1, . . . , Ar},B = {B1, . . . , Bs} be two characteristic sets of a
differential ideal I w.r.t. ≤. Then rk≤A = rk ≤ B, i.e. r = s and rk≤ Ai = rk≤ Bi

(1 ≤ i ≤ s). Thus, ld≤ Ai = ld≤ Bi (1 ≤ i ≤ s) and ld≤(A) = ld≤(B). �
Let

Ld(I) = {ld≤(A) | ≤ is a Riquier ranking and A is a characteristic set of I w.r.t. ≤}.

Theorem 3. For each differential ideal I ⊂ K{U}, the set Ld(I) is finite.

Proof. Suppose that Ld(I) is an infinite set. For each N ∈ Ld(I), let ≤N be the
corresponding Riquier ranking. Then set Σ = {≤N | N ∈ Ld(I)} is infinite.

Let A0 ∈ I be a differential polynomial and A0 = {A0}. Since A0 contains only a
finite number of terms, by the pigeonhole principle, there exists an infinite subset Σ1 ⊂ Σ
such that ld≤ A0 = ld≤1 A0 for all ≤,≤1∈ Σ1.

If A0 is a characteristic set of I w.r.t some ranking ≤1∈ Σ1, then A0 is a characteristic
set of I w.r.t. every ≤∈ Σ1:

1. A0 is autoreduced w.r.t. ≤.

2. All differential polynomials in I are reduced w.r.t. A0, ≤.

However, this cannot be the case since the original set of rankings Σ was chosen so that
characteristic sets corresponding to distinct rankings in Σ have distinct sets of leaders.
Hence, there must be some A1 ∈ I reduced w.r.t. A0 and ≤1. Note that A1 is also reduced
w.r.t. A0 and any ≤∈ Σ1.

Let A1 = rem≤1(A0, {A1}). Then A1 is autoreduced. Now we apply the pigeonhole
principle again to find an infinite subset Σ2 ⊆ Σ1 such that ld≤(A1) = ld≤2(A1) for all
≤,≤2∈ Σ2. The above argument shows that A1 cannot be a characteristic set of I w.r.t.
any of the rankings in Σ2 and there exists a differential polynomial A2 ∈ I reduced w.r.t.
A1 and every ≤∈ Σ2. Note that A2 is also reduced w.r.t. {A0, A1} and any ≤∈ Σ2.

Proceeding in the same way, we construct an infinite sequence of differential polynomi-
als A0, A1, A2, . . . and rankings ≤1,≤2, . . . such that Ai is reduced w.r.t. {A0, . . . , Ai−1}
and ≤i (i > 0), and ld≤j

Ai = ld≤i
Ai for all j > i. Therefore, for all j > i, ld≤j Aj 


| ld≤i
Ai.

One can find an infinite subsequence i1, i2, . . . such that ld≤i1
Ai1 , ld≤i2

Ai2 , . . . are
derivatives of the same differential indeterminate u ∈ U . Let θi1 , θi2 , . . . be the sequence
of derivation operators such that θiku is the leader of Aik (k > 0). Then for all 0 < k < l,
we cannot have that θil|θik , and this contradicts the Dickson’s lemma. �

A marked characteristic set of a differential ideal I is a set of differential polynomials
Ā, together with identified leaders in each Ā ∈ Ā such that Ā is a characteristic set w.r.t.
some ranking selecting those leaders. For a marked characteristic set Ā, the leader of
a polynomial Ā ∈ Ā will be denoted by ld Ā. The set of leaders of Ā will be denoted
by ld Ā. Our next goal is to understand the set of all rankings for which Ā is a marked
characteristic set of I.
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By Theorem 1, each Riquier ranking ≤ is defined by some matrix M . Thus, when we
determine the leader of a polynomial, we first compare the derivatives using the first row
of the matrix, i.e. a weight vector w.

Let w ∈ (Rm+n)+ be a weight vector. For a derivative u = δi1
1 · · · δim

m uj, let the
w-degree of u be defined as the following inner product:

degw u = w · (i1, . . . , im, 0, . . . ,
(m+j)

1 , . . . , 0).

For a differential monomial τ = c
∏

α uα 
∈ K, define

degw τ = max
α

degw uα.

Let Ā be a marked characteristic set of I. We define

CĀ = {w ∈ (Rm+n)+ | degw(ld Ā) ≥ degw u for all derivatives u present in Ā, Ā ∈ Ā}.

The elements of CĀ correspond to all possible first rows of matrices M defining rank-
ings ≤M such that Ā is a marked characteristic set w.r.t. ≤M . It is easy to see from the
definition that CĀ is an intersection of closed half-spaces in Rm+n, hence is a closed convex
polyhedral cone contained in the positive orthant. We will call CĀ a differential Gröbner
cone, and the set of all such cones for a differential ideal I the differential Gröbner fan of
I.

Contrary to the polynomial case, a differential Gröbner fan may be infinite. For
example, let I = [∂u

∂x
]. Then Ā0 = {∂u

∂x
} is a characteristic set of I w.r.t. lexicographic

ranking with x > y. Also, for every i > 0,

Āi =

{
∂iu

∂yi
· ∂u

∂x

}
is a marked characteristic set w.r.t. the same ranking, and

Ld(Āi) =

{
∂u

∂x

}
.

The differential Gröbner cone for Āi is

CĀi
= {(w1, w2, w3) ∈ (R3)+ | w1 > w2i},

hence
CĀ1

⊃ CĀ2
⊃ . . . ,

where all inclusions are strict. In Section 8, we will see that despite the total number of
differential Gröbner cones for a differential ideal may be infinite, the differential Gröbner
walk still terminates in finitely many steps.
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6 Characteristic set conversion

We say that a weight vector w is compatible with a ranking ≤, if for all derivatives
u1,u2 ∈ ΘU , degw u1 < degw u2 implies u1 < u2.

Let A = τ1 + . . . + τk be a differential polynomial represented as a sum of differential
monomials. Let J = {i1, . . . , il} be a subset of {1, . . . , k} such that for all j, j′ ∈ J, i ∈
{1, . . . , k} \ J ,

degw τj = degw τj′ , degw τj > degw τi.

We will call differential polynomial

inw A =
∑
j∈J

τj

the w-initial form of A. Intuitively, inw A is the sum of all differential monomials present
in A having the highest w-degree. For a subset A ⊂ K{U},

inw(A) = {inw(A) | A ∈ A}.

Lemma 2. If w is compatible with ≤ and A ∈ K{U} then

ld≤ A = ld≤(inw A) (2)

lp≤ A = lp≤(inw A) (3)

IA = Iinw A (4)

SA = Sinw A (5)

rk≤ A = rk≤(inw A) (6)

Proof. Let A = τ1+. . .+τk be a representation of A as a sum of differential monomials
where τ1 contains the highest degree of ld≤ A. Then degw τ1 ≥ degw τi (i ∈ {1, . . . , k})
since w is compatible with ≤. Hence τ1 is present in inw A and we obtain (2) and (6).
Moreover, all differential monomials that contain ld≤ A are present in inw A, therefore
(3), (4), and (5) hold. �

A differential polynomial A = τ1 + . . .+ τk is called w-homogeneous, if degw τ1 = . . . =
degw τk, and by definition degw A = degw τ1. If A,B are two w-homogeneous differential
polynomials such that degw A = degw B, and τ is a differential polynomial such that
degw τ ≤ degw A, then A + B and τA are also w-homogeneous. However, θA, where
θ ∈ Θ, is not necessarily w-homogeneous. For example, let Δ = {δ}, A = uv ∈ K{u, v},
w = (1, 1, 0). Then A is w-homogeneous, since A is a monomial, but δA = vδu + uδv is
not, since

degw(vδu) = max(degw(v), degw(δu)) = max(0, 2) = 2
degw(uδv) = max(degw(u), degw(δv)) = max(1, 1) = 1

Lemma 3. Let ≤ be a ranking and let w be compatible with ≤. Let A = {A1, . . . , Ar} be
a characteristic set for an ideal I w.r.t. ≤. Then inw(A) is a characteristic set of inw(I)
w.r.t. ≤.

120



Proof. It follows from (2) that inw(A) is autoreduced.
If F̄ ∈ inw(A), then there exists F ∈ A such that inw F = F̄ . According to (3),

lp≤ F = lp≤ F̄ . Since A is a characteristic set for I w.r.t. ≤, lp≤ F is not reduced w.r.t.
A, i.e. it is reducible by some A ∈ A. It follows from (2) that lp≤ F is then reducible by
inw A, and hence F̄ is reducible by inw A. �

We are now ready to introduce the differential Gröbner walk. Assume that we have
a characteristic set A0 for I w.r.t. some ranking ≤s. We call ≤s the starting ranking for

the walk, and we will assume that we have some matrix Ms =

(
w0

N

)
representing ≤s.

The goal is to compute a characteristic set for I w.r.t. some other given target ranking

≤t represented by matrix Mt =

(
wt

N ′

)
. Consider the segment [w0,wt] = {ξwt + (1 −

ξ)w0 | ξ ∈ [0, 1]} — though that is not always the best choice and one might consider
more complex “perturbed” paths from w0 to wt as in [10]. The Gröbner walk consists
of a sequence of conversion steps performed each time the path crosses the boundary of
a differential Gröbner cone, yielding a characteristic set of I corresponding to each new
cone in turn. By the time we reach the end of the path we have the characteristic set
w.r.t. the target ranking.

The conversion step is justified by the following Lemma.

Lemma 4. Let Aold be a characteristic set for a differential ideal I w.r.t. some ranking
≤old. Let w be a weight vector compatible with ≤old satisfying the following condition: For
all A ∈ Aold, θ ∈ Θ, θ 
= 1,

degw(IA) < degw(ld≤old
A), degw(SA) < degw(θ ld≤old

A), (7)

where initial and separant are taken w.r.t. ≤old.
1 Let ≤new be any other monomial or-

dering compatible with w. By Lemma 3, since w is compatible with ≤old, inw(Aold) is a
characteristic set for inw(I) w.r.t. ≤old. Let B̄ = {B̄1, . . . , B̄s} be a characteristic set for
inw(I) w.r.t. ≤new.2 Then, one can efficiently compute a characteristic set Anew for I
w.r.t. ≤new.

Proof. For each i ∈ {1, . . . , s}, since inw(Aold) is a characteristic set for inw(I) w.r.t.
≤old, B̄i is reducible w.r.t. Aold, ≤old. So, there exists a differential monomial of the
form τθ(ld≤old

A) present in B̄i (θ ∈ Θ, τ is a differential monomial). There are two cases
possible:

1. θ 
= 1. Take B̄′
i = SAB̄i − inw(τθA). Since by assumption (7) degw(SA) <

degw(θ ld≤old
A), we have that degw(SA) < degw B̄i = degw(τθA). Since B̄i ∈

inw(I), we have that B̄i = inw Bi for some Bi ∈ I, and inw(SABi) = SAB̄i. There-
fore, B̄′

i = inw(SABi)− inw(τθA) and degw(SABi) = degw(τθA), hence B̄′
i ∈ inw(I).

2. θ = 1. Take B̄′
i = IAB̄i − inw(τA). Since by (7) degw(IA) < degw(ld≤old

A), we have
similarly that B̄′

i ∈ inw(I).

1If assumptions (7) do not hold, the conversion step cannot be performed as described below. Then
one can either compute the characteristic set w.r.t. ≤new directly and then proceed along the Gröbner
walk, or perturb the path and find another w such that conditions (7) hold.

2The question, how to compute B̄, will be briefly discussed in Section 9.
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Continuing to “reduce” B̄′
i in the same way, we finally obtain zero since every reduc-

tion chain is finite and zero is the only element in inw(I) irreducible w.r.t. Aold. There-
fore, there exist polynomials q, pα, τα (α ∈ I) such that degw q < degw B̄i, degw pα <
degw(ταθαAα) and

qB̄i =
∑

α∈I pα inw(ταθαAα)
=
∑

α∈I inw(pαταθαAα)
= inw(

∑
α∈I pαταθαAα).

(8)

Take
Bi =

∑
α

pαταθαAα, B = {B1, . . . , Bs}.

Then ld≤new Bi = ld≤new B̄i, hence every polynomial in inw(I) is reducible w.r.t. B,
≤new. Moreover, inw Bi is reduced w.r.t. B \ {Bi}, for each i ∈ {1, . . . , s}, since B̄ is
autoreduced. Hence, set

Anew = {rem≤new(Bi,B \ {Bi}) | 1 ≤ i ≤ s}
is a characteristic set of I w.r.t. ≤new, and the conversion step is completed. �

The characteristic set Anew w.r.t. ≤new computed from characteristic set Aold w.r.t.
≤old by the above procedure will be denoted by conv(Aold,≤old,≤new).

7 Differential Gröbner walk

The differential Gröbner walk consists of the following conversion steps.

First, let ≤1 be a ranking defined by the matrix

(
w0

Mt

)
. Since both ≤1 and ≤0 are

compatible with w0, we can apply Lemma 4 and compute

A1 = conv(A0,≤0,≤1).

Each next step is performed as follows. Suppose, we have computed the characteristic

set Ai w.r.t. ≤i defined by matrix

(
wi−1

Mt

)
. Let wi be the closest to wi−1 point on the

segment (wi−1,wt] such that the leader of some differential polynomial in Ai and some
other derivative present in that polynomial have the same w-degree. Since Ai is finite,
and every A ∈ Ai involves finitely many derivatives, there are finitely many (or zero)
possibilities for wi, and one can always choose the minimal one out of them. If such a
point does not exist, Ai already is a characteristic set w.r.t. ≤t, and the algorithm stops.
Otherwise, let ≤′

i be a ranking defined by the matrix⎛⎝ wi

wi−1

Mt

⎞⎠ .

Then ≤′
i is compatible with w.

Lemma 5. Ai is a characteristic set of I w.r.t. ≤′
i.
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Proof. In order to prove that Ai is a characteristic set w.r.t. ≤′
i, we shall prove that

for every A ∈ Ai, ld≤′
i
(A) = ld≤i

(A) and then use the fact that Ai is a characteristic set
w.r.t. ≤i. Suppose, there exists A ∈ Ai such that u′ = ld≤′

i
(A) 
= ld≤i

(A) = u. Then,

degwi
u < degwi

u′ (9)

degwi−1
u ≥ degwi−1

u′ (10)

There are two cases possible:

1. degwi−1
u > degwi−1

u′. Then there exists a point w ∈ (wi−1,wi) such that degw u =
degw u′ which contradicts to our choice of wi.

2. degwi−1
u = degwi−1

u′. Then degwt
u ≥ degwt

u′. Moreover, we cannot have
degwt

u = degwt
u′ since there is at most one point w on the segment [wi−1,wt]

having the property degw u = degw u′. Thus degwt
u > degwt

u′. Since degw u is
a linear function of w, for every w ∈ (wi−1,wt], degw u > degwt

u′ which again
contradicts to our choice of wi.

�
Let ≤i+1 be the ranking defined by the matrix

(
wi

Mt

)
. Compute

Ai+1 = conv(Ai,≤′
i,≤i+1),

and then proceed to the next step.
In the next Section, we show that the Gröbner walk algorithm always stops after a

finite number of conversion steps.

8 Termination of Gröbner walk

During the Gröbner walk procedure, we compute a sequence of characteristic sets
A1,A2, . . . w.r.t. rankings ≤1,≤2, . . ., where ≤i are represented by matrices of the form(

wi−1

Mt

)
(i > 0), and {wi} is a sequence of consecutive distinct points on the segment

(w0,wt].

Theorem 4. The sequences A1,A2, . . . and w1,w2, . . . are finite.

Proof. Assume that the sequences are infinite. For every i > 0, consider set

Ki = {k > 0 | ld≤i
(Ai) = ld≤k

(Ak)}.

Obviously, for every i, j > 0, either Ki = Kj, or Ki ∩ Kj = ∅, and ∪∞
i=1Ki = N \ {0}.

According to Theorem 3, the set {Kj}j∈N\{0} is finite. We shall prove that every Kj

(j ∈ N \ {0}) is also finite and thus show that our assumption about the infiniteness of
the sequences above was wrong.
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Take the minimal element i ∈ Kj. If Kj is infinite, then wi 
= wt and thus wi ∈
(w0,wt). Then, for any k > i, k ∈ Kj, there exists differential polynomial Ak ∈ Ak, and
derivative uk present in Ak such that

degwk
(uk) = degwk

(ld≤k
Ak), (11)

and wk is the closest to wk−1 vector along the segment (wk−1,wt] such that the equality
(11) holds. That is, for every w ∈ (wk−1,wk),

degw(uk) < degw(ld≤k
Ak). (12)

Since degw(uk) is a linear function of w, it follows from (11,12) that

degwi
(uk) < degwi

(ld≤k
Ak). (13)

Let J = {j ∈ {1, . . . ,m + n} | wj
0 = wj

t = 0}. For any point w ∈ (w0,wt),

wj = 0 ⇐⇒ j ∈ J.

The coordinates of wk that do not belong to J are uniquely determined by the corre-
sponding components of the (n + m)-dimensional natural-valued vector representing uk,
according to (11). But, according to (13), for every l 
∈ J ,

|ul
k| ≤

degwi
(ld≤k

Ak)

wl
i

,

and wl
i 
= 0, since wi ∈ (w0,wt). So, there are finitely many choices for the components

of uk which do not belong to J , and hence, there are finitely many vectors wk. Since for
j 
= k, wj 
= wk, we obtain that Ki is finite. �

9 Open problems

The first problem to solve before the differential Gröbner walk can be implemented is how
to compute efficiently the characteristic set B̄ of inw(I) w.r.t. ≤new having a characteristic
set inw(A) of inw(I) w.r.t. ≤old. This computation is possible despite inw(I) is not
a differential ideal: one can compute a characteristic set B of I w.r.t. ≤new, then by
Lemma 3 inw(B) is a characteristic set of inw(I) w.r.t. ≤new. However, this argument
does not help from the practical point of view, since following this algorithm we would
not need consider inw(I) at all. Nevertheless, we hope that, as in case of a polynomial
ideal, there is an algorithm which computes B̄ directly. Our future research is directed
towards the analysis of the Rosenfeld-Gröbner algorithm and its adjustment for inw(I).

Second, one can extend the algorithm to arbitrary (non-Riquier) rankings, since they
also have a matrix characterization [18, 17]. One will need to refine the notion of weight
vector and initial form.

Finally, the choice of segment [w0,wt] as the Gröbner walk path is not always the
best choice, as it follows from [9, 10]. One can either apply the path perturbation strat-
egy described in these papers, or use pre-rankings [18] compatible with rankings which
generalize weight vectors.
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Application of Maple Package to
Analysis of Fluid Dynamics and
Mathematical Biology Problems

V. Govorukhin

Rostov State University,
e-mail: vgov@math.rsu.ru

This talk is devoted to application of computer algebra package Maple for analysis of
planar filtrational convection problem and ”active predator - prey” mathematical model
studying. We use computer algebra manipulation to obtaining finite-dimensional approx-
imation of PDE and for analysis of ODE-systems. Analytical form of approximation
permits to increase precision and rate of calculations. The possibilities of computer alge-
bra allow to carry out the stability analysis of stationary regimes and to receive critical
values of bifurcation parameter only with an error of Galerkin or lines methods. Maple
is using for MATLAB and Pascal code generation with following numerical investigation.
These two examples can be a sample for other scientific problem solution by Maple.
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The Application of the Computing
Algebra in Cosmic Dynamical

Problems

E.A. Grebenikov, M. Jakubiak, D. Kozak–Skoworodkin

University of Podlasie, Siedlce, Poland

In this paper we demonstrate the KAM–theory possibility to Lyapunov stability of new
cosmic models by help methods of Computing Algebra.

Poincaré Problem

Consider the 2n–dimensional Hamiltonian System

dp

dt
= −∂H

∂q
,

dq

dt
=

∂H

∂p
, (1)

where the Hamiltonian H(p, q) is of the type

H(p, q) ≡ H0(p) + μH1(p, q) , 0 ≤ μ < 1 , (2)

where H1 satisfies

H1(p, q) ≡ H1(p, q + (2π)). (3)

In addition we assume H(p, q) to be 2π–periodical on q1, q2, ..., qn and analytic on
2n–dimensional symplectic manifold

G2n = {p ∈ Gn, ‖Imq‖ < ρ < 1, ‖Imq‖ =
n∑

s=1

| Imqs |} , (4)

where Gn denotes a n–dimensional torus manifold in euclidean space. The variables (p, q)
usually are refereed to as ”action – angle” coordinates.

The problem of integrability of the system (1), which means to find a nondegener-
ate canonical mapping G2n → G∗

2n, (p, q) → (P,Q), that reduces the system (1) to the
following one:

dP

dt
= 0 ,

dQ

dt
=

∂H∗

∂P
. (5)

It follows from this, that in G∗
2n one has

H∗(P ) ≡ H(p, q) . (6)
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Understanding the difficulty of this programme, Poincaré considered the following
question to be solved first:

Problem. To find all the equilibrium points of the equations (1), to classify them
and to investigate their orbital and Lyapunov stability.

We analyse two aspects of this problem, which can be solve by help Computing Symbol
System (CSS) ”Mathematica”:

Aspect 1.1. The existence and linear stability problem of the equilibrium solutions
of the hamiltonian systems, describing the many – body (n > 3) restricted problems.

Aspect 1.2. The adaptability of KAM – theory ( in particularly, of Arnold – Moser
theorem ) for hamiltonian solution Lyapunov stability in restricted Newtonian many –
body problem, in particularly.

Aspect 1.1.

One from property of symplectic phase marks, that linear hamiltonian systems in environ-
ment of whichever equilibrium point (p0, q0) are describe by symplectic constant matrix.
The basic property of such matrix is, that all eigenvalues have form ±α ± βi. Then the
point (p0, q0) is stable, if all α ≡ 0. Therefore by methods of classical stability theory the
stability of nonlinear systems is unsolvable and can be studied only in frames of KAM –
theory.

In restricted newtonian problem of N(N = n + 2 > 3) bodies it is investigate the
movement of zero – mass in symmetrical field, definited by gravitation powers of other
masses m1 = m2 = ... = mn 
= 0, creating the regular polygon, turning round centre m0 of
all masses. B. Elmabsout and E. Grebenicov showed, that similar configuration is exact
particular solution of newtonian problem of many bodies with equal masses. Similarly
as in classical restricted problem of three bodies, here also it can study the restricted
problem of N–bodies: circular, elliptic, hyperbolic and parabolic.

The differential equations of restricted circular of N body problem in uniformly turning
coordinates system P0xyz have form:

d2x

dt2
− 2ωn

dy

dt
= −m0x

r3
+

∂R

∂x
,

d2y

dt2
+ 2ωn

dy

dt
= −m0y

r3
+

∂R

∂y
, (7)

d2z

dt2
= −m0z

r3
+

∂R

∂z
,

R(x, y, z) =
ω2

n

2
(x2 + y2) + m

n∑
k=1

[
1

Δk

− xxk + yyk + zzk

r3
k

]
, (8)
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Δ2
k = (x − xk)

2 + (y − yk)
2 + (z − zk)

2 ,

r2 = x2 + y2 + z2, r2
k = x2

k + y2
k + z2

k, k = 1, ..., n ,

xk = a0 cos
2π(k − 1)

n
, yk = a0 sin

2π(k − 1)

n
, zk = 0, k = 1, .., n , (9)

ωn =

√√√√ 1

a3
0

[
m0 +

m

4

n∑
k=2

(
sin

π(k − 1)

n

)−1
]

n = N − 2 ,

ωn–the angle speed of coordinate system P0xyz in relation to original inertial system, and
also is the angle speed of regular polygon P1P2...Pn in tops of which are masses m1 =
m2 = ... = mn 
= 0, round central body P0 with mass m0. Using classical transformations,
it is possible to write the equations (7) in form (1).

Determination of equilibrium positions of system (7) brings to solutions of non–linear,
functional equation system:

dx

dt
=

dy

dt
=

dz

dt
= 0 ,

(10)

−m0x

r3
+

∂R

∂x
= −m0y

r3
+

∂R

∂y
= −m0z

r3
+

∂R

∂z
= 0 ,

or

ω2
nx − m0x

r3
+ m

n∑
k=1

[
xk − x

Δ3
k

− 1

a2
0

cos
2π(k − 1)

n

]
= 0 ,

ω2
ny − m0y

r3
+ m

n∑
k=1

[
yk − y

Δ3
k

− 1

a2
0

sin
2π(k − 1)

n

]
= 0 , (11)

−m0z

r3
+ m

n∑
k=1

z

Δ3
k

= 0 .

In (11) the sizes x, y, z are unknowns.
Last equation from (11) for z = 0 is always realized. Then all equilibrium points of

system (7) are found in plane P0xy. It can show, that for any n ≥ 2 the system (11) is
equivalent to system:

ω2
nx − m0x

r3
+ m

n∑
k=1

xk − x

Δ3
k

= 0 ,

(12)

ω2
ny − m0y

r3
+ m

n∑
k=1

yk − y

Δ3
k

= 0 .
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In particularly, for famous restricted 3–body problem (n = 1) the equations (11) are form

ω2
1x − m0x

r3
+ m

(
1 − x

Δ3
1

− 1

)
= 0 ,

(13)

ω2
1y − m0y

r3
− my

Δ3
1

= 0 .

For y = 0 first equation has three Euler collinear solutions. For y 
= 0 the system (13) has
two Lagrange solutions, which determinate two equilateral triangles P0P1P . It is known,
that the collinear solutions are unstable in first approximation for arbitrary values of m.

Research of Lagrange triangle stability has 200–year history. At first G. Gascheau,
E. Routh and A. Lyapunov studied the triangle stability in first approximation. The
conditions of this stability is

0 ≤ m < m∗ =
9 −√

69

18
= 0.0385209....

The stability in Lyapunov sense studied H. Poincaré, A. Lyapunov, G. Birkhoff, C. Siegel,
V. Arnold, A. Deprit, J. Moser, A. Leontovich, A. Markeev, A. Sokolski, V. Sebehely and
ultimate results were got on base of KAM–theory.

Using CSS ”Mathematica”, we count the coordinates of equilibrium positions in re-
stricted problems 4, 5, 6, 7 – of bodies.

Here, the first algebraic problem, which appears at research of equilibrium positions, is
the determination of all solutions of nonlinear functional equations (12) for n = 2, 3, 4, 5.
The next algebraic problem is the construction of linear hamiltonian system in environ-
ment of the equilibrium points and research eigenvalues of the their matrices.

We demonstrated that the radial stationary points are unstable in first approximation
for all values m and the bisectorial stationary points are stable in first approximation for
0 ≤ m < m∗.

We have the board

N 0 ≤ m < m∗

4 0 ≤ m < 0.085...

5 0 ≤ m < 0.023...

6 0 ≤ m < 0.0094...

7 0 ≤ m < 0.0047...

For all values 0 ≤ m < m∗ the eigenvalues of matrix of linear hamiltonian equations
are the numbers of type ±βi. Also one can prove, that all equilibrium positions are the
homografic solutions in Lagrange – Wintner sense of differntial equations (7).

Aspect 1.2.

For research of Lyapunov stability of stationary points, stable in first approximation, one
used Arnold – Moser theorem. In order to use this theorem, one should be realized the
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operation of Birkhoff normalization of hamiltonians of these four problems with accuracy
to fourth degree of local coordinates. All algebraic operations and calculations one realized
by help CSS ”Mathematica”. We will show, that in intervals 0 ≤ m < m∗ (with exception
so-called of ”resonanse points”), the equilibrium positions of restricted problems are stable
in Lyapunov sense.

If we will transfer the origin of coordinate system from point P0 to stable in first
approximation stationary point with coordinates x∗, y∗ by help of expressions

X = x − x∗,

Y = y − y∗,

PX = px − px∗ ,

PY = py − py∗ ,

and we will pass to canonical variables (X,Y, PX , PY ), using classical transformations,
we will receive, for example, hamiltonian H(7) of restricted problem of seven – bodies
(n = 5) in form (14):

H(7) = ω5(ypx − xpy) +
1

2
(p2

x + p2
y) − (x2 + y2)−1/2 − m

((
(x − 1)2 + y2

)−1/2
+

+

⎛⎝(1

4
(1 +

√
5) + x

)2

+

(
−1

2

√
1

2
(5 −

√
5) + y

)2
⎞⎠−1/2

+

+

⎛⎝(1

4
(1 +

√
5) + x

)2

+

(
1

2

√
1

2
(5 −

√
5) + y

)2
⎞⎠−1/2

+ (14)

+

⎛⎝(1

4
(1 −

√
5) + x

)2

+

(
−1

2

√
1

2
(5 +

√
5) + y

)2
⎞⎠−1/2

+

+

⎛⎝(1

4
(1 −

√
5) + x

)2

+

(
1

2

√
1

2
(5 +

√
5) + y

)2
⎞⎠−1/2

⎞⎟⎠ .

Hamiltonian differential equations have form (1). They have, of course, particular solution

X = Y = PX = PY = 0. (15)

Unfortunately they are not comfortable for research of Lyapunov stability, because that
hamiltonian (14) is not positively definite function of phase variables (X,Y, PX , PY ). In
enough little environment of the coordinate origin (15) of hamiltonian (14) one can rep-
resent by help of convergent power serie:

H = H2(X,Y, PX , PY ) + H3(X,Y ) + H4(X,Y ) + ..., (16)

where Hk–homogeneous form of k–degree.
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On beginning by help non–singular canonical transformation
(X,Y, PX , PY ) → (q1, q2, p1, p2)

[X,Y, PX , PY ]T = A · [q1, q2, p1, p2]
T , (17)

where matrix A one shuld determine so, in order to transformed hamiltonian K
(H(X,Y, PX , PY ) → K(q1, q2, p1, p2)) had form

K(q1, q2, p1, p2) = K2(q1, q2, p1, p2) + K3(q1, q2, p1, p2) + K4(q1, q2, p1, p2). (18)

For equilibrium point with coordinates x∗ = 0.809317, y∗ = 0.588003, expressions
K2, K3, K4 have forms:

K2 =
1

2
σ1(p

2
1 + q2

1) −
1

2
σ2(p

2
2 + q2

2) = 0.485052(p2
1 + q2

1) − 0.115864(p2
2 + q2

2), (19)

K3 = −2.52816p3
1 − 2.51376p3

2 + 1.19723q3
1 + 0.339633q3

2 + 2.35999q2
1q2 +

+1.55067q2
1q

2
2 + p2

1(−12.0813p2 − 0.600941q1 − 0.39486q2) + p2
2(−14.7484p1 + (20)

+16.6356q1 + 10.9308q2) + p1(8.12181p2q1 + 5.5534q2
1 + 5.33659p2q2 +

+7.29794q1q2 + 2.39762q2
2) + p2(11.6697q2

1 + 15.3356q1q2 + 5.03827q2
2),

K4 = −0.599766p4
1 − 77.3193p4

2 + 1.9228q4
1 + 0.358408q4

2 − p3
1(16.9111p2 +

+14.8001q1 + 9.72468.q2) − p3
2(139.675p1 + 107.938q1 + 70.9224q2) +

−p2
1(82.2071p2

2 + 97.3317p2q1 + 16.6075q2
1 + 63.9536p2q2 + 21.8245q1q2 +

+7.1701q2
2) + p2

2(−188.407p1q1 − 20.6904q2
1 − 123.796p1q2 − 27.1901q1q2 + (21)

−8.93287q2
2) + p1(−44.955p2q

2
1 + 2.0817q3

1 + 4.10347q2
1q2 − 59.077p2q1q2 +

+19.8283q2
1q2 + 13.0286q1q

2
2 + 2.85356q3

2) + 5.05365q3
1q2 + 4.9809q2

1q
2
2 +

+2.18186q1q
3
2.

Transformation (17) permits to reset in K2 expressions PXY − PY X. From formula
(19) one can see, that K2 does not have expressions q1p2, q2p2, q2p1, q1p1. The solution of
the system (17) with 16 unknowns is possible only by help CSS ”Mathematica”.

This is the first important step in research of Lyapunov stability. Canonical variables
(q1, q2, p1, p2) are not the variables of type ”actin – angle”, because K2 depends not only
from impulses, but depends and from coordinates q1, q2. Farther one should be realized
the Birkhoff transformation in form

q1 =
√

2τ1 sin Θ1,

q2 =
√

2τ2 sin Θ2, (22)

p1 =
√

2τ1 cos Θ1,

p2 =
√

2τ2 cos Θ2,

which in square parts of new hamiltonian F

K(q1, q2, p1, p2) → F (Θ1, Θ2, τ1, τ2)
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without coordinates Θ1, Θ2. If we represent hamiltonian F in form

F (Θ1, Θ2, τ1, τ2) = F2(τ1, τ2) + F3(Θ1, Θ2, τ1, τ2) + F4(Θ1, Θ2, τ1, τ2) + ..., (23)

then F2, F3, F4 have forms :

F2 = σ1τ1 − σ2τ2 = 0.970104τ1 − 0.231729τ2, (24)

F3 = −1.4362τ
3/2
1 cos Θ1 − 17.4666τ

1/2
1 τ2 cos Θ1 − 5.71453τ

3/2
1 cos 3Θ1 +

−1.28015τ
1/2
1 τ2 cos(Θ1 − 2Θ2) − 11.6341τ1τ

1/2
2 cos(2Θ1 − Θ2) +

−0.582121τ1τ
1/2
2 cos Θ2 − 1.7699τ

3/2
2 cos Θ2 − 5.34009τ

3/2
1 cos 3Θ2 +

−21.9549τ1τ
1/2
2 cos(2Θ1 + Θ2) − 22.968τ

1/2
1 τ2 cos(Θ1 + 2Θ2) + (25)

+2.11478τ
3/2
1 sin Θ1 + 25.7193τ

1/2
1 τ2 sin Θ1 − 1.2715τ

3/2
1 sin 3Θ1 +

+6.89313τ
1/2
1 τ2 sin(Θ1 − 2Θ2) + 7.69096τ1τ

1/2
2 sin(2Θ1 − Θ2) +

+2.77911τ1τ
1/2
2 sin Θ2 + 8.44968τ

3/2
2 sin Θ2 + 7.48905τ

3/2
2 sin 3Θ2 +

+3.79502τ1τ
1/2
2 sin(2Θ1 + Θ2) + 14.4402τ

1/2
1 τ2 sin(Θ1 + 2Θ2),

F4 = −6.3191τ 2
1 − 105.087τ1τ2 − 119.908τ 2

2 − 5.04513τ 2
1 cos 2Θ1 +

−73.6677τ1τ2 cos 2Θ1 + 8.9652τ 2
1 cos 4Θ1 − 74.8189τ

1/2
1 τ

3/2
2 cos(Θ1 − 3Θ2) +

−54.2213τ1τ2 cos(2Θ1 − 2Θ2) − 51.1759τ
3/2
1 τ

1/2
2 cos(Θ1 − Θ2) +

−229.539τ
1/2
1 τ

3/2
2 cos(Θ1 − Θ2) + 0.582859τ

3/2
1 τ

1/2
2 cos(3Θ1 − Θ2) +

−100.708τ1τ2 cos 2Θ2 − 155.355τ 2
2 cos 2Θ2 − 34.014τ 2

2 cos 4Θ2 +

−44.5123τ
3/2
1 τ

1/2
2 cos(Θ1 + Θ2) − 208.894τ

1/2
1 τ

3/2
2 cos(Θ1 + Θ2) +

+27.461τ
3/2
1 τ

1/2
2 cos(3Θ1 + Θ2) + +4.85566τ1τ2 cos(2Θ1 + 2Θ2) +

−45.4469τ
1/2
1 τ

3/2
2 cos(Θ1 + 3Θ2) − 12.7184τ 2

1 sin 2Θ1 + (26)

−185.71τ1τ2 sin 2Θ1 − 8.4409τ 2
1 sin 4Θ1 + 1.71031τ

1/2
1 τ

3/2
1 sin(Θ1 − 3Θ2) +

−53.6605τ1τ2 sin(2Θ1 − 2Θ2) − 21.0421τ
3/2
1 τ

1/2
2 sin(Θ1 − Θ2) +

−0.582121τ1τ
1/2
2 cos Θ2 − 1.7699τ

3/2
2 cos Θ2 − 5.34009τ

3/2
1 cos 3Θ2 +

−94.3798τ
1/2
1 τ

3/2
2 sin(Θ1 − Θ2) − 46.7812τ

3/2
1 τ

1/2
2 sin(3Θ1 − Θ2) +

−44.1253τ1τ2 sin 2Θ2 − 68.0689τ 2
2 sin 2Θ2 − 36.888τ 2

2 sin 4Θ2 +

−46.1126τ
3/2
1 τ

1/2
2 sin(Θ1 + Θ2) − 216.404τ

1/2
1 τ

3/2
2 sin(Θ1 + Θ2) +

−60.6094τ
3/2
1 τ

1/2
2 sin(3Θ1 + Θ2) − 137.442τ1τ2 sin(2Θ1 + 2Θ2) +

−122.676τ
1/2
1 τ

3/2
2 sin(Θ1 + 3Θ2).

In Arnold – Moser theorem hamiltonian should have the form:

W (ψ1, ψ2, T1, T2) = W2(T1, T2) + W4(T1, T2) + W5(ψ1, ψ2, T1, T2) + ..., (27)

where
W2(T1, T2) = F2(T1, T2),W4(T1, T2) = c20T

2
1 + c11T1T2 + c02T

2
2 ,
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eigenvalues of linear system

dT1

dt
= −∂W2

∂ψ1

= 0,
dψ1

dt
=

∂W2

∂T1

,

(28)

dT2

dt
= −∂W2

∂ψ2

= 0,
dψ2

dt
=

∂W2

dT2

,

are the numbers ±iσ1,±iσ2,

n1σ1 + n2σ2 
= 0, for 0 < |n1| + |n2| ≤ 4, (29)

c20σ
2
2 + c11σ1σ2 + c02σ

2
1 
= 0. (30)

Then equilibrium point
T1 = T2 = ψ1 = ψ2 = 0

is stable in Lyapunov sense.
In order to use this theorem, one should construct yet one canonical transformation,

(Θ1, Θ2, τ1, τ2) → (ψ1, ψ2, T1, T2), which would transform F3(Θ1, Θ2, τ1, τ2) in
W3(ψ1, ψ2, T1, T2) = 0 and F4(Θ1, Θ2, τ1, τ2) in W4(T1, T2).

Stays yet to construct last canonical transformation

Θ1 = ψ1 + V13(ψ1, ψ2, T1, T2) + V14(ψ1, ψ2, T1, T2),

Θ2 = ψ2 + V23(ψ1, ψ2, T1, T2) + V24(ψ1, ψ2, T1, T2), (31)

τ1 = T1 + U13(ψ1, ψ2, T1, T2) + U14(ψ1, ψ2, T1, T2),

τ2 = T2 + U23(ψ1, ψ2, T1, T2) + U24(ψ1, ψ2, T1, T2),

where U13, U23, U14, U24, V13, V23, V14, V24 one should be determinate from the linear differ-
ential partial equations.

For example, we have

∂U13

∂ψ1

σ1 − ∂U13

∂ψ2

σ2 = A13(ψ1, ψ2, T1, T2), (32)

where A13 is the trigonometrical polynomial of variables ψ1, ψ2.
The solution of (32) is also the trigonometrical polynomial form relative to ψ1, ψ2.
Similar expressions we have for other functions U13, U23, U14, U24, V13, V23, V14, V24. Ul-

timate hamiltonian form for W is such, that the application of Arnold – Moser theorem are
realized. From this it results that equilibrium point with coordinates x∗ = 0.809317, y∗ =
0.588003, stable in first approximation, is stable in Lyapunov sense. The similar result is
correct for other bisectorial equilibrium points.
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In the papers [1, 2, 3] it is demonstrated the existence of the equilibrium solutions
of differential equations for restricted Lagrange - Wintner gravitational models. In these
models it is studied the motion of the passive gravitate mass in Newtonian gravitational
field, what is created by rotating gravitational regular polygon, in the vertices which there
are gravitational masses all equal m.

The numbers of vertices is arbitrary. Independently from of number of polygon vertices
n the differential equations of the motion of passive gravitate mass in space R3 have six
order and on the plane the order of this equation system is four. It is possible to prove,
that all the equilibrium points in these models there are in the plane of regular polygon.

In this paper we prove, that the equilibrium points of circular restricted Lagrange -
Wintner gravitational models for n = 7, ..., 20 are unstable. The differential equations of
the motion of the point P in the gravitational field of the bodies Pk(k = 1, 2, .., n) in the
barycentric Cartesian system (Gxy) have the form [4]:⎧⎪⎪⎨⎪⎪⎩

d2x
dt2

− 2ωn
dy
dt

− ω2
nx = f m

n∑
k=1

xk−x
Δ3

k
,

d2y
dt2

+ 2ωn
dx
dt

− ω2
ny = f m

n∑
k=1

yk−y
Δ3

k
,

(1)

where

ω2
n =

m

4

n∑
k=1

(
sin

(
π (k − 1)

n

))−1

, (2)

Δ2
k = (x − xk)

2 + (y − yk)
2 , (3)

f - gravitational constant (f = 1), m- mass of the body Pk.
For determining of equilibrium points of system (1), after transformations we finally

have solving system of functional equations [4]:⎧⎪⎪⎨⎪⎪⎩
Φ1 (x, y) ≡ ω2

nx +
n∑

k=1

xk−x
Δ3

k
= 0,

Φ2 (x, y) ≡ ω2
ny +

n∑
k=1

yk−y
Δ3

k
= 0.

(4)

In the article [5] have been shown that for n = 3, 4, 5, 6 and for arbitrary mass m all
the equilibrium points (its number is equal 3n) are unstable. Our calculations show, that
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for n = 7, .., 20 all the equilibrium points for arbitrary mass m also are unstable. Really,
if to substitute in the equations (4) the expression (2) for ω2

n and to reduce the size of m,
then we have the equations:⎧⎪⎪⎨⎪⎪⎩

m
4

n∑
k=1

(
sin
(

π(k−1)
n

))−1

+
n∑

k=1

xk−x
Δ3

k
= 0,

m
4

n∑
k=1

(
sin
(

π(k−1)
n

))−1

+
n∑

k=1

xk−x
Δ3

k
= 0.

(5)

These equations demonstrate, that the coordinates of equilibrium points do not de-
pend from gravitational parameter m, but depend only from values n. We solved the
equations (5) for n = 7, ..., 20 with the help of system Mathematica [6] and we found all
the equilibrium points of these models. The numbers of these points are 21, 24, 27, ..., 60.

The linearization of the system equations (1) in neighborhood of every equilibrium
point gives the system of differential equation:

dx

dt
= Ax, (6)

where A -matrix of the order 4 × 4 has the form:

A =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1

a31 a32 0 2
a41 a42 −2 0

⎤⎥⎥⎦
.

(7)

Here the elements a31, a32, a41, a42, are constants. The calculation show, that among
eigenvalues of matrix A for n = 7, .., 20 and for all the equilibrium points always exist
eigenvalues λ = ±a, where a-real number.

Hence, the equilibrium points of circular restricted Lagrange - Wintner gravitational
models for n = 7, 8, ..., 20 are unstable in the first approximation and it means, that the
points are unstable in Lapunov sense[7].
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Symbolic Computation Systems and
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Usage of the computer algebra systems for solving the many-body problem is discussed.
Stability of a new class of the exact symmetric solutions of the Newton’s gravitational (n+
1)-body problem that are represented by regular, scale-similarly to itself varying polygon,
rotating with variable angular velocity about its center is analyzed.

Introduction

The many-body problem is one of the most widely studied problems of classical mechanics.
Many outstanding mathematicians and mechanicians starting from Newton have been
dealing with this problem but only in the case of two interacting bodies the corresponding
general solution is found. Moreover, it turned out the differential equations of the many-
body problem are in general not integrable. Thus, the problem formulated by Poincare
- to find new classes of the exact particular solutions of the many-body problem and to
investigate their stability - has retained a high degree of topicality.

Solving the first part of this problem is connected with a search of the central config-
urations of the n-body system. The necessary and sufficient conditions of the existence
of central configurations of Newton’s gravitational n-body problem may be written as a
system of 3n nonlinear algebraic equations for 3n coordinates of the bodies with masses
m1, ...,mn considered as parameters [1]. Analysis of a solvability of this system is very
complicated algebraic problem and it has been completely fulfilled only for two and three
interacting bodies. Nevertheless, there is a hypothesis proposed by A.Wintner [2] that in
the case of n > 3 the central configurations for the Newton’s n-body problem always exist
but the amount of such configurations is restricted. This hypothesis in general form is not
proved till present time. And it seems that for n > 3 this problem may be analyzed only
with using modern symbolic computation systems, for example, Mathematica or Maple
that essentially increase our ability in doing both numerical and symbolic calculations.

When some exact particular solution of the many-body problem is found, the next step
is to investigate its stability. But this problem turned out to be the most complicated
problem of the qualitative theory of differential equations. For example, solving the
stability problem of the Lagrange triangular solutions has taken about 200 years, whereas
stability of the homographic and homothetic solutions in the three-body problem still
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remains unsolved. Analysis of this problem requires using both the methods of classical
theory of stability and the KAM-theory. In the second case it is also necessary to construct
the Birkhoff transformation for the hamiltonian normalization. Realization both of these
approaches is connected with doing a lot of tremendous analytical calculations that can
not be done by hands. So the further progress in solving the many-body problem and
generally in the theory of dynamical systems is associated with using modern computer
algebra systems.

Linearization of the Equations of Motion

In [3] B. Elmabsout found a new exact particular solution of the plane Newton’s many-
body problem where the n bodies P1, P2, ..., Pn of equal masses m are at the vertices of a
regular polygon with n sides that rotates uniformly around the body P0 of a non-zero mass
m0 being at the center of polygon. Then it was shown [4, 5], that there exist a whole class
of the exact symmetric solutions of the problem of (n + 1) bodies which are represented
by regular, scale-similarly to self varying polygons, rotating with variable angular velocity
around their centers. Stability of the invariant polygon was completely investigated in
linear approximation in [6]. Here we study the stability problem in linear approximation
in general case of the varying regular polygon with n sides. The corresponding equations
of motion of the bodies P1, P2, ..., Pn of equal masses m in relative Cartesian coordinates
can be written as [4] |

d2rj

dt2
+ f (m0 + m)

rj

r3
j

= f m

n∑
i=1 (i	=j)

( ri − rj

|ri − rj|3 − ri

ri
3

)
(j = 1, n), (1)

where m0 and f are a mass of the body P0 and gravitational constant respectively. It is
supposed that the body P0 is in the origin of Cartesian frame P0 xyz.

Equations (1) can be written in cylindrical coordinates as

d2ρj

dt2
− ρj

(dφj

dt

)2

+ f(m0 + m)
ρj

rj
3

=

= f m

n∑
i=1 (i	=j)

(cos(φi − φj)ρi − ρj

ri,j
3

− cos(φi − φj)ρi

ri
3

)
,

ρj
d2φj

dt2
+ 2

dρj

dt

dφj

dt
= f m

n∑
i=1 (i	=j)

( 1

ri,j
3
− 1

ri
3

)
sin(φi − φj) ρi, (2)

d2zj

dt2
+ f(m0 + m)

zj

r3
j

= f m

n∑
i=1 (i	=j)

(zi − zj

ri,j
3

− zi

ri
3

)
(j = 1, n)

where

r2
i = ρ2

i + z2
i , ri,j

2 = |ri − rj|2 = ρ2
i + ρ2

j − 2ρiρj cos(φi − φj) + (zi − zj)
2.
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It is easy to check that equations (2) have a solution

ρj(t) = ρ1(t) ≡ ρ(t), φj(t) = φ(t) +
2π

n
j, zj(t) = 0 (j = 1, n), (3)

where the functions ρ(t) and φ(t) are connected with two relationships

ρ(φ) =
p

1 + e cos φ
, ρ2 dφ

dt
= c ≡ const.

Parameter p is connected with the constant c according to the relationship

p =
c2

f Mn

, Mn = m0 +
m

4

n−1∑
i=1

1

sin (π i/n)
.

Solution (3) determines the plane motion of the bodies on a similar trajectories being
in the P0 xy plane. The shape of the trajectories is completely determined with two
parameters p and e. And in the case of e = 0 all bodies move on the circle of radius p
with angular velocity

ω =

√
f Mn

p3
.

To investigate stability of solution (3) it is convenient to transform equations (2) into
Nechvil’s phase space according to the rule

ρj(t) → p

1 + e cos φ
ρj(φ), zj(t) → p

1 + e cos φ
zj(φ),

where p and e are some constants, and the polar angle φ is considered as a new independent
variable. Then we obtain the equations of motion in the form

d2ρj

dφ2
− ρj

(dφj

dφ

)2

+
e cos φ

1 + e cos φ
ρj +

m0 + m

Mn(1 + e cos φ)

ρj

rj
3

=

=
m

Mn(1 + e cos φ)

n∑
i=1 (i	=j)

(cos(φi − φj)ρi − ρj

ri,j
3

− cos(φi − φj)ρi

ri
3

)
,

ρj
d2φj

dφ2
+ 2

dρj

dφ

dφj

dφ
=

m

Mn(1 + e cos φ)

n∑
i=1 (i	=j)

( 1

ri,j
3
− 1

ri
3

)
sin(φi − φj) ρi,

d2zj

dφ2
+

e cos φ

1 + e cos φ
zj +

m0 + m

Mn(1 + e cos φ)

zj

r3
j

=

=
m

Mn(1 + e cos φ)

n∑
i=1 (i	=j)

(zi − zj

ri,j
3

− zi

ri
3

)
(j = 1, n), (4)

Solution (3) can be written in Nechvil’s variables as

ρj(φ) = ρ ≡ 1, φj(φ) = φ +
2π

n
j, zj(φ) = 0 (j = 1, n). (5)
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In order to study the equations (4) at the neighborhood of solution (5) we put

ρj(φ) → 1 + uj(φ), φj(φ) → φ +
2 π

n
j + γj(φ).

Considering functions uj(φ), γj(φ), zj(φ) as small perturbations of solution (5) we expand
equations (4) in powers of uj, γj, zj neglecting all terms of order superior or equal to 2.
As a result we obtain a linearized system of differential equations in the form

d2uj

dφ2
− 2

dγj

dφ
=

8 + 12μ + S1

(1 + e cos φ)(4μ + S1)
uj−

− 1

4(1 + e cos φ)(4μ + S1)

n∑
i=1 (i	=j)

1

| sin(π(i − j)/n)|3 ((−1 + 3 cos(
2π

n
(i − j)))uj+

+(−3 + cos(
2π

n
(i − j)) − 32 cos(

2π

n
(i − j))| sin(

π

n
(i − j))|3)ui−

−(1 + 16| sin(
π

n
(i − j))|3) sin(

2π

n
(i − j))(γi − γj)),

d2γj

dφ2
+ 2

duj

dφ
= − 1

4(1 + e cos φ)(4μ + S1)

n∑
i=1 (i	=j)

1

| sin(π(i − j)/n)|3 ((1−

−32| sin(
π

n
(i − j))|3) sin

2π

n
(i − j))ui + 3 sin

2π

n
(i − j))uj+

+(3 + cos(
2π

n
(i − j)) + 16 cos(

2π

n
(i − j))| sin(

π

n
(i − j))|3)(γi − γj)),

d2zj

dφ2
+

4(1 + μ) + (4μ + S1)e cos φ

(1 + e cos φ)(4μ + S1)
zj = (6)

=
1

2(1 + e cos φ)(4μ + S1)

n∑
i=1(i	=j)

1

| sin(π(i − j)/n)|3 ((1 − 8| sin(
2π

n
(i − j))|3) zi − zj),

where

μ =
m0

m
, S1 =

n−1∑
j=1

1

sin(πj/n)
.

Now the problem of linear stability of solution (5) is reduced to studying stability of a
trivial solution of the system (6) that is a linear system of differential equations with
periodic coefficients.
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Studying Linear Stability of the Solutions for the Per-

pendicular Perturbations

According to system (6) the functions zj determining perturbations of the bodies trajec-
tories in perpendicular to the plane P0xy direction do not depend on uj and γj . So in
linear approximation we can study stability of solution (5) in respect to the perpendicular
perturbations zj and the perturbations uj and γj contained in the plane of orbits P0xy
separately. Let us start with studying linear stability of solutions (5) for perpendicular
perturbations. It is convenient to rewrite the last equation of system (6) determining
the functions zj in vector notations. So we introduce a n-dimensional vector Z with
components zj(φ) and n x n matrixes B and K that have the next elements:

Bjk =
1

| sin(π(j − k)/n|3 for j 
= k and Bjj = −
n∑

k=1( 	=j)

Bjk;

Kjk = 1 (j, k = 1, n).

Then we can rewrite the last equation of system (6) as

d2Z

dφ2
=

1

2(1 + e cos φ)(4μ + S1)
(B − 8K − 8μI − 2(4μ + S1)e cos φ I)Z, (7)

where I is an nxn identity matrix. It is easy to verify [6] that the matrix B has eigenvectors
Er with components

Ek,r =
1√
n

e
2π r

n
i k (k, r = 1, n) (8)

where i =
√−1 and the first index k denotes the number of component. The correspond-

ing eigenvalues are (−λr) where

λr = 2
n−1∑
k=1

sin2(πrk/n)

sin3(πk/n)
.

Vectors (8) are also the eigenvectors of the matrix K that has two eigenvalues: 0 and n.
Actually,

K Er = 0 for r = 1, n − 1 and K Er = n En.

So introducing the matrix Q with elements Qk,r = Ek,r we can easily diagonalize the
matrixes B and K according to the transformation rules

B → Q+BQ, K → Q+KQ,

and reduce equation (7) to the normal form

d2z

dφ2
= −a + e cos φ

1 + e cos φ
z, (9)

where

a =
λr + 8μ + 8nδr,n

2(4μ + S1)
.
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Equation (9) is the second order differential equation that is sometimes called a Hill’s
equation. In the case of e = 0 it reduces to the equation of simple harmonic oscillator
of frequency

√
a . It’s apparent that a > 0 for any r = 1, n and so in this case the

solution (5) is linearly stable for any perpendicular to the plane of the bodies trajectories
perturbations.

Equation (9) is apparently equivalent to a linear system of two first order differential
equations with periodic matrix. General analysis of such systems shows that depending
on the values of parameters a and e its trivial solution may be stable or unstable [7].
The boundaries between the domains of stability and instability in the ae-plane are some
curves a = a(e) which characterized by the presence of periodic solutions with period
2π and 4π . Hence, we can attempt to determine these boundaries directly by seeking a
solution of equation (9) in the form

z = c0 +
∞∑

k=1

(ck cos(
k

2
φ) + dk sin(

k

2
φ)). (10).

Although this is a Fourier series for the function z = z(φ) of period 4π, it can also be
used to obtain the solution with period 2π by setting to zero the Fourier coefficients
corresponding to k being an odd integer. On substituting (10) into equation (9) and
setting coefficients of cos(k

2
φ) and sin(k

2
φ) to zero we have obtained the following infinite

sequence of equations determining coefficients of the Fourier series (10).

a c0 = 0,

ec0 + (a − 1)c2 − 3

2
ec4 = 0,

. . . . . . . (11)

−k(k − 2)

2
ec2k−2 + (a − k2)c2k − k(k + 2)

2
ec2k+2 = 0.

(a − 1

4
+

3

8
e)c1 − 5

8
ec3 = 0,

. . . . . . . (12)

−(2k − 5)(2k − 1)

8
ec2k−3 + (a − (k − 1

2
)2)c2k−1 − (2k − 1)(2k + 3)

8
ec2k+1 = 0.

(a − 1) d2 − 3

2
ed4 = 0,

. . . . . . . (13)

−k(k − 2)

2
ed2k−2 + (a − k2)d2k − k(k + 2)

2
ed2k+2 = 0.

(a − 1

4
− 3

8
e) d1 − 5

8
e d3 = 0,

. . . . . . . (14)
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−(2k − 5)(2k − 1)

8
e d2k−3 + (a − (k − 1

2
)2) d2k−1 − (2k − 1)(2k + 3)

8
e d2k+1 = 0.

It can be seen that in fact there are four infinite subsequences of linear homogeneous
equations. Two of these (11) and (13) are for the coefficients c0, c2, ... , c2k and d2, ... , d2k

respectively and represent solution (10) with period 2π. For a solution to exist, the
corresponding determinants of infinite systems (11), (13) must vanish, thus determining
the stability boundaries in the ae-plane. These boundaries obviously reduce to a =
(2k)2 (k = 0, 1, 2, ...) when e → 0. The remaining two subsequences of equations (12)
and (14) are for c1, c3, ... , c2k+1 and d1, ... , d2k+1 , and correspond to those stability

boundaries which reduce to a = (2k−1)2

4
(k = 1, 2, ...) when e → 0 .

Of course, it’s impossible to calculate a determinant of the infinite matrix. So to find
the stability boundaries a = a(e) we should truncate the infinite subsequences of equations
(11)-(14) after the k-th term, where k is a suitably large number. The corresponding
determinant of the system (11), for example, can be written as

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣

a 0 0 0 ... 0
c a − 1 −3

2
e 0 ... 0

0 0 a − 4 −4e ... 0
0 0 −3

2
e a − 9 ... 0

... ... ... ... ... ...

0 0 0 0 −k(k−2)
2

e a − k2

∣∣∣∣∣∣∣∣∣∣∣∣
. (15)

Setting determinant Dk to zero we obtain an algebraic equation giving us an approx-
imation for the stability boundary ak = ak(e) . An exact expression for the boundary is
obtained when k → ∞. Determinant (15) is best evaluated from the following recurrence
relation

Dk = (a − k2)Dk−1 − e2

2
(k − 2)(k − 1)k(k + 1)Dk−2 (k = 3, 4, ...) (16)

which is readily established from (15). To start the iterative process we observe that

D1 = a, D2 = a(a − 1).

A similar procedure can be followed for the other systems (12)-(14). For instance, the
determinant of system (13) is just the same as (15) with the first row and column deleted.
The recurrence relation is again (16) for k ≥ 3 , but the starting values are now given by

D1 = a − 1, D2 = (a − 1)(a − 4).

The corresponding recurrence relation for the determinants of systems (12), (14) is

Dk = (a − (2k − 1)2

4
) Dk−1 − e2

64
(2k − 5)(2k − 3)(2k − 1)(2k + 1) Dk−2 (17)

with the starting values

D1 = a − 1

4
± 3e

8
, D2 = (a − 1

4
± 3e

8
)(a − 9

4
) +

15e2

64
.
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It’s apparent from (16), (17) that in the case of e = 0 determinants of systems (11)-
(14) will equal to zero when a = 1

4
k2 (k = 0, 1, 2, ..). It means the stability boundaries

should cross the e = 0 axis in the ae-plane at these points. For sufficiently small e we
can represent the stability boundaries a = a(e) in the vicinity of the points a = 1

4
k2 as a

power series in e. As a result we obtain the curves in the form

a = 0, a =
1

4
∓ 3

8
e +

15

128
e2 ∓ 45

2048
e3 +

885

32768
e4, a = 1,

a =
9

4
− 135

256
e2 ∓ 45

2048
e3 − 34695

262144
e4, a = 4 − 6

5
e2 − 39

125
e4, ... (18)

where the error term is O(e5).
It should be emphasized that zones of instability are bounded only by the curves

crossing the e = 0 axis in the points a = (2k−1)2

4
(k = 1, 2 ... ) and these zones are quite

narrow. Besides, there are curves of instability crossing the e = 0 axis in the points
a = k2 (k = 0, 1, 2, ... ) . Thus, if parameters a and e are in a zone of instability then the
trivial solution of equation (9) is unstable.

Conclusion

In present paper we have analyzed the linear stability of the exact particular solutions of
the plane Newton’s many-body problem found in [4,5]. It was shown that stability of the
solutions in respect to the perpendicular perturbations and the perturbations contained
in the plane of bodies orbits may be studied separately. Linear stability of the solutions
for perpendicular perturbations depends on the ellipticity of the orbits e, the number on
bodies n and parameter μ = m0/m because parameter a is determined with n and μ
according to (9). And if for a fixed value of e parameter a turns out to be in a zone of
instability then the corresponding solution (5) is unstable. All calculations are done with
computer algebra system Mathematica.
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TEXmacs Interfaces to Maxima,
MuPAD and REDUCE

A. G. Grozin

Budker Institute of Nuclear Physics,
630090 Novosibirsk, Russia;

e-mail: A.G.Grozin@inp.nsk.su

GNU TEXmacs is a free wysiwyg word processor providing an excellent typesetting
quality of texts and formulae. It can also be used as an interface to Computer Algebra
Systems (CASs). In the present work, interfaces to three general-purpose CASs have been
implemented.

1 TEXmacs

GNU TEXmacs [1] is a free (GPL) word processor which

• typesets texts and mathematical formulae with very high quality (like LATEX),

• emphasizes the logical structure of a document rather than its appearance (like
LATEX),

• is easy to use and intuitive (like typical wysiwyg word processors),

• can be extended by a powerful programming language (like Emacs),

• can include PostScript figures (as well as other figures which can be converted to
PostScript),

• can export LATEX, and import LATEX and html,

• supports a number of languages based on Latin and Cyrillic alphabets.

It uses TEX fonts both on screen and when printing documents. Therefore, it is truly
wysiwyg, with equally good quality of on-screen and printed documents (in contrast to
LyX which uses X fonts on screen and calls LATEX for printing). There is a similar
commercial program called Scientific Workplace (for Windows).

TEXmacs can also be used as an interface to any CAS which can generate LATEX output.
It renders LATEX formulae on the fly, producing CAS output with highest typesetting
quality (better than, e.g., Mathematica, which uses fixed-width fonts for formula output).
A user can utilize editing facilities of TEXmacs: copy (a part of) a previous input into the
new one, edit it and sent to the CAS, copy a result derived using the CAS into a paper,
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etc. In the present talk, I give some examples of using Maxima, MuPAD and REDUCE via
TEXmacs. It is not my aim to describe these powerful and complex CASs; I only show
examples of typesetting produced by TEXmacs. This talk has been written in TEXmacs
and exported to LATEX.

2 Maxima

Macsyma is one of the oldest and most mature CASs. It was developed at MIT during
the end of sixties – beginning of seventies. Later, it was owned by various commercial
companies. Now it seems practically dead.

Fortunately, a free CAS Maxima is now under GPL. It is based upon the Macsyma
code base from seventies, with a number of later enhancements. It incorporates a lot of
mathematical knowledge, is stable and well tested. From its very beginning, Macsyma
(and Maxima) pays much attention to mathematical correctness; for example, if the form
of an integral depends on the sign of a parameter, it will ask the user about it, or use an
assumption – other systems only recently incorporated similar facilities. It is an excellent
platform for research projects, because it provides a solid foundation, and it cannot vanish
into thin air as commercial systems (e.g., Macsyma) can do at any moment. Its text-
based interface now looks somewhat old-fashioned. When combined with a nice graphical
interface provided by TEXmacs, it can compete with commercial CASs like Mathematica
and Maple, and even produce higher-quality output. And it is difficult for commercial
vendors to beat the price :–)

Here is a sample Maxima session within TEXmacs.

GCL (GNU Common Lisp) Version(2.4.0) Tue May 15 15:03:11 NOVST

2001 Licensed under GNU Library General Public License Contains

Enhancements by W. Schelter Maxima 5.6 Tue May 15 15:03:08 NOVST

2001 (with enhancements by W. Schelter). Licensed under the GNU

Public License (see file COPYING)

(C1) (x^2-y^2)/(x^2+y^2)+sin(alpha)^2;

(D1)
x2 − y2

y2 + x2
+ sin2 α

(C2) expand((x+y-1)^5);

(D2) y5 + 5xy4 − 5y4 + 10x2y3 − 20xy3 + 10y3 + 10x3y2 − 30x2y2 + 30xy2 − 10y2

+ 5x4y − 20x3y + 30x2y − 20xy + 5y + x5 − 5x4 + 10x3 − 10x2 + 5x − 1
(C3) solve(a*x^2+b*x+c,x);

(D3)

[
x = −

√
b2 − 4ac + b

2a
, x = −b −√

b2 − 4ac

2a

]
(C4) integrate(sqrt(x^2+a),x);

Is a positive or negative?negative;

(D4)
a log

(
2
√

x2 + a + 2x
)

2
+

x
√

x2 + a

2
(C5) assume(a>0);

(D5) [a > 0]
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(C6) integrate(sqrt(x^2+a),x);

(D6)
aASINH

(
x√
a

)
2

+
x
√

x2 + a

2
(C7) integrate(exp(sin(x)),x,0,%pi);

(D7)

∫ π

0

esin x dx

(C8) diff(f(x),x,2);

(D8)
d2

dx2
f (x)

(C9) g:gamma(1+x);

(D9) Γ (x + 1)
(C10) taylor(g,x,0,3);

(D10) 1 − γx +
(6γ2 + π2) x2

12
− (2γ3 + π2γ + 4ζ (3)) x3

12
+ · · ·

(C11) m:entermatrix(2,2);

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric

4. General

Answer 1, 2, 3 or 4 : 4;

Row 1 Column 1: a;

Row 1 Column 2: b;

Row 2 Column 1: c;

Row 2 Column 2: d;

Matrix entered.

(D11)

(
a b
c d

)
(C12) m^^(-1);

(D12)

(
d

ad−bc
− b

ad−bc

− c
ad−bc

a
ad−bc

)
(C13) fac(n):=if n=0 then 1 else n*fac(n-1);

(D13) fac (n) := if n = 0 then 1 else n fac (n − 1)
(C14) trace(fac);

(D14) [fac]
(C15) fac(5);

1 Enter fac [5]
2 Enter fac [4]
3 Enter fac [3]
4 Enter fac [2]
5 Enter fac [1]
6 Enter fac [0]
6 Exit fac 1

5 Exit fac 1
4 Exit fac 2

3 Exit fac 6
2 Exit fac 24

1 Exit fac 120
(D15) 120
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(C16) f(x):=block([a,z:0],a:x+1,a:a/z,a+1);

(D16) f (x) := block
(
[a, z : 0] , a : x + 1, a :

a

z
, a + 1

)
(C17) debugmode(true);

(D17) true
(C18) f(u);

Division by 0

-- an error. Entering the Maxima Debugger dbm f(x=u)

(dbm:1) a;

u + 1
(dbm:1) z;

0
(dbm:1) :q

(C19) plot2d(sin(x)/x,[x,-10,10]);

(D19) 0
(C20) f(x,y):=sin(sqrt(x^2+y^2))/sqrt(x^2+y^2);

(D20) f (x, y) :=
sin
√

x2 + y2√
x2 + y2

(C21) plot3d(f(x,y),[x,-10,10],[y,-10,10]);

(D21) 0
Plots appear in separate windows (Fig. 1). When the mouse is over such a window,

its coordinates are continuously displayed at the upper left corner (in the 3d case, also z
of the surface at the mouse position (x, y) is shown). When the mouse is at the upper
left corner, a menu appears. It allows the user to control the plot: zoom, rotate (in the
3d case), print, save as PostScript, etc.

SIN(x)/x

5

0.2

1

−10

−10

0

0

10

10

0 0

0.5 0.5

1 1

For grozin Fri Jul 27 22:31:45 NOVST 2001

Plot of z =

For grozin Fri Jul 27 22:33:58 NOVST 2001

Figure 1: Maxima plots

The toolbar icon showing the question mark shows the Maxima documentation. The
Maxima manual is in html; it is imported into TEXmacs and shown in a new buffer.
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Hyperlinks work with double click. It is easy to arrange things in such a way that you do
calculations in one TEXmacs window, and read the manual in another window.

3 MuPAD

MuPAD [3] is the most recent addition to the family of universal CASs. It is being
developed at University of Paderborn, and commercially distributed by SciFace. In some
cases, it can be obtained free of charge (see their web site), but it is not free software. It
is rather similar to Maple, but designed from scratch, and some new fundamental ideas
were incorporated. The library is not so extensive as those of older systems, but MuPAD
is progressing fast. Its interface is text-based (except the Windows version). Therefore,
adding a high-quality graphical formula output provided by TEXmacs is useful.

Here is a sample MuPAD session within TEXmacs.

*----* MuPAD 2.0.0 -- The Open Computer Algebra System

/| /|

*----* | Copyright (c) 1997 - 2000 by SciFace Software

| *--|-* All rights reserved.

|/ |/

*----* Licensed to: Andrey Grozin

% (x^2-y^2)/(x^2+y^2)+sin(alpha)^2

sin (α)2 +
(x2 − y2)

(x2 + y2)
% expand((x+y-1)^5)

5 x + 5 y − 20 x y − 10 x2 + 10 x3 − 10 y2 − 5 x4 + 10 y3 + x5 − 5 y4 + y5 + 30 x y2

+ 30 x2 y − 20 x y3 − 20 x3 y + 5 x y4 + 5 x4 y − 30 x2 y2 + 10 x2 y3 + 10 x3 y2 − 1
% solve(a*x^2+b*x+c=0,x)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C if a = 0 ∧ b = 0 ∧ c = 0
{} if a = 0 ∧ b = 0 ∧ c 
= 0{− c

b

}
if a = 0 ∧ b 
= 0{

− b
2
−
√

b2−4 a c
2

a
,

√
b2−4 a c

2
− b

2

a

}
if a 
= 0

% int(sqrt(x^2+a),x)

x
√

a + x2

2
+

a ln
(
x +

√
a + x2

)
2% i1:=int(exp(sin(x)),x=0..PI); float(i1)∫ π

0

exp (sin (x)) dx

6.208758036
% diff(f(x),x,x)
∂2

∂x2
f (x)

% g:=gamma(1+x)

γ (x + 1)
% series(g,x=0,4)
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1 − x γ + x2

(
π2

12
+

γ2

2

)
+ x3

(
−ζ (3)

3
− γ3

6
− π2 γ

12

)
+ O
(
x4
)

% M:=matrix([[a,b],[c,d]]); 1/M(
a b
c d

)
( − d

b c−a d
b

b c−a d
c

b c−a d
− a

b c−a d

)
% plotfunc2d(sin(x)/x,x=-10..10)

Warning: Dumb terminal: Plot data saved in binary file save.mp

[plot]; during evaluation of ’plot2d’

% f:=(x,y)->sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)

(x, y) ->sin(sqrt(x^2+ y^2))/sqrt(x^2+ y^2)

% plotfunc3d(f(x,y),x=-10..10,y=-10..10)

Warning: Dumb terminal: Plot data saved in binary file save.mp

[plot]; during evaluation of ’plot3d’

% quit

The end

Plots appear in separate windows (Fig. 2). Spurious warnings about dumb terminal
may be ignored. Plots are displayed by the program vcam which is distributed with
MuPAD. They can be controlled (and saved to PostScript files) via menus.
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0.5
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1/(x^2 + y^2)^(1/2)*sin((x^2 + y^2)^(1/2))

Figure 2: MuPAD plots

The question mark icon opens the help menu. MuPAD documentation is extensive and
high-quality. It is written in an extension of LATEX with hyperlinks, and displayed by an
extended dvi viewer distributed with MuPAD. Therefore, it has high typesetting quality.

4 REDUCE

REDUCE is one of the older CASs (it was somewhat influenced by Macsyma). It is a
commercial system. It is stable and efficient, and can solve larger problems in a given
memory than, say, Mathematica. Its text-based interface looks old-fashioned; it has also
an X interface, which provides 2-dimensional formula output (not of a very high quality)
and a convenient on-line help.
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Here is a sample REDUCE session within TEXmacs.

Loading image file :/opt/reduce/lisp/psl/linux/red/reduce.img

REDUCE 3.7, 15-Apr-1999, patched to 14-Jun-2001 ...

1: (x^2-y^2)/(x^2+y^2)+sin(alpha)^2;

sin (α)2 x2 + sin (α)2 y2 + x2 − y2

x2 + y2

2: (x+y-1)^5;

x5 + 5 x4 y − 5 x4 + 10 x3 y2 − 20 x3 y + 10 x3 + 10 x2 y3 − 30 x2 y2 + 30 x2 y
− 10 x2 + 5 x y4 − 20 x y3 + 30 x y2 − 20 x y + 5 x + y5 − 5 y4 + 10 y3

− 10 y2 + 5 y − 1
3: solve(a*x^2+b*x+c=0,x);{

x =

√− 4 a c + b2 − b

2 a
, x =

− (√− 4 a c + b2 + b
)

2 a

}
4: int(sqrt(x^2+a),x);√

a + x2 x + log
(√

a + x2 + x√
a

)
a

2
5: int(exp(sin(x)),x);∫

esin(x) d x

6: df(f(x),x,2);

Declare f operator ? y
∂2 f (x)

∂ x2

7: taylor(sin(x),x,0,10);

x − 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 + O

(
x11
)

8: m:=mat((a,b),(c,d));

m :=

(
a b
c d

)
9: 1/m;(

d
a d− b c

− b
a d− b c− c

a d− b c
a

a d− b c

)
10: plot(sin(x)/x,x=(-10 .. 10));

11: procedure f(x,y); sin(sqrt(x^2+y^2))/sqrt(x^2+y^2);

f
12: plot(f(x,y),x=(-10 .. 10),y=(-10 .. 10),hidden3d,points=40);

13: bye;

Quitting
The end

Plots appear in separate windows, they are displayed by gnuplot (Fig. 3). Unfortu-
nately, it is not possible to control them interactively, one has to use options in the plot

procedure. In order to save a plot to a PostScript file, the options

terminal="postscript eps",output="filename.eps"
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Figure 3: REDUCE plots

are used.
The question mark icon displays help menu. REDUCE manual (written in LATEX) is

imported into TEXmacs. Some LATEX constructs are not handled correctly, but, neverthe-
less, the manual is quite readable.

All interfaces described in this talk are preliminary, and require more work. It is
not difficult to implement TEXmacs interfaces with more CASs. TEXmacs progresses
fast; in the future, it can become a complete scientist’s work place, suitable both for
writing articles and for doing calculations using various external systems, within the
same comfortable environment.

I am grateful to Joris van der Hoeven for numerous discussions about TEXmacs and
CAS interfaces; to William Schelter for his great help with Maxima and its LATEX gen-
eration; to Ralf Hillebrand for similar help with MuPAD and for providing an improved
LATEX generation library; to Winfried Neun for useful discussions about REDUCE .

Note added: Professor William Schelter died soon after the workshop. Let GNU
Common Lisp and Maxima, the only free CAS, be his living memory.
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Multiloop Calculations in Heavy
Quark Effective Theory

A. G. Grozin

Budker Institute of Nuclear Physics,
630090 Novosibirsk, Russia;

e-mail: A.G.Grozin@inp.nsk.su

Heavy Quark Effective Theory (HQET) is a new approach to QCD problems with
a single heavy quark, when all characteristic momenta are much less than its mass. It
simplifies treatment of such problems, and reveals new symmetries hidden in QCD. Re-
cently, an algorithm of calculation of arbitrary three-loop propagator diagrams in HQET
has been constructed, and implemented as a REDUCE package Grinder. It is about
3000 lines long, and its testing required more than a CPU-month on good workstations.
Large parts of this package were also ported to Axiom. Finding QCD/HQET matching
coefficients requires calculation of on-shell diagrams with a massive quark in QCD. An
algorithm of three-loop calculations of single-mass on-shell propagator diagrams has also
been constructed, and implemented in FORM. A substantial progress was also achieved
in calculation of diagrams with more than two legs in lower loops.
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Maple Implementing Algebraic
Perturbation Theory Algorithm:
Hydrogen Atom in Weak Electric

Fields

Alexander Gusev1, Valentin Samoilov1,
Vitaly Rostovtsev2, Sergue Vinitsky3
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2Laboratory of Information Technologies,
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Algorithms for evaluation of eigenvalues and eigenfunctions of a hydrogen atom in
electric fields in framework of perturbation theory is implemented on MAPLE. A program
description as well as input and output files are represented.

1 Introduction

In articles [3, 4, 5] algorithms for calculating eigenfunctions and eigenvalues of hydrogen
atom in the homogeneous electric field and in the field of distant charge were represented.
They have been implemented by means of CAS REDUCE.

Algorithms of this sort are needed to construct of combined program package for
computing both atomic systems properties in external fields and effective potentials in
quantum mechanical three body problem [2, 1].

We have been generalizing our algorithms and implementing them in CAS Maple.
In this case, we wrote the program without using rewrite rules. These algorithm and
program are represented in the article. In addition, we perform a comparison of the
packages efficiency and results of calculation of energy spectrum up to 9 order by small
parameter.

2 Setting of the Problem

Concider Shroedinger equation of a hydrogen-like atom with the charge Za in weak electric
field (

1

2
p2 − Za

r
+ V (r, x3) − E

)
|Φ〉 = 0, 〈Φ|Φ〉 = 1 (1)
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where E is an energy and |Φ〉 are wave functions of hydrogen atom. V (r, x3) is potential,
which can be represented as a series

V =
∑
k=1

εkVk, ε ( 1.

The wave function |Φ〉 and the energy E = E(R) are sought for in the form

|Φ〉 =
∑
k=0

εk|Φ(k)〉, E =
∑
k=0

εkE(k). (2)

Using these expansions we rewrite equation (1) in form(
1

2
rp2 − Za −

∑
k=1

εkV (k)(x3, r) − rE(0)

)
|Φ〉 = 0. (3)

Then we can write (3) in notations generators L56, A3 = L34, L3 = L12, x3 = L35 −
L34, r = L56 − L46 of so(4,2) algebra [3]. Making use of the tilting transformation√√

−2E(0)

n
U [3], we go over from the hydrogen states |Φ〉 to the basis states |Φ〉, we arrive

at the following equation:[
L56 − Za√−2E(0)

− 1√−2E(0)

∑
k=1

εkV (k)(
x3√−2E(0)

,
r√−2E(0)

)

]
|Φ〉 = 0. (4)

The normalization condition for basis states |Φ〉 follows from(1) for states |Φ〉

〈Φ|Φ〉 =

√−2E(0)

n
〈Φ|UrU−1|Φ〉 =

=

√−2E(0)

n
〈Φ| r√−2E(0)

|Φ〉 =
1

n
〈Φ|r|Φ〉 = 1. (5)

Hence, it follows that in the course of the passage from the wave functions |Φ〉 to the
basis states |Φ〉, the first one should be normalized by the condition

〈Φ|r|Φ〉 = n, (6)

which becomes an identity for states |Φ(0)〉.

3 The Scheme of Perturbation Theory and Algo-

rithm

We look for a solution to equation (4) in the form of the perturbation series

|Φ〉 =
kmax∑
k=0

εk|Φ(k)〉. (7)
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The unknown coefficients |Φ(k)〉 satisfy the system of inhomogeneous differential equations

L(n)|Φ(0)〉 = (L56 − n)|Φ(0)〉 = 0 ≡ f (0), (8)

L(n)|Φ(1)〉 =
r

(−2E(0))
[E(1) − Zb(Za − 1)]|Φ(0)〉 ≡ f (1), (8a)

L(n)|Φ(k)〉= r

(−2E(0))

k−1∑
p=0

V (k−p)(
x3√−2E(0)

,
r√−2E(0)

)|Φ(p)〉≡f (k). (8b)

As the basis, which realizes the infinite-dimensional irreducible representation of the alge-
bra so(4, 2) in x-space, we take the eigenfunctions 〈y|s, t〉 of commuting operators L56, A3

and L3 distinguished from the basis functions 〈y|n1 + s, n2 + t,m〉 only by the normaliza-
tion factor and coincide with them at s = t = 0

〈y|s, t〉 =
Cn1n2|m|

Cn1+s,n2+t,|m|
〈y|n1 + s, n2 + t,m〉. (9)

The operators L56, x3, r and L3 on the functions 〈y|s, t〉 are defined by the relations
without fractional powers of parabolic quantum numbers

L56|s, t〉 = (n1 + n2 + |m| + 1 + s + t)|s, t〉 = (n + s + t)|s, t〉, (10)

A3|s, t〉 = (−(n1 + s) + (n2 + t))|s, t〉, L3|s, t〉 = |m||s, t〉, (10a)

r|s, t〉 = (n + s + t)|s, t〉 − 1
2
((n1 + s + |m|)|s − 1, t〉 + (n1 + s + 1)|s + 1, t〉

+(n2 + t + |m|)|s, t − 1〉 + (n2 + t + 1)|s, t + 1〉), (10c)

x3|s, t〉 = 1
2
(−(n1 + s + |m|)|s − 1, t〉 − (n1 + s + 1)|s + 1t〉

+(n2 + t + |m|)|s, t − 1〉 + (n2 + t + 1)|s, t + 1〉) − (−(n1 + s) + (n2 + t))|s, t〉. (10d)

Suppose the azimutal quantum number m is positive m = |m|. Applying relations (10),
we expand the right-hand side f (k) and solutions |Φ(k)〉 of the system (8) over basis states
|s, t〉 (9):

f (k) =
∑
s,t

f
(k)
st |s, t〉, |Φ(k)〉 =

∑
s,t

b
(k)
st |s, t〉. (11)

Substituting (11) into (8) and taking into account the relation

L(n)|s, t〉 = (s + t)|s, t〉
and orthogonality condition (4) of basis (9), we obtain the system of linear algebraic

equations for unknown coefficients b
(k)
st and perturbation corrections E(k), for each k ≥ 1

(s + t)b
(k)
st − f

(k)
st = 0, min(|s|, |t|, |s + t|) ≤ k. (12)

It enables us to find the coefficients b
(k)
st using known coefficients f

(k)
st from the above

definitions. In the second order k = 2, we obtain the energy correction E(2) = 3ndZb/2Za

at s = t = 0 and eight coefficients b
(2)
st at s + t 
= 0:

b
(2)
0,∓1 = ∓n3Zb

8Z3
a

(d ∓ m − n + 1)(d + 2n ∓ 2)),
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b
(2)
0,∓2 = ∓n3Zb

32Z3
a

(d ∓ m − n ∓ 1)(d ∓ m − n ± 3)),

b
(1)
1,−1 =

n

8Za

(d − m + n + 1)(d − m − n + 1)),

b
(2)
1,−1 = − n2

8Z2
a

(d − m + n + 1)(d − m − n + 1)(d + 1)),

b
(2)
2,−2 =

n2

128Z2
a

(d − m + n + 3)(d − m + n + 1)(d − m − n + 3)(d − m − n + 1)).

For Stark effect, coefficients b
(1)
1,−1, b

(1)
−1,1 are equal to zero and b

(1)
0,j are equal to correspond-

ing coefficients of hydrogen atom in the field of the distant charge b
(2)
0,j . The remaining

coefficients are obtained up to the sign by interchanging n1 by n2 (d = n2 − n1 → −d),

b
(k)
st (d) = (−1)k+1b

(k)
ts (−d), b

(k)
s,−s(d) = (−1)kb

(k)
−s,s(−d). Indeed, at each k the functions

f
(k)
st depend on the unknown correction E(k) and known coefficients E(p) and b

(p)
st for

p = 0, 1, · · · , k − 1, which are evaluated from previous k − 1 equations. The coeffi-
cients b

(p)
st also depend on the corrections E(q) and b

(q)
st with q = 0, 1, · · · , p − 1, which

are evaluated from previous equations (12) by recurrence. Thus, in each order (k ≥ 1)

we calculate step-by-step the needed corrections E(k), b
(k−2)
s,−s , b

(k)
s,t by solving the following

algebraic equations:

f
(k)
00

(
E(k), E(p), b

(p)
s′t′ , 0 ≤ p ≤ k − 1

)
= 0 → E(k), (13)

f
(k)
s−s

(
E(k), E(p), b

(p)
s′,t′ , 1 ≤ p ≤ k − 1

)
= 0 → b

(k−2)
s−s , (13a)

b
(k)
s,t = (s + t)−1f

(k)
st

(
E(k), E(p), b

(p)
s′,t′ , 0 ≤ p ≤ k − 1

)
. (13b)

The initial conditions for the recurrence procedure are given by

E(0) = − Z2
a

2n2
, b

(0)
0,0 = 1, b

(0)
s,t = 0 for s, t 
= 0, b

(k)
0,0 = 0. (14)

To obtain the normalized wave function Φ by condition (6) up to the kth order, we must

redefine the coefficient b
(k)
0,0 by the following relation:

b
(k)
00 = − Za

2n2

k∑
p=0

∑
s′,t′

∑
s,t

b
(k−p)
st 〈s, t| r√−2E(0)

|s′, t′〉b(p)
s′t′ . (15)

In particularly, the coefficient b
(1)
0,0 = 0 and b

(2)
0,0 is defined by

b
(2)
0,0 =

n2

64Z2
a

(−d4+(2d2−m2)(m2+n2−3)+m2(3n2−1)−(n2−1)2)+
3dn3Zb

4Z3
a

. (16)

Then the algorithm is evaluated step by step as follows.
1. ”Potential”. Coefficients of potential and energy expansions are calculated with

respond to (2). The step has two branch of calculations: in case of Stark effect and in
case of point charge.
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2. ”Action of potential by ket”. The results of actions of the operators r and x3 with
respect of (10c,10d) are defined in this step. Sequence of the calculations is described in
the next section.

3. Step ”finding eigenvalues” realizes the main goal of the calculations. Indeed, in
this step we are calculated the corrections to f (k) and E(k) by means of solving equations
(13), (13a), (13b) up to preassigned order kmax.

4 Program MW3STARK and Results

In this Section we adduce the main program MW3STARK as a pilot implementation
of the above algorithm in MAPLE VR5. First of all we defined next parameters:

• stark0_point1 – program switch: 0-stark, 1-point charge;

• kmax – a number of spectrum corrections;

• bbound – a boundary of summation range in expansions (11);

• -bbound≤ s, t ≤bbound;

• fdE,fdB are names of output files.

The program consists of blocks in respect to the algorithm described in previous sec-
tion.

1. In block ”POTENTIAL”, we denote by V the potential multiplied by r and ee(k)
and the energy E(k) (2). Program variables vr, vx3 and vr0, vx30 are the variables
r and x3 in (3). The Coice of calculation branch is realised by switch stark0_point1.

2. The block ”ACTION OF POTENTIAL BY KET” consist of the following parts.

(a) In block ”action r and x3 by ket” results of action of the operators r and x3

are defined.

(b) In block ”action v by ket” coefficients actket(k,x1,x2) of an expansion
”V (k)ket(N1, N2,m) =

∑
actket(k, x1, x2) ∗ ket(N1 + x1, N2 + x2,m)” are

defined and evaluated in following parts:

i. ”preparation”: set all actket(k,x1,x2) to zero. Then set actket(k,0,0)
to value of potentials V(k,vx3,xr), and assign a degree of V(k,vx3,xr)
over (vx3,vr) to a variable vmax(k);

ii. ”action of operator r by ket”: application of (10) for excluding r in cal-
culation of potential action. In order that, we are using an auxiliary vari-
able ketvspom. Terms containing the variable vr are transferred from
actket(k,x1,x2) to ketvspom. Then we factorized vr and act on ket,
accordingly to step 2a. Boundaries of region (x1,x2) and a number of ap-
plication of this procedure for k−th order are defined by means of variable
vmax(k);
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iii. ”action of operator x3 by ket”: An application of the formula (10d) to
exclude the variable x3 is used under calculation of the potential action;

iv. ”test”: are transfer to new quantum numbers ”NN, ND”.

3. The subroutine ”finding eigenvalues realizes” consist of the following parts.

(a) ”Preparation”: the zero values are assigned to all b(k,js,jt) but b(0,0,0)=1;

(b) ”Calculations”: extracting eigenvalues and eigenfunctions. By means of loop
under k from sbros to kmax, we are accomplished the following actions:

i. ”calculating f”: by (8) and (11) we evaluate coefficients b(k,js,jt);

ii. ”calculating ee(k)”: we solve equation (13);

iii. ”calculating b(k-sbros,s,-s)”: an auxiliary block;

iv. ”add v(sbros)*b(k-sbros,s,-s)”: we are taking account over contribution of
the action v(sbros) of the diagonal components b(k-sbros,js,-js);

v. calculating b(k,s,t): we solve equation (13b).

4. Print(b(k,s,t)).

5. Print time.

#program mw3stark;

restart;timestart:=time():

stark0_point1:=1; # 1 for atom in the field of the point charge,

#stark0_point1:=0; # 0 for stark effect

kmax:=11;

bbound:=20;

fdE:=open("e.out",WRITE): fdB:=open("b.out",WRITE):

#1. potential

if stark0_point1=0 then

V(1,vx3,vr):=expand(subs(vr0=vr*n/Za,vx30=vx3*n/Za

,(ee(1)*vr0-vr0*vx30)*n/Za));

for k from 2 to kmax do V(k,vx3,vr):=

expand(subs(vr0=vr*n/Za,vx30=vx3*n/Za,ee(k)*vr0*n/Za));

od:

fprintf(fdE,"Hydrogen atom in homogeneous

electric field\n kmax="):

fprintf(fdB,"Hydrogen atom in homogeneous

electric field\n kmax="):

fprintf(fdE,cat(convert(kmax,string),";\n")):

fprintf(fdB,cat(convert(kmax,string),";\n")):

sbros:=1;

fi:

if stark0_point1=1 then
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V(1,vx3,vr):=expand(subs(vr0=vr*n/Za,vx30=vx3*n/Za

,n/Za*expand(vr0*(ee(1)-Zb*(Za-1)))));

for k from 2 to kmax do

V(k,vx3,vr):=expand(subs(vr0=vr*n/Za,vx30=vx3*n/Za

,n/Za*expand(vr0*(ee(k)+Zb*vr0^(k-1)

*orthopoly[P](k-1,-vx30/vr0)))));

od;

fprintf(fdE,"Hydrogen atom in the field

of the distant charge\n kmax="):

fprintf(fdB,"Hydrogen atom in the field

of the distant charge\n kmax="):

fprintf(fdE,cat(convert(kmax,string),";\n")):

fprintf(fdB,cat(convert(kmax,string),";\n")):

sbros:=2;

ee(1):=Zb*(Za-1);

fprintf(fdE,"ee(1) := "):

fprintf(fdE,cat(convert(ee(1),string),";\n")):

fi:

#2.actions of potential by ket #2a.action r and x3 by ket rul1:=

rket ( 0, 0):=(N1+N2+m+1): x3ket ( 0, 0):=-(-N1+N2):

rket (-1, 0):=-1/2*(N1+m): x3ket (-1, 0):=-1/2*(N1+m):

rket ( 1, 0):=-1/2*(N1+1): x3ket ( 1, 0):=-1/2*(N1+1):

rket ( 0,-1):=-1/2*(N2+m): x3ket ( 0,-1):=1/2*(N2+m):

rket ( 0, 1):=-1/2*(N2+1): x3ket ( 0, 1):=1/2*(N2+1):

#2b. action v by ket #2b1.podgotovka

for k from 0 to sbros-1 do vmax(k):=0 od:

for k from sbros to kmax do

vmax(k):=degree(subs(vx3=vx,vr=vx,V(k,vx3,vr)),vx);

for js from -vmax(k) to vmax(k) do

for jt from -vmax(k)+abs(js) to vmax(k)-abs(js) do

actket(k,js,jt):=0;

od od:

actket(k,0,0):=V(k,vx3,vr);

od:

#2b2. action of operator r by ket

for k from sbros to kmax do

for j from 0 to vmax(k)-1 do

for js from -j to j do

for jt from -j+abs(js) to j-abs(js) do

ketvspom:=simplify((actket(k,js,jt)

-subs(vr=0,actket(k,js,jt)))/vr);

actket(k,js,jt):=subs(vr=0,actket(k,js,jt));

for a in [0,0],[0,1],[1,0],[0,-1],[-1,0] do
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as:=op(1,a);

at:=op(2,a);

actket(k,js+as,jt+at):=simplify(actket(k,js+as,jt+at)

+subs(N1=N1+js,N2=N2+jt,rket(as,at))*ketvspom);

od:od:od:od:od:

#2b3. action of operator x3 by ket

for k from sbros to kmax do

for j from 0 to vmax(k)-1 do

for js from -j to j do

for jt from -j+abs(js) to j-abs(js) do

ketvspom:=simplify((actket(k,js,jt)

-subs(vx3=0,actket(k,js,jt)))/vx3);

actket(k,js,jt):=subs(vx3=0,actket(k,js,jt));

for a in [0,0],[0,1],[1,0],[0,-1],[-1,0] do

as:=op(1,a); at:=op(2,a);

actket(k,js+as,jt+at):=simplify(actket(k,js+as,jt+at)

+subs(N1=N1+js,N2=N2+jt,x3ket(as,at))*ketvspom);

od:od:od:od:od:

#2b4. test

for k from sbros to kmax do

for js from -vmax(k) to vmax(k) do

for jt from -vmax(k)+abs(js) to vmax(k)-abs(js) do

actket(k,js,jt):=collect(subs(N1=(NN+ND-m-1)/2

,N2=(NN-ND-m-1)/2,actket(k,js,jt)),ee,simplify);

od:od:od:

#3. finding eigenvalues #3a. podgotovka

for k from 0 to kmax do

for js from -bbound to bbound do

for jt from -bbound to bbound do

b(k,js,jt):=0;

od:od:od: b(0,0,0):=1:

#3b. calculations

for k from sbros to kmax do

#3b1. calculating f (now b(k,s,t)=f(k,s,t))

for kpb from 0 to k-sbros do

for jsb from -bbound to bbound do

for jtb from -bbound to bbound do

if b(kpb,jsb,jtb)<>0 then

for js from -vmax(k-kpb) to vmax(k-kpb) do

for jt from -vmax(k-kpb)+abs(js) to vmax(k-kpb)-abs(js) do

if (abs(js+jsb)>bbound) or (abs(jt+jtb)>bbound)
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then print("bbound is very small") fi:

b(k,js+jsb,jt+jtb):=collect(b(k,js+jsb,jt+jtb)

+b(kpb,jsb,jtb)*subs(NN=n+jsb+jtb,ND=d+jsb-jtb

,actket(k-kpb,js,jt)),ee,simplify);

od: od:

fi:

od:od:od:

#3b2. calculation ee(k):

ee(k):=

simplify(-coeff(b(k,0,0),ee(k),0)/coeff(b(k,0,0),ee(k),1)):

fprintf(fdE,cat( "\n ee(",convert(k,string)));

fprintf(fdE,cat( ") := ",convert(ee(k),string)));

fprintf(fdE,";\n ");

#3b3 calculation b(k-sbros, s,-s)

for js from 1 to bbound do

if((simplify(b(k,js,-js))<>0)or(simplify(b(k,-js,js)<>0)))

then

b(k-sbros, js,-js):=simplify(

-b(k,js,-js)/subs(NN=n,ND=d+2*js,actket(sbros,0,0))):

b(k-sbros, -js,js):=simplify(

-b(k,-js,js)/subs(NN=n,ND=d-2*js,actket(sbros,0,0))):

fi:

od:

#3b4. add v(sbros)*b(k-sbros...) to f(k,s,t)

for j from -bbound to bbound do

if simplify(b(k,j,-j))<>0 then

for js from -vmax(sbros) to vmax(sbros) do

for jt from -vmax(sbros)+abs(js) to vmax(sbros)-abs(js) do

if (abs(js+j)>bbound) or (abs(jt-j)>bbound)

then print("bbound is very small") fi:

b(k,js+j,jt-j):=simplify(b(k,js+j,jt-j)

+b(k-sbros,j,-j)*subs(NN=n,ND=d+2*j,actket(sbros,js,jt)));

od:od:

fi:

od:

#3b5. calculation b(k, s, t) (now b(k,s,t))

for js from -bbound to bbound do

for jt from -bbound to bbound do

if js<>-jt then

b(k,js,jt):=simplify(b(k,js,jt)/(js+jt)):

fi:
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od:od:

print(k);

od:

#4. print(b);

for k from 0 to kmax-sbros do

for js from -bbound to bbound do

for jt from -bbound to bbound do

if b(k,js,jt)<>0 then

fprintf(fdB,cat( "\n b(",convert(k,string)));

fprintf(fdB,cat( ",",convert(js,string)));

fprintf(fdB,cat( ",",convert(jt,string)));

fprintf(fdB,cat( "):=",convert(b(k,js,jt),string)));

fprintf(fdB,";\n");

fi:

od:od:od:

#5.

fprintf(fdE,cat("\n\nTime:=",convert(time()-timestart,string))):

fprintf(fdE," s;\n"):

close(fdE):close(fdB):

To check the algorithm and program we have been calculating the corrections to b
(k)
st

and E(k) up to 11-th order. The results are very space consuming so we cannot adduce
then here. This test was calculated on computer PC-2 350MHz 64MB memory. In the
above formulas, we use the following notations: n≡ n = n1 + n2 + |m| + 1, m≡ |m|,
d≡ n1 −n2, za≡ Za, zb≡ Zb. Note that our results coincide up to the seventh order with
[3, 4, 5] (the orders 8-11 was not calculated in the sited works because technical limits).

5 Conclusion

We have demonstrated the efficiency of the proposed recursive symbolic algorithm in
the framework of an algebraic version of the conventional perturbation theory without
assumption on separation of independent variables in both parabolic and spherical repre-
sentations, which are needed for applications [5]
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1 Introduction

Lie symmetry analysis represents one of the most important techniques for tackling dif-
ferential equations, in particular non-linear ones. It often provides the only possibility
to find solutions in closed form. But many other applications exist, too; perhaps best
known is the construction of conservation laws via Noether’s law. By now, a number of
textbooks on symmetry analysis are available (see e. g. [3, 9, 13]); a survey of computer
algebra tools for symmetry analysis was given by Hereman [5, 6].

The theory of involutive systems appears at many places in symmetry analysis. The
best known application is, of course, the completion of the determining systems in order
to facilitate its integration in closed form. In fact, this problem has been a major impetus
for the renewal of interest in involution in the last, say, twenty years. In this article we
will, however, concentrate on other, less known applications.

In the literature one can find several different notions of involutive (or passive or
complete) systems. We will use the so-called formal theory [14, 18]. It is a geometric
approach and may be formulated completely intrinsically. This makes its application in
symmetry theory very natural.

This article is organised as follows. The next section briefly reviews some basic notions
of the formal theory. Then we study the role involution plays for the very definition of
symmetries. Section 4 contains some formal results about measuring the size of the
solution space of differential equations. Then we analyze symmetry reductions; this leads
in a natural manner to non-classical symmetries. Finally, some conclusions are given.
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2 Involution

For lack of space, we cannot give here a detailed introduction into the formal theory or
the underlying jet bundle formalism. Our presentation follows [18]; a general reference is
the book of Pommaret [14].

For simplicity, we will use local coordinates. Let x = (x1, . . . , xn) and u = (u1, . . . , um)
be an adapted coordinate system on the fibred manifold π : E → X . Coordinates on the
qth order jet bundle JqE are obtained by adding all derivatives

pα
μ = ∂|μ|uα/∂(x1)μ1 · · · ∂(xn)μn

with |μ| ≤ q. Here μ = [μ1, . . . , μn] is a multi index and |μ| = μ1 + · · · + μn its length.
Thus the jet bundle JqE may be interpreted as the space of all Taylor series truncated at
order q.

We define a differential equation1 of order q intrinsically as a fibred submanifold Rq ⊆
JqE . Locally, Rq is described by a system of equations

Rq :
{

Φτ (x,u,p) = 0 , τ = 1, . . . , p . (1)

A solution is a (local) section σ : X → E such that the image of its prolongation jqσ :
X → JqE completely lies in Rq. Locally, a section is of the form σ(x) =

(
x, s(x)

)
with

some functions s = (s1, . . . , sm). For its prolongation we differentiate these functions and
σ is a solution, if the substitution pα

μ = ∂|μ|sα/∂(x1)μ1 · · · ∂(xn)μn in (1) yields an identity.
The prolongation Rq+1 ⊆ Jq+1E is obtained by formally differentiating every equation

in (1) with respect to all independent variables x, i. e. by adding the differential equations

DiΦ
τ =

∂Φτ

∂xi
+

∂Φτ

∂uα
pα

i +
∂Φτ

∂pα
μ

pα
μ+1i

= 0 , i = 1, . . . , n . (2)

Iteration yields higher order prolongations Rq+r ⊆ Jq+rE . A (smooth) solution of Rq is
automatically also a solution of Rq+r and vice versa.

The symbol Mq of the differential equation Rq locally represented by the system (1) is
the solution space of the following linear system of (algebraic!) equations in the unknowns
vα

μ

Mq :

⎧⎨⎩
m∑

α=1

∑
|μ|=q

(
∂Φτ

∂pα
μ

)
vα

μ = 0 . (3)

(By abuse of language, we will refer to both the linear system and its solution space as
the symbol). The place-holders vα

μ are coordinates of a finite-dimensional vector space;
we introduce one for each derivative of order q. For a linear differential equation, the
symbol is simply obtained by considering only the highest order or principal part and
substituting vα

μ for pα
μ.

Let us make a power series ansatz for the solutions of the differential equation Rq

expanding around some point x0 ∈ X . Substituting into (1) and evaluating at x = x0

1Note that we do not distinguish between scalar equations and systems!
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yields a system of algebraic equations for the Taylor coefficients up to order q. Substituting
the ansatz into Rq+r and evaluating again at x = x0 yields an inhomogeneous linear
system for the coefficients of order q + r. Its homogeneous part is given by the matrix of
the prolonged symbol Mq+r, i. e. the symbol of the prolonged equation Rq+r.

This order by order construction of a formal power series solution fails, if integrability
conditions occur. They pose additional conditions on coefficients of lower order and must
all be known in order to pursue the above described procedure. A differential equation
containing all its integrability conditions is called formally integrable, as it possesses a
formal power series solution. Unfortunately, no finite criterion for formal integrability is
known.

For an intrinsic formulation of integrability conditions we exploit the natural projec-
tion maps between jet bundles of different order (they simply forget the higher order

derivatives). For r > q we write πr
q : JrE → JqE and define R(r)

q = πq+r
q (Rq+r) ⊆ Rq, i. e.

we first prolong r times and then project back r times. Integrability conditions appear
during these prolongations, if and only if R(r)

q � Rq.

Definition 1. The differential equation Rq is formally integrable, if for all integers r > 0

the equality R(1)
q+r = Rq+r holds.

It follows from the construction above that the arbitrariness of the general formal
power series solution is reflected by the dimensions of the prolonged symbols, because
at each order dimMq+r coefficients are not determined by the differential equations but
can be chosen freely. Formal integrability does, however, not suffice to determine these
dimensions without explicitly constructing the prolonged symbols.

A jet variable pα
μ is said to be of class k, if μk is the first non-vanishing entry of its

multi index. We order the columns of the symbol Mq by class (highest class first) and
compute a row echelon form. If vα

μ is the leading term of an equation in this solved form
of the symbol, then pα

μ is a principal derivative. All other derivatives are parametric. We

define the indices β
(k)
q of the symbol Mq as the number of principal derivatives of class k.

Definition 2. The symbol Mq is called involutive, if

rankMq+1 =
n∑

k=1

kβ(k)
q . (4)

The differential equation Rq is involutive, if it is formally integrable and if its symbol
Mq is involutive.

In contrast to formal integrability, involution can be checked in a finite manner. To
decide whether a symbol is involutive requires only some linear algebra. For differential
equations we note the following very important criterion for involution that needs only
one prolongation instead of infinitely many ones as the definition of formal integrability.

Theorem 1. Let Rq be a differential equation with involutive symbol Mq. Then Rq is

involutive, if and only if R(1)
q = Rq.
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Two important results on involutive equations are the Cartan–Kuranishi and the
Cartan–Kähler Theorem. The former one states that any (regular) differential equation
Rq can be completed in a finite number of steps to an equivalent differential equation

R(s)
q+r that is involutive; discussions of the algorithmic realisation of this completion can

be found in [4, 17]. The latter is an existence and uniqueness theorem in the analytic
category; if Rq is an analytic involutive differential equation, then a certain initial value
problem for it has a unique analytic solution for analytic initial data. Thus it generalises
the well-known Cauchy–Kovalevskaya Theorem.

3 Basic Symmetry Theory

Symmetry theory [3, 9, 13] provides us with some of the most important techniques for
the analysis of differential equations, in particular for non-linear equations. A somewhat
subtle and often overlooked point is the importance of the local solvability of the analysed
differential equation. Essentially, this concerns the equivalence of two different definitions
of what a symmetry of a differential equation actually is.

Definition 3. A symmetry of a differential equation is a transformation that maps any
of its solutions into another solution.

This probably represents the most general definition of a symmetry of a differential
equation. It is still somewhat vague, as it is not clearly specified what kinds of transfor-
mations or solutions are considered. We restrict in this article to point symmetries, i. e.
to diffeomorphisms φ : E → E , and to formal power series solutions. Definition 3 is very
hard to apply in practice, as it requires the knowledge of the full solution space. Thus
usually the following, more geometric approach is taken.

Definition 4. A diffeomorphism φ : E → E is a point symmetry of the differential
equation Rq ⊆ JqE, if its prolongation φ(q) : JqE → JqE leaves the submanifold Rq

invariant.

The infinitesimal version of this definition forms the basis of all concrete computa-
tions with Lie symmetries. One considers a one-parameter group of diffeomorphisms φε

generated by a vector field X over E . Given a local description of Rq in the form (1),
a linearisation of the condition above leads to the well-known infinitesimal symmetry
criterion

X(q)Φτ

Rq
= 0 (5)

where the prolonged vector field X(q) on JqE is the generator of φ
(q)
ε . X(q) and φ

(q)
ε are

easily determined by the chain rule.
With respect to our adapted coordinates, an arbitrary vector field X over E may be

locally written in the form X = ξi(x,u)∂xi + ηα(x,u)∂uα . Evaluation of the criterion (5)
yields an overdetermined linear system of partial differential equations for the coefficients
ξi and ηα, the determining system Dq (it has the same order as the equation Rq to be
analysed).
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It is often assumed that Definitions 3 and 4 are equivalent, but this holds only under
certain assumptions on the differential equation Rq. We must assume that for every point
ρ ∈ Rq at least one solution σ : X → E exists such that ρ ∈ jq(σ). This property is known
as local solvability. It is trivial for scalar equations or systems in Cauchy–Kovalevskaya
form but becomes an issue for overdetermined systems.

We illustrate the problem with a very simple example. Consider the following first
order equation:

R1 :

{
uz + yux = 0 ,
uy = 0 .

(6)

Since y appears explicitly, the manifold R1 does not remain invariant under y-translations
and thus they are not symmetries in the sense of Definition 4. Cross-differentiations show
that R(1)

1 is defined by the equations ux = uy = uz = 0. Hence the general solution of our
equation is u(x, y, z) = const and y-translations are symmetries in the sense of Definition
3. The geometric approach “loses” this symmetry, as it requires that the whole manifold
R1 should remain invariant and not only its submanifold R(1)

1 . Since the image of any

prolonged solution j1σ lies in R(1)
1 , the second definition imposes a stronger condition

than the first one.
A less trivial example are the incompressible Navier–Stokes equations. They are not

formally integrable; the integrability condition is the well-known Poisson equation for the
pressure. But in this special case, the hidden equation has no influence on the symmetry
analysis. Thus the classical results on the symmetry group of the Navier–Stokes equations
are correct, although their derivations neglect the integrability condition.

The problem disappears, as soon as we consider involutive differential equations. The
Cartan–Kähler Theorem implies that any involutive equation is locally solvable. Note
that as we are only considering formal power series solutions, the analyticity assumptions
of this theorem play no role here.

4 Measuring the Size of Solution Spaces

It was already mentioned in Section 2 that the dimensions of the prolonged symbols
dimMq+r measure the size of the formal solution space. For involutive equations these

dimensions can be easily determined explicitly. Recall that the indices β
(k)
q count the

number of principal derivatives of order q and class k. Similarly, the Cartan characters

α(k)
q = m

(
q + n − k − 1

q − 1

)
− β(k)

q , k = 1, . . . , n (7)

count the parametric derivatives of order q and class k.
Associating with each equation whose principal derivative is of class k its multiplicative

variables x1, . . . , xk, one can show that if we prolong each equation with respect to its
multiplicative variables only, we get algebraically independent equations. By (4), no
further independent equations of order q+1 exist in the case of an involutive symbol. This
implies a simple way to compute the indices of the prolonged symbol: β

(k)
q+1 =

∑n
i=k β

(k)
q
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and correspondingly α
(k)
q+1 =

∑n
i=k α

(k)
q . Iteration yields

α
(k)
q+r =

n∑
i=k

(
r + i − k − 1

r − 1

)
α(i)

q . (8)

Since dimMq+r =
∑n

k=1 α
(k)
q+r, we see that if (and only if) the symbol Mq is involutive,

we can trivially determine the size of the formal solution space based on the Cartan
characters α

(k)
q . For more details see [19].

A trivial application of these results consists in measuring the size of the symmetry
group. As the dimension of a Lie group coincides with the dimension of its Lie algebra, we
perform an involution analysis of the determining system Dq. The simplest case arises, if
the symmetry group is finite-dimensional. It follows from the discussion above that then
all Cartan characters of the involutive completion D(s)

q+r must vanish and the dimension

of the group is simply dimD(s)
q+r. In the case of an infinite-dimensional group, the Cartan

characters of D(s)
q+r still encode much information about the size and, in particular, permit

an easy comparison of different groups. These results are not restricted to Lie point
symmetries but may obviously be applied in the same manner to generalised symmetries.

A less trivial application, which we cannot discuss here, is that one may deduce not
only the size but also the structure of Lie symmetry algebra by a completely formal
analysis. In the case of a finite-dimensional algebra this is rather simple; for infinite-
dimensional algebras one needs deeper results from their structure theory. More details
can be found in [7, 16].

One interesting feature of this approach is the possibility to formally “subtract” some
effects. We will consider here only as a fairly trivial example superposition symmetries.
A much more important application concerns gauge symmetries; formal methods allow
for a simple analysis of gauge fixing conditions or for an intrinsic definition of the number
of degrees of freedom. For lack of space we can only refer to the literature [21, 22].

All linear differential equations possess the superposition symmetry: if uα = fα(x)
is any solution of Rq, then X = fα(x)∂uα is an infinitesimal symmetry. This reflects
the elementary fact that linear combinations of solutions are again solutions; the solution
space has the structure of a vector space. Thus one always finds an infinite-dimensional
symmetry algebra for linear equations. But usually the other symmetries are of much
more interest. Thus one would like to know the size of the remaining algebra.

We illustrate the procedure for the heat equation, although it is trivial to compute its
symmetries explicitly. The heat equation ut = uxx defines a five-dimensional submanifold
R2 in a six-dimensional jet bundle. Its Cartan characters are α

(2)
2 = 0 and α

(1)
2 = 2.

The determining system of the heat equation is also of second order:

D2 :

⎧⎨⎩
τu = 0, τux + ξu = 0, ηuu − ξux = 0,
τx = 0, τxx + 2ξx − τt = 0, ηux − 1

2
ξxx + 1

2
ξt = 0,

τuu = 0, ξuu = 0, ηxx − ηt = 0.
(9)

Its involutive completion is D(4)
3 and generated by the following equations (plus all their
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prolongations up to third order):

D(4)
3 :

⎧⎪⎪⎨⎪⎪⎩
τttt = 0, ηxx − ηt = 0, ξu = 0,
ηuu = 0, ξtt = 0, ξx − 1

2
τt = 0,

ηux + 1
2
ξt = 0, τu = 0, τx = 0,

ηut + 1
4
τtt = 0.

(10)

Thus D(4)
3 defines a 13-dimensional submanifold. Its Cartan characters are given by

α
(3)
3 = α

(2)
3 = 0 and α

(1)
3 = 2.

As the last character does not vanish, we have an infinite-dimensional symmetry group.
The question is whether an infinite-dimensional subgroup besides the superposition sym-
metry exists. But from a comparison of the Cartan characters of the determining system
and the heat equation, we see that the non-vanishing ones are identical. Hence the in-
finiteness stems solely from the superposition symmetry.

In order to determine the number of remaining symmetries, we must compare the
dimension of the heat equation and of its determining system as submanifolds, as the
superposition symmetry manifests itself in the appearance of the equation ηxx − ηt = 0 in
D(4)

3 . As the involutive completion of the determining system is of third order, we must
also prolong the heat equation to third order.2 The number of remaining symmetries is
hence given by dimD(4)

3 −dimR3 and one readily computes that this yields in our example
13 − 7 = 6. Thus we recover the well-known result that besides superposition the heat
equation has a six-dimensional symmetry group.

Another simple application of such formal considerations consists in measuring how
“special” solutions are that have been obtained with symmetry methods. It is well-known
that in the case of partial differential equations, it is not possible to construct the general
solution using symmetry theory. Thus one would like to know how large the part of the
solution space is that one has constructed with the help of symmetry reductions.

For lack of space, we cannot go here into details. The basic idea is to perform an
involution analysis of the combined system consisting of the original equation and the
relevant invariant surface condition (see below). An example for the application of this
technique to the case of generalised symmetries of a first order differential equation in
Cauchy–Kovalevskaya form can be found in [20] (see also [8]).

5 Symmetry Reductions

The fundamental idea behind symmetry reductions is to construct solutions of a given
differential equation Rq that are invariant under the action of a group. Given a sym-
metry of Rq, one usually rewrites the differential equation in terms of group invariants.
Geometrically, this corresponds to “factoring” the submanifold Rq by the group action.
Computationally, this leads to equations in a lower number of independent variables.

For our purposes another approach is more useful. A solution remains invariant under
the action of the one-parameter group generated by the vector field X = ξi(x,u)∂xi +

2In principle, such an adjustment of the order would also have been necessary for the above comparison
of the Cartan characters. In our example we could ignore this, as only the last Cartan character did not
vanish and thus the Cartan characters are not affected by a prolongation.
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ηα(x,u)∂uα , if and only if it is a solution of the corresponding invariant surface condition

ξi(x,u)
∂uα

∂xi
= ηα(x,u) , α = 1, . . . , m . (11)

Obviously, this represents a first order system of differential equations. In the sequel
we will assume ξn(x,u) 
≡ 0, so that we can normalise it to one. As the numbering of
the independent variables xi is arbitrary, this assumption amounts to a transversality
condition: not all coefficients ξi may vanish identically or, equivalently, the action of the
group generated by X must be transversal to the fibration of E .

If the differential equation Rq has the local representation (1), then any solution of it
invariant under the group generated by X must solve the augmented differential equation
R̄q generated by the equations in (1) and in (11) (and the prolongations of the latter ones
up to order q)

R̄q :

{
Φτ (x,u,p) = 0 , τ = 1, . . . , p ,
ξi(x,u)pα

i = ηα(x,u) , α = 1, . . . , m .
(12)

Even if Rq is a scalar equation or a system in Cauchy–Kovalevskaya form, the augmented
equation R̄q will be an overdetermined equation. Hence the question whether it possesses
solutions or equivalently whether Rq has group-invariant solution is non-trivial.

Following the discussion in Section 3, we assume throughout that Rq is an involutive
equation. It is easy to see that (under the made transversality assumption) the system
(11) is involutive, too. Hence integrability conditions in (12) may only arise from cross-
derivatives between equations of these two subsystems. In a straightforward calculation
one shows [15, 21] that these conditions can be concisely expressed in the form X(q)Φτ = 0.

Assume now that the vector field X generates a one-parameter group of Lie point
symmetries of Rq. Then (5) entails that all integrability conditions vanish modulo the
equations contained in (1). Hence we always find group-invariant solutions for transversal
point symmetries.

Obviously, more possibilities for group-invariant solutions exist. Assume for example
that the integrability conditions X(q)Φτ = 0 do not vanish modulo (1) alone, thus X does
not generate symmetries of Rq in the sense of Definition 4, but modulo (1) and (11).
Then the augmented equation R̄q is formally integrable and has at least formal power
series solutions. Hence Rq does possess solutions invariant under the group generated by
X, although Rq itself does not remain invariant under the group. In fact, this is nothing
but the non-classical method of Bluman and Cole [2].

But the non-classical method does not end here — in contrast to what is claimed
in most articles on it. Olver and Rosenau [12] were probably the first to point this out
introducing the concept of a weak symmetry group as a group of transformations such
that invariant solutions exist. Later, this observation was again emphasised by Pucci
and Saccomandi [15] and one of the present authors [21]. In the language of the formal
theory we may formulate it as follows: it is not necessary that R̄q is formally integrable
(as required by Bluman and Cole), but it must be possible to complete R̄q to a formally
integrable equation without encountering inconsistencies.

We distinguish non-classical symmetries of different levels. The symmetries of level 0
are the classical ones and those of Bluman–Cole; here R̄q is already formally integrable.
The vector field X generates a one-parameter group of symmetries of level s, if s is
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the minimal number of projections required to render R̄q formally integrable; i. e. the

completion leads to an equation of the form
¯R(s)
q+rs

.
Let us consider a simple example of a non-classical symmetry of level 1 for the heat

equation (a number of further examples can be found in [12, 15]). It is generated by the
vector field X = t∂t − x∂x − 3x3∂u. The augmented system (12) has now the following
form (we omit to write down the prolongations of the second equation to second order)

R̄2 :

{
ut − uxx = 0 ,
tut − xux + 3x3 = 0 .

(13)

R̄2 is not formally integrable because of the appearance of the integrability condition ut =
6x (after simplification); hence X generates neither a classical point symmetry nor a non-
classical symmetry in the sense of Bluman–Cole. Note that X(2)(ut−uxx) = 18x−ut−2uxx

and modulo the heat equation this is indeed equivalent to our integrability condition. As
¯R(1)
2 is formally integrable (in fact, even involutive), X generates a non-classical symmetry

of level 1. The direct integration of the completed system
¯R(1)
2 is trivial and yields the

corresponding group-invariant solutions of the heat equation: u(x, t) = x3 + 6xt + c with
an arbitrary constant c.

6 Conclusions

The goal of this article was to exhibit some applications of the formal theory of differential
equations within the realm of symmetry methods. We demonstrated the importance of
completing a given differential equation before it is analysed, as otherwise one might
overlook important symmetries. The formal analysis of the determining systems as studied
in Section 4 is probably of interest only in some special situations; symmetry methods
lose a lot of their charm, if one is not able to explicitly determine the symmetries.

Any solution of a differential equation Rq is invariant under some Lie group of point
transformations. Thus, in principle, any solution can be constructed via non-classical
symmetry reductions [12, Theorem 5]. Unfortunately, in practice this seems hardly pos-
sible. The determining systems of the non-classical method are non-linear and for higher
levels the systems comprise less equations which are, in addition, more complicated. Thus
the brute force approach of setting up the determining system and solving it explicitly
will almost always fail. Furthermore, it is a priori not clear up to which level one needs
non-classical symmetries.

Nevertheless, non-classical symmetries of higher level have already been applied suc-
cessfully to compute explicit solutions. The method is probably most useful when one has
already some ideas what groups might be of particular interest (for example for physical
reasons). Then one can impose strong restrictions on the form of the generator X and
has a chance to obtain manageable determining systems.

Apparently, the DETools library [1] of MuPAD represents currently the only avail-
able computer algebra software for setting up the determining systems for non-classical
symmetries of higher level. It allows for prescribing special ansätze for the symmetry gen-
erators. The library also contains procedures for the completion to involution. Detailed
descriptions of these packages will appear elsewhere.
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The non-classical method may be extended to generalised symmetries. The role of the
invariant surface condition is then played by the characteristic of the symmetry generator
[12, Lemma 2]. Basically, this means that we augment Rq by some arbitrary differential
equations. Thus the non-classical method for generalised symmetries coincides with what
is often called the method of differential constraints (comprising also many other reduction
methods [10]). Again the practical applicability of the approach is greatly reduced by the
unsolved problem of finding reasonable ansätze for the differential constraints.

Our analysis underlines again the correctness of a remark made already in 1986 by
Olver and Rosenau [11]:

The most important conclusion to be drawn from this approach is that the
unifying theme behind finding special solutions to partial differential equations
is not, as is commonly supposed, group theory, but rather the more analytic
subject of overdetermined systems of partial differential equations.

The importance of group theory lies in the fact that it permits the systematic construction
of “good” differential constraints.
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Chiral Lagrangian Approach to
J/ψ + π → D̄ + D∗ Process: Computer

Algebra Calculations

Valery V. Ivanov
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The anomalous suppression of J/ψ in high-energy heavy-ion collisions may indicate
on the quark-gluon plasma (QGP) formation in laboratory conditions [1]. This effect
can be explained both by the QGP formation [2] and by more conventional mechanism
based on J/ψ absorption by comoving hadrons [3]. In order to understand the anomalous
charmonium suppression, it is important to have better knowledge of the cross sections
of the J/ψ absorption by hadrons.

Various approaches have been developed for the evaluation of the charmonium absorp-
tion by hadrons [4]. However, all of them give significantly different values for σπψ (and
for σρψ).

In [5] the SU(4) chiral Lagrangian approach has been applied to the calculation of
J/ψ breakup by hadrons impact together with specially chosen hadronic form factors.
In this work we present the results of study of the J/ψ absorption by π and ρ mesons
applying MATHEMATICA [6] and FORM [7] packages.
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Platform

N.A. Kalinina, D.M. Prudnikov
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The FABULA system [1] intended for solving transformation and optimization prob-
lems of Boolean algebras is described.

The new implementation is carried out in language Java of the version JDK 1.2.
The main rezult of modernization shows that Java has useful potential for providing
possibilities of algebra systems.

The FABULA system being the instrumental one oriented towards theoretical research
supporting for decision making problem in conditions of interval and stochastic indefinite-
ness. In particular the system suppose to be used in logic derivation procedure applied
to diagnostic expert system and when researching conditional and fuzzy events algebraic
models.

The main function of FABULA system is analitical transformation of symbolic Boolean
formulas and solving of optimization problems and systems of linear equations in Boolean
algebras.

The input language of FABULA system is an advanced programming one containing
means for expressions, functions, equations and other language objects definition and
operating with them as well. The language has Pascal-like control constructions and
rather wide toolkit for operating with Boolean functions.

The system is designed using traditional translator-systems design methods, the lat-
est computer algebra system constructing methods and methods of the object-oriented
programming.

The work is supported by Russian Foundation for Basic Research, grant N 00-07 90322.
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Iterative Evaluation of Functions
over a Number of Points
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A problem of evaluation of functions over a number of points is considered. Usual
approach, employed in many Computer Algebra applications, performs independent com-
putation at each point. The approaches, described here, reduce the amount of operations
and allow to expedite such computations.

Using previously computed value
This approach is based on substitution of an independent computation of function at

a new point xi with a simpler approximate computation, based on earlier computed value
of the function at point xj, where j < i and xi lies close enough to xj. Note that com-
putation at xj is performed independently, using standard system routines and therefore
has standard accuracy. This approach allows to expedite computations (the experiments,
comparing this approach with independent evaluation of elementary functions exp(x),
ln(x), sin(x), tg(x) at all given points, indicate a 1.4-3.3 times speedup on PentiumII).
Note that grid doesn’t need to be regular as it is required in some other optimization
approaches, including application of chains of recurrences.

Configuring computational method w.r.t. the range of argument values
More general approach to evaluation of functions uses configurable methods. By

method configuration we assume a set of values of parameters, which adjust the method.
When method receives an argument value at first time, it configures itself for a whole
range of argument values, which contains the received value. Being computed once, the
configuration remains the same during computations until another argument value gets
out of the range. At this point method generates a new configuration for a new range,
containing the new argument value. Hence, after configuration has been done once, all
further computations in the selected range can be performed faster. Moreover, a tran-
sition to a new interval of argument values can be performed using data (e.g. polynom
coefficients) from previous configuration.

Implementation
The approaches, described here, can be implemented as a library of procedures which

allows one to use grid-oriented procedures for evaluation of functions in addition to stan-
dard computational means. Besides, such algorithms for computation of elementary func-
tions, being implemented at microcode level and combined with knowledge about archi-
tecture of the particular processor, could give a significant speedup for grid computations
comparing with traditional independent evaluation.
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For parametric initial problem with parameter which takes on the values from 0 to 1
it is constructed interpolation procedure of the solution with help of package Maple 6.

Consider the follow problem

εẋ = F (x, y, t), ẏ = f(x, y, t), (1)

x(0, ε) = x0, y(0, ε) = y0 (2)

where x ∈ Rn, y ∈ Rm with ε ∈ [0, 1] and t ∈ [0, 1]. This work is the development of the
results made by M.G. Dmitriev and N.P. Belyaeva [1], [2]. The (1), (2) solution can be
found in the following form

x[1/1] =
a0(t) + ã0(τ) + ε(a1(t) + ã1(τ)) + ... + εn(an(t) + ãn(τ))

1 + εb1(t) + ... + bn(t)
(3)

here τ = t
ε

and ε ∈ [0, 1]. The coefficients from (3) - are unknown smooth function of
there arguments, which can be found from the asimptotical equality of the expression (3)
to the series ε → 0 and to the ε → 1.

It was used mathematical package Maple version 6 which let to get formal solu-
tion based on computer resources. After some computations we get the systems for
a0(t), ..., an(t), ã0(τ), ...ãn(τ) and for b1(t), ..., bn(t). To simplify it was used the case
n = 2. Such order is enough to applications.
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Examples of Calculations of the
Generators of Differential Ideal by

Its Characteristic Set
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An algorithm for representation of a radical differential ideal in a ring of differential
polynomials as an intersection of a finite number of regular differential ideals was pro-
posed in [2]. This algorithm is called the Rosenfeld-Gröbner algorithm. However, the
representation obtained by the above algorithm may not be minimal. This problem could
have been solved if we could solve the following Ritt problem: given characteristic sets of
two prime differential ideals, determine, whether one of the ideals is a subset of the other
one. (see [1]) The latter problem is currently far from being solved. The Ritt problem is
a particular case of the problem of finding of the generators for a prime differential ideal:
given P = [A] : H∞

A , where A is a characteristic set, find elements A1, . . . , An such that
P = {A1, . . . , An}.

In this paper we calculate the generators of some prime differential ideals. We suppose
that the characteristic set consists of one irreducible ordinary differential equation (note
that even in this case the Ritt problem is non-trivial).

Using computer algebra system Maple-V.5, we calculated the generating system for
prime differential ideals whose characteristic sets are y′′2 + 2y, y′′2y′ + 2y′2 + y + 1, yy′′ +
y′2 + y. For these ideals the generating system consists of two elements. We suggest a
method which allows to obtain the generating system for some prime differential ideals
and illustrate this method on ideals whose characteristic sets are y′′2 + y, y′′3 + y′′2y + y′

(and others).
Also, a sufficient condition for a differential ideal to be generated by its characteristic

set is proved. This condition holds, for example, for ideals whose characteristic sets are
yy′′ + y′ and yy′′ + y′ + y.
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Extraction of “Minimal” Cochain
Subcomplexes for Computing

Cohomologies of Lie Algebras and
Superalgebras

V. V. Kornyak
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141980 Dubna, Russia;
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A new algorithmic approach to computation of cohomologies of Lie (super)algebras is
described. The approach is based on splitting the full cochain complex into “minimal”
subcomplexes in some non-invariant (i.e., dependent on the choice of coordinates) sense.
Such splitting makes the computation much more efficient, because usually the dimensions
of cochain spaces included in the full cochain complex are very high. The pseudocode texts
of algorithms are presented. The proposed approach is illustrated by two visually graspable
examples.

This work was partially supported by the grants RFBF 01-01-00708 and INTAS 99-
1222.

1 Introduction

The dual constructions called homology and cohomology are the main tools for investiga-
tion of different mathematical objects and physical models by means of algebraic topology.

Homological or cohomological theory arises if one can construct chain complex

0 ← C0
∂0←− · · · ∂k−2←− Ck−1

∂k−1←− Ck
∂k←− Ck+1

∂k+1←− · · · (1)

or cochain complex

0 → C0 d0−→ · · · dk−2−→ Ck−1 dk−1−→ Ck dk−→ Ck+1 dk+1−→ · · · , (2)

respectively. Here Ck and Ck are linear spaces (more generally, abelian groups), graded
by the integer number k, called dimension or degree (depending on the context). The
elements of the spaces Ck and Ck are called chains and cochains, respectively.

The linear mappings ∂k and dk are called boundary operator (or codifferential) and
differential (or coboundary operator), correspondingly. The main property of these map-
pings is “their squares are equal to zero”: ∂k−1 ◦ ∂k = dk ◦ dk−1 = 0. Note that the
differential increases the dimension k, whereas the boundary operator decreases it.
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The elements of the space Zk = Ker ∂k−1 (Zk = Ker dk) are called cycles (cocycles).
The elements of the space Bk = Im ∂k (Bk = Im dk−1) are called boundaries (cobound-
aries). Note that Bk ⊆ Zk and Bk ⊆ Zk.

The kth homology and cohomology are the quotient spaces

Hk = Zk/Bk ≡ Ker ∂k−1/Im ∂k

and
Hk = Zk/Bk ≡ Ker dk/Im dk−1,

respectively.
There are many homological and cohomological theories designed for investigation of

different mathematical structures. The only difference between these theories lies in the
constructions of the chain (cochain) spaces and boundary operator (differential). These
constructions depend on the underlying mathematical structures.

We list here some examples of cohomological theories mentioning the underlying math-
ematical structures: the de Rham cohomology (differential forms on manifolds), cohomol-
ogy of singular cochain comlexes, cohomology of groups, Hochschield (and cyclic) coho-
mology (associative algebras), Cech cohomology (certain coverings of topological spaces),
Spencer cohomology (systems of differential equations).

Figure 1: Chains and cycles
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To make the above introduced notions more intuitive, let us illustrate them with
the help of the theory of homology of manifolds and the dual theory of the de Rham
cohomology. For these theories (see two-dimentional Figure 1) the chains are arbitrary
combinations of submanifolds (with or without boundaries). On the set of chains the
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structure of abelian group (and even of linear space) is imposed in some appropriate
way. The cycles are combinations of submanifolds without boundaries. Some of the
cycles contain peculiarities within. These cycles are called non-trivial and just they are
topologically interesting. To single out these non-trivial cycles up to the trivial ones
(boundaries), one should construct the corresponding quotient space. The dual elements
to the chains, cochains, are exterior forms of different degrees on the manifold and the
differential is the exterior differential acting on these forms. The duality for this pair
of theories is provided by the generalized Stokes’ theorem stating that the integral of
differential of form over the manifold is equal to the integral of form over the boundary
of manifold:

∫
M

dω =
∫

∂M
ω. (This theorem generalizes the well known theorems of the

integral calculus given by Newton–Leibniz, Stokes, Gauss-Ostrogradski etc.)
The cohomology of the Lie (super)algebra A in the module X is defined via cochain

complex (2) in which (see, e. g., [1]) the cochain spaces Ck = Ck(A; X) consist of
superskewsymmetric k-linear mappings A × · · · × A → X, C0 = X by definition. Super-
skewsymmetry means symmetry with respect to swapping of two adjacent odd cochain
arguments and antisymmetry for any other combination of parities for adjacent pair.

The differential dk takes the form

(dkc)(a0, . . . , ak) = −
∑

0≤i<j≤k

(−1)s(ai)+s(aj)+p(ai)p(aj)c([ai, aj], ao, . . . , âi, . . . , âj, . . . , ak)

−
∑

0≤i≤k

(−1)s(ai)aic(ao, . . . , âi, . . . , ak), (3)

where the functions c(. . .) are elements of cochain spaces; ai ∈ A; p(ai) is the parity of ai;
s(ai) = i, if ai is even element and s(ai) is equal to the number of even elements in the
sequence a0, . . . , ai−1, if ai is odd element. In the case of trivial module (i.e., if ax = 0 for
all a ∈ A and x ∈ X) one uses as a rule the notation Hk(A).

In papers [2, 3, 4, 5] we presented an algorithm for computation of Lie (super)algebra
cohomologies. These papers contain also description of its C implementation and some
results obtained with the help of codes designed. This algorithm computes cohomology
of Lie (super)algebra A over module X in a straightforward way, i. e., for cochain com-
plex (2) the algorithm constructs the full set of basis monomials forming the space Ck,
generates subsequently all basis monomials in the space Ck+1, computes the differentials
corresponding to these monomials to obtain the set of linear equations determining the
space of cocycles

Zk = Ker dk = {Ck | dCk = 0}, (4)

constructs the space of coboundaries

Bk = Im dk−1 = {Ck | Ck = dCk−1}. (5)

Finally, the algorithm constructs the basis elements of quotient space

Hk(A; X) = Zk/Bk. (6)

This last step is based on the Gauss elimination procedure.
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The main difficulty in computing cohomology comes from the very high dimensions of
the spaces Ck: for n-dimensional ordinary Lie algebra and p-dimensional module

dim Ck = p
(n

k

)
,

and for (n|m)-dimensional Lie superalgebra

dim Ck = p
(n

k

)
+ p

k∑
i=1

( n
k − i

)(m + i − 1
i

)
.

In many cases it is possibly to extract some easier to handle subcomplexes of the full
cochain complex (2). The partition of cochain complex for a graded algebra and module
into homogeneous components is a typical example. In many papers (see, e. g., [6, 7, 8])
more special subcomplexes were used successfully to obtain new results in the theory of
cohomology of Lie (super)algebras.1

The main idea of the new algorithms presented in this paper is to extract the minimal
possible (in the sense explained below) subcomplexes from complex (2) and to carry
computations within these subcomplexes.

2 Description of Algorithms

In this section we describe shortly two algorithms: ComputeCohomology and Search-
Cohomology. The algorithm ComputeCohomology is applicable to the cases when
it is possible to handle the full space of cochains Ck, i. e., dim Ck should be moderate
enough to keep the basis of Ck in the memory of a computer. This algorithm allows to
obtain the full set of basis elements of cohomology for a given cochain complex.

On the other hand, the algorithm SearchCohomology allows to obtain partial in-
formation about cohomology, i.e., to search for some cohomological classes, in high-
dimensional complexes. In some cases this algorithm can be applied even to infinite-
dimensional complexes.

The input data for both algorithms should include:

1. The Lie (super)algebra A over the module X. A and X should be presented as sets
of basis elements, their commutator and action tables. Our C implementation of the
algorithms is able to construct these basis elements and tables for most important
algebras and modules.

2. Integer non-negative number k, which is the degree (or dimension) of cohomology.

3. Integer number g giving the grade of cohomology. Most important algebras and
modules are graded (if not, one can always prescribe zero grade to all elements of
algebra and module) and this grading induces grading in the cohomology.

1The main trick consists in imposing some restrictions on the elements of Ck and proving the invariance
of these restrictions with respect to the differential.
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For the algorithm SearchCohomology a positive number n should be additionally in-
puted. It restricts the number of attempts to find non-trivial cohomological classes.

The output for both algorithms is a set BHk
g of basis elements of cohomology. This set

is full for the algorithm ComputeCohomology and partial for the algorithm Search-
Cohomology.

Let {αi} and {ξι} be sets of basis elements of Lie (super)algebra A and module X,
correspondingly. The following super skew-symmetric monomials

C(αi1 , . . . , αik ; ξι) ≡ C(αi1) ∧ · · · ∧ C(αik) ⊗ ξι ≡ α′
i1
∧ · · · ∧ α′

ik
⊗ ξι

form basis of the cochain space Ck. Here i1 ≤ · · · ≤ ik and α′
i is the dual to αi element.

We use the notation mk
g for such monomials in both algorithms.

Algoritm: ComputeCohomology

Input: A, Lie (super) algebra; X, module;
k, cohomology degree; g, grade

Output: BHk
g , set of basis cohomological classes

Local: Mk
g , full set of k-cochain monomials (basis of Ck

g );

s, current subcomplex: Ck−1
g,s

dk−1
g,s−→ Ck

g,s

dk
g,s−→ Ck+1

g,s ;
mk

g ∈ Mk
g , starting monomial for constructing subcomplex s;

Mk
g,s, set of k-cochain monomials involved in subcomplex s;

BHk
g,s, set of basis cohomological classes in subcomplex s

1: BHk
g := ∅

2: Mk
g := GenerateMonomials(A, X, k, g)

3: while Mk
g 
= ∅ do

4: mk
g := ChooseMonomial(Mk

g )
5: {s, Mk

g,s} := ConstructSubcomplex(mk
g)

6: Mk
g := Mk

g \ Mk
g,s

7: BHk
g,s := ComputeCohomologyInSubcomplex(s)

8: if BHk
g,s 
= ∅ then

9: BHk
g := BHk

g ∪ BHk
g,s

10: fi
11: od
12: return BHk

g

Both algorithms construct the following local (working) objects:

1. The subcomplex s constructed by the subalgorithm ConstructSubcomplex.

2. The k-cochain monomial mk
g . This monomial is input for the subalgorithm Con-

structSubcomplex. The algorithm ComputeCohomology takes the monomials
mk

g from the set Mk
g by the subalgorithm ChooseMonomial, whereas the algorithm
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Algoritm: SearchCohomology

Input: A, Lie (super) algebra; X, module;
k, cohomology degree; g, grade;
n > 0, number of generations of subcomplexes

Output: BHk
g , set of basis cohomological classes

Local: s, current subcomplex: Ck−1
g,s

dk−1
g,s−→ Ck

g,s

dk
g,s−→ Ck+1

g,s ;
mk

g , starting monomial for constructing subcomplex s;
Mk

g,s, set of k-cochain monomials involved in subcomplex s;
BHk

g,s, set of basis cohomological classes in subcomplex s
1: BHk

g := ∅
2: do
3: mk

g := NewMonomial()
4: {s, Mk

g,s} := ConstructSubcomplex(mk
g)

5: BHk
g,s := ComputeCohomologyInSubcomplex(s)

6: if BHk
g,s 
= ∅ and BHk

g,s 
⊆ BHk
g then

7: BHk
g := BHk

g ∪ BHk
g,s

8: fi
9: n := n − 1

10: od while n 
= 0
11: return BHk

g

SearchCohomology generates mk
g by the subalgorithm NewMonomial (based,

e.g., on a random number generator).

3. The set Mk
g,s of monomials involved in the current subcomplex s. This set is sub-

tracted from the set Mk
g in the algorithm ComputeCohomology (and is one of

constituent parts of s in the algorithm SearchCohomology).

4. The set BHk
g,s of basis elements of cohomology in the subcomplex s.

For the work of algorithm ComputeCohomology the full set Mk
g of basis monomials

for the space of k-cochains is generated by the subalgorithm GenerateMonomials at
the start of computation.

The subalgorithms ConstructSubcomplex and ComputeCohomologyInSub-
complex are central parts of both algorithms. The subalgorithm ComputeCohomolo-
gyInSubcomplex computes the set of basis elements of cohomology in a given subcom-
plex in a standard way as is described in Introduction.

The most important part of our approach is the subalgorithm ConstructSubcom-
plex. Starting with arbitrary monomial mk

g this subalgorithm constructs the minimal
subcomplex s of the form

Ck−1
g,s

dk−1
g,s−→ Ck

g,s

dk
g,s−→ Ck+1

g,s (7)
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involving the monomial mk
g . The subalgorithm ConstructSubcomplex is based on

formula (3) for the differential dk. This formula is a set of linear relations connecting k-
and (k + 1)-monomials. The relations containing the monomial mk

g contains also other
monomials and we can add into consideration the relations for these monomials. After
such connected relations for k-monomials are all constructed we should carry out an
analogous procedure with the differential dk−1. This can lead (in practice, fairly rare)
to appearance of new k-monomials and then we should return to the procedure for the
differential dk. This cyclic process terminates if any given basis element αi of algebra
appears only in a finite number of the right hand parts of commutators and similar
property (with respect to action of algebra on module) holds for basis elements of module
ξι. Note that the subalgorithm ConstructSubcomplex can construct finite-dimensional
subcomplexes in some cases when grading does not allow finite-dimensional subcomplexes,
e. g., when computing cohomology in adjoint module for infinite-dimensional graded
Lie (super)algebras. Note also that the subcomplexes constructed by the subalgorithm
ConstructSubcomplex are not invariant, i. e., they depend on the choice of bases for
algebra and module, and they, apparently, not always can be extended to full sequence (2)
in such a way that part (7) remains unchanged, but for our purposes this is not important.

3 Examples:

Computation of H3(Poincare(1, 3)) and H3(SH(0|4))

Both examples of computations in this section are carried out in zero grade complexes and
we shall omit subscripts g = 0 everywhere below. As the first example we consider com-
putation of third cohomology in the trivial module for 10-dimensional Poincaré algebra.
The basis of this algebra contains the following generators of: translations P0, P1, P2, P3;
rotations R1, R2, R3; Lorentz transformations L1, L2, L3. The commutator table for the
Poincaré algebra takes the form:

[Pμ, Pν ] = 0, μ, ν = 0, . . . , 3;

[P0, Li] = Pi, [Pi, Lj] = δijP0, [Pi, Rj] = εijkPk,

[Ri, Rj] = εijkRk, [Ri, Lj] = εijkLk, [Li, Lj] = −εijkRk, i, j, k = 1, . . . , 3.

Here εijk is the permutation symbol with ε123 = 1.
We consider the part

C2 d2−→ C3 d3−→ C4 (8)

of cochain complex (2). The spaces of cochains have the following dimensions

dim C2 = 45, dim C3 = 120, dim C4 = 210.

The system of equations for 3-cocycles d3(C3) = 0 contains initially 187 equations for 120
variables. The Gauss elimination process shows that the rank of this system is equal to
83, i. e., the 3-cocycles form 37-dimensional subspace in 120-dimensional space C3. The
expressions d2(C2) determine parametrically 35-dimensional subspace of coboundaries in
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the subspace of 3-cocycles, i. e., we get finally the cohomology as a 2-dimensional quotient
space of these subspaces.

The algorithm ComputeCohomology divides complex (8) into 28 subcomplexes as
shown in Table 1. As one can see from Table 1 nontrivial cohomological classes arise

Table 1: Subcomplex structure for complex (8)

s Starting monomial dim C3
s dim Z3

s dim B3
s dim H3

s BH3
s

1 c(P0, P1, P2) 1 0 0 0
2 c(P0, P1, P3) 1 0 0 0
3 c(P0, P2, P3) 1 0 0 0
4 c(P1, P2, P3) 1 0 0 0

5 c(L1, L2, R1) 2 1 1 0
6 c(L1, L2, R2) 2 1 1 0
7 c(L1, L3, R1) 2 1 1 0
8 c(L1, R1, R2) 2 1 1 0
9 c(L1, R1, R3) 2 1 1 0
10 c(L2, R1, R2) 2 1 1 0

11 c(P0, P1, L2) 4 1 1 0
12 c(P0, P1, L3) 4 1 1 0
13 c(P0, P1, R2) 4 1 1 0
14 c(P0, P1, R3) 4 1 1 0
15 c(P0, P2, L3) 4 1 1 0
16 c(P0, P2, R3) 4 1 1 0

17 c(L1, L2, L3) 4 4 3 1 h3
17

18 c(L1, L2, R3) 4 1 0 1 h3
18

19 c(P0, L1, R2) 6 2 2 0
20 c(P0, L1, R3) 6 2 2 0
21 c(P0, L2, R3) 6 2 2 0
22 c(P1, L2, R3) 6 2 2 0
23 c(P0, P1, L1) 6 0 0 0
24 c(P0, P1, R1) 6 0 0 0

25 c(P0, L1, L2) 9 3 3 0
26 c(P0, L1, L3) 9 3 3 0
27 c(P0, L1, R1) 9 3 3 0
28 c(P0, L2, L3) 9 3 3 0

only in subcomplexes 17 and 18, generated by the function ConstructSubcomplex
starting with the monomials c(L1, L2, L3) and c(L1, L2, R3), correspondingly. Dimensions
of subspaces C3

17 and C3
18 are equal to 4.

The set of equations for cocycles d3(C3
17) = 0 is empty and expressions for coboundaries
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d2(C2
17) take the form

c(L1, L2, L3) = −c(L1, R1) − c(L2, R2) − c(L3, R3),

c(L1, R2, R3) = c(L1, R1) − c(L2, R2) − c(L3, R3),

c(L2, R1, R3) = c(L1, R1) − c(L2, R2) + c(L3, R3),

c(L3, R1, R2) = −c(L1, R1) − c(L2, R2) + c(L3, R3),

where 2-cochains should be treated as arbitrary parameters. These relations determine
3-dimensional subspace and basis element h3

17 of cohomology for subcomplex 17 can be
expressed in the form h3

17 = c(L1, L2, L3) − c(L1, R2, R3) + c(L2, R1, R3) − c(L3, R1, R2).
For subcomplex 18 equations d3(C3

18) = 0 determining cocycles take the form

c(L1, L2, R1, R2) = −c(L1, L2, R3) − c(L1, L3, R2) + c(L2, L3, R1) + c(R1, R2, R3) = 0,

c(L1, L3, R1, R3) = c(L1, L2, R3) + c(L1, L3, R2) + c(L2, L3, R1) + c(R1, R2, R3) = 0,

c(L2, L3, R2, R3) = c(L1, L2, R3) − c(L1, L3, R2) − c(L2, L3, R1) + c(R1, R2, R3) = 0.

This system of equations determines 1-dimensional subspace. Expressions for cobound-
aries d2(C2

18) determine 0-dimensional subspace taking the form

c(L1, L2, R3) = c(L1, L3, R2) = c(L2, L3, R1) = c(R1, R2, R3) = 0,

and basis element h3
18 of cohomology can be chosen as h3

18 = c(R1, R2, R3) or as linear
combination

h3
18 = αc(R1, R2, R3) + βc(L1, L2, R3) + γc(L1, L3, R2) + δc(L2, L3, R1),

with α − β + γ − δ 
= 0.
Let us consider also an example of computation that is typical for Lie superalgebras.

Computation of the third cohomology in the trivial module and in zero grading for special
Hamiltonian algebra SH(0|4) is a task of approximately the same complexity as in the
above example with the Poincaré algebra. The (6|8)-dimensional superalgebra SH(0|4) has
the following even E1 = θ1θ2, E2 = θ1θ3, E3 = θ2θ3, E4 = θ1θ4, E5 = θ2θ4, E6 = θ3θ4

and odd O1 = θ1, O2 = θ2, O3 = θ3, O4 = θ4, O5 = θ1θ2θ3, O6 = θ1θ2θ4, O7 =
θ1θ3θ4, O8 = θ2θ3θ4 basis elements. Here θ1, θ2, θ3, θ4 are Grassmann variables and
Lie product coincides with Poisson bracket {·, ·}Pb. For this particular case {f, g}Pb =
−(−1)p(f)Σ4

i=1∂f/∂θi∂g/∂θi, where f and g are functions of θ1, . . . θ4 and p(f) is parity
of function f . In the case of Lie superalgebra cochain complex can be split into two
subcomplexes, even and odd. In our example only even subspace of C3 contains nontrivial
cocycle. The spaces of even subcomplex have the following dimensions

dim C2 = 31, dim C3 = 116, dim C4 = 355.

The initial number of determining equations for 3-cocycles is equal to 351. This system of
equations determines 25-dimensional space of cocycles. The expressions for coboundaries
describe 24-dimensional subspace, hence the cohomology is 1-dimensional.
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The algorithm ComputeCohomology generates eight subcomplexes. Six of them
have the following characteristics:

dim C3
s = 14, dim Z3

s = dim B3
s = 3, dim H3

s = 0.

There are also two subcomplexes with dimC3
s = 16, one of them has dim Z3

s = dim B3
s =

dim H3
s = 0. And finally, the remaining subcomplex (with 30 equations for 3-cocycles)

contains 1-dimensional cohomology: dimZ3
s = 7, dim B3

s = 6, dim H3
s = 1. We do not

present here the basis element of this cohomology explicitly because its expression is
rather long.

4 Conclusion

As one can see from the two above, chosen at random, examples, cochain complexes
can be effectively divided into smaller subcomplexes. One can show that generally the
efficiency of such division grows with increase of cochain degree k, i. e., the dimensions
of subcomplexes grow slower than the dimension of full complex. We are implementing
the algorithms ComputeCohomology and SearchCohomology as different regimes of
one C program.
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The aim of this study is to investigate the dependence of the characteristic set of
the system of the Euler equations on the number of the variables and on the ranking.
This system is of interest for computation due to a number of reasons. It is one of
treatable systems of nonlinear differential equations and the corresponding differential ideal
is prime.

At the same time, the results obtained for various rankings are very different. The com-
putations were made by the Rosenfeld—Gröbner algorithm implemented in CAS MAPLE.
This algorithm represents the least radical differential ideal containing initial ideal set by
a finite number of differential polynomials as a finite intersection of regular differential
ideals Ji:

{Σ} = J1 ∩ · · · ∩ Js

1 Some definitions and notations

Let K be a differential field of characteristic zero with a set of derivations
Δ = {d1, . . . , dm}. Consider the differential ring R = K{y1, . . . , yn}. The order of an
operator θ = d1

i1 . . . dm
im is equal to the sum of the exponents ij. We call the yi by letters

and the θyi by derivatives. The degree of a polynomial f ∈ R or deg f is the degree of f
as a polynomial in an infinite number of variables θyi and its order ord f is the maximal
order of the derivatives that are present in f .

Let I be an ideal and T be a multiplicatively stable family of R = K{y1, . . . , yn}. The
symbol I : T stands for the ideal of all elements p of R such as for some t ∈ T the element
tp belongs to I.

A differential ideal I of R = K{y1, . . . , yn}, I 
= R is said to be prime if for any
p1, p2 ∈ R the inclusion p1p2 ∈ I implies either p1 ∈ I or p2 ∈ I.

A differential ideal I of R = K{y1, . . . , yn} is called radical if the inclusion pn ∈ I
(p ∈ R, n is a positive integer) implies the inclusion p ∈ I. The least radical differential
ideal containing a finite set Σ ⊂ R is denoted by {Σ}.

A total order R on the set of the derivatives yj is said to be a ranking if the following
conditions hold:
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1. diθyj >R θyj for all derivations di, all operators θ and all letters yj;

2. θ1yi >R θ2yj ⇒ dkθ1yi >R dkθ2yj for all derivations dk, all operators θ1, θ2 and all
letters yi, yj.

Let p ∈ K{y1, . . . , yn}, p /∈ K and R be a ranking. The leader u of p is defined as
the highest derivative with respect to the ranking R that appears in p. Let d denote the
degree of u in p. The initial Ip of p is the coefficient of ud in p. The separant Sp is the
partial derivative of p with respect to u.

Let p and q be two polynomials, u be the leader of p, and d be its degree in p. The
polynomial q is said to be partially reduced with respect to p if no proper derivative of
u appears in q. The polynomial q is said to be reduced with respect to p if q is partially
reduced with respect to p and its degree in u is less than d.

A set of polynomials is said to be autoreduced if each element of the set is reduced
with respect to every other its element. Let A be an autoreduced set. Let HA be the
product of all initials and separants of A. The symbol H∞

A denotes the set of all powers
of the element HA.

An autoreduced subset C of a set A of polynomials is called a characteristic set of A
if A contains no non-zero elements reduced with respect to C. A characteristic set C of
an ideal I reduces to zero all elements of I. If the ideal is prime, then C reduces to zero
only the elements of I and we have I = [C] : H∞

C .
Let p and q be two polynomials in an autoreduced set A, whose leaders θ1yi and θ2yi

are derivatives of one and the same letter yi. Let θ be the operator of minimal order,
φ1 and φ2 be two derivation operators such that φ1θ1 = φ2θ2 = θ. The Δ-polynomial
between p and q is the polynomial Δ = Sqφ1p − Spφ2q. A set A is said to be coherent if
it reduces to zero all Δ-polynomials between any two elements of A.

Let Σ be a differential polynomial system of equations and inequations {p1 = 0, . . . ,
pk = 0, q1 
= 0, . . . , ql 
= 0}, where pi, qj ∈ K{y1, . . . , yn} for i = 1 . . . k and j = 1 . . . l. A
differential model of Σ is a morphism of the differential K-algebras K{y1, . . . , yn} → L
into a differential field L that annihilates the equations but not the inequations of Σ.

A system of differential equations and inequations is said to be regular with respect
to a ranking R, if the set of its equations is autoreduced and coherent, the initial and
separant of each equation appear among the inequations and if its other inequations are
partially reduced with respect to the equations:

Ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = 0
... A = {p1, . . . , ps} is autoreduced and coherent

ps = 0
I1 
= 0

... the initials and separants of pi

Ss 
= 0
q 
= 0 q is partially reduced w.r.t. A

A differential ideal J is said to be regular if there exists a regular system Ω such as
J = [A] : H∞

Ω , where A is the set of equations of Ω.
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The input data for the Rosenfeld–Gröbner package are a system of differential equa-
tions and inequations Σ and a ranking R. Its output is a finite family (Ωi) of consistent
(with models) regular systems whose differential models form a partition of the differential
models of Σ. Let Ai denote the set of equations for each Ωi and HΩi

be the product of
all inequations of Ωi. Denoting by H∞

Ωi
the set of all powers of the HΩi

, we can represent
the result of the run of the program as

{Σ} = [A1] : H∞
Ω1

∩ · · · ∩ [As] : H∞
Ωs

2 Computations

In the case of three space variables, the system of the Euler equations is:

p1 := v1 x1 + v2 x2 + v3 x3

p2 := v1 t + v1 v1 x1 + v2 v1 x2 + v3 v1 x3 + px1

p3 := v2 t + v1 v2 x1 + v2 v2 x2 + v3 v2 x3 + px2

p4 := v3 t + v1 v3 x1 + v2 v3 x2 + v3 v3 x3 + px3

Theorem 1. If A is a coherent autoreduced set such that the ideal (A) : H∞
A of

K{y1, . . . , yn} is prime and contains no nonzero elements reduced with respect to A, then
A is a characteristic set of a prime Δ-ideal of the ring K{y1, . . . , yn}.

The proof of this theorem can be found in [2].
For t > x1 > x2 > x3, v1 > v2 > v3 > p, and the ordering of total degree then

lexicographic, the set A

p1 := v1 x1 + v2 x2 + v3 x3

p2 := v1 t + v2 v1 x2 + v3 v1 x3 + px1 − v1 v2 x2 − v1 v3 x3

p3 := v2 t + v1 v2 x1 + v2 v2 x2 + v3 v2 x3 + px2

p4 := v3 t + v1 v3 x1 + v2 v3 x2 + v3 v3 x3 + px3

p5 := px1 , x1 + px2 , x2 + px3 , x3 + v2 x1 v1 x2 + 2 v3 x1 v1 x3 + 2 v2 x2
2

+2 v3 x2 v2 x3 + 2 v3 x3
2 + 2 v2 x2 v3 x3

satisfies the conditions of the theorem; hence, the ideal corresponding to the system of
the Euler equations is prime.

For some rankings, the program computes not only the required system whose set of
equations forms the characteristic set of the ideal, but also some redundant components.
In this case and in some situations when the direct computations fail, the program allows
one to compute this system using the results obtained for another ranking.

So, the possible situations are the following:
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1. the characteristic set can be computed directly;

2. the program stops the computation because the arguments of some intermediate
functions become too large, but the characteristic set can be determined using the
result obtained for another ranking;

3. both attempts of computing the characteristic set fail.

When the initials and separants of a charasteristic set belong to the field of constant,
I = [A] and in this case A is an analogue of the Gröbner basis, in particular, the elements
of A and their derivatives generate the ideal.

Three cases of the Euler equations are considered: with one, two, and three space
variables. It is natural that the first case is the simplest one. The initial system is:

vx, vt + vvx + px.

After reducing the second equation with respect to the first one, the system becomes
linear and the program computes the Gröbner basis of the system. Due to its special
form, the basis can be obtained for any ranking and it is equal either to

vx, vt + px, pxx

or to
vx, px + vt.

The cases of two and three space variables are much more complicated. For two space
variables, the initial system is:

p1 := v1 t + v1 v1 x + v2 v1 y + px

p2 := v2 t + v1 v2 x + v2 v2 y + py

p3 := v1 x + v2 y

The system is symmetric with respect to the space variables; therefore, we can exclude
some orders on the letters and derivations from consideration. For the order of total degree
then lexicographic, the results are obtained directly. Nevertheless, they depend on the
order of derivatives. If t > x > y, then in both cases p > v1 > v2 and v1 > v2 > p
redundant components appear.

If x > y > t, v1 > v2 > p, then we obtain

P := [regular , regular , regular ]

[[v1 v2 px, x + v1 v2 py, y + 2 v2 t v1 t + 2 v2 t px − 2 v2 t v2 y v1 + 2 v2 v2 y v1 t

+ 2 v2 v2 y px + 2 py v1 t + 2 py px − 2 py v2 y v1 , v1 x + v2 y,

v1 t + v2 v1 y + px − v2 y v1 , v2 t + v1 v2 x + v2 v2 y + py],

[px, x, v1 x, v1 t + px, py, v2 ], [py, y, v2 y, v2 t + py, px, v1 ]]
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However, if t > x > y and v1 > v2 > p, then we have only one component

[[2 v2 x v1 y + px, x + 2 v2 y
2 + py, y, v1 t + v2 v1 y + px − v2 y v1 , v1 x + v2 y,

v2 t + v1 v2 x + v2 v2 y + py]]

For the ranking where the derivatives di1
1 . . . din

n yj are ordered in the lexicographical
order of the vectors (i1, . . . , in, j), the situation is the same. If t > x > y, then we
directly obtain the characteristic sets which are quite simple. If x > y > t, then we obtain
redundant components.

1. The case x > y > t and p > v1 > v2:

J := [regular , regular ]

[[v1 t + v2 v1 y + px − v2 y v1 , v1 x + v2 y, v2 t + v1 v2 x + v2 v2 y + py],

[v2 x, t, px, v2 t + py, v2 y, v1 ]]

2. The case t > x > y and p > v1 > v2:

[[v1 t + v2 v1 y + px − v2 y v1 , v2 t + v1 v2 x + v2 v2 y + py,

2 v2 x v1 y + px, x + 2 v2 y
2 + py, y, v1 x + v2 y]]

The worst case is the case of the lexicographical order. Neither direct computations,
nor computations using previous results can handle this system.

In the case of three space variables, one of the simplest sets corresponds to the order
of total degree then lexicographic, t > x1 > x2 > x3 and v1 > v2 > v3 > p. This case
was considered earlier. The output of the program is

[[2 v2 x1 v1 x2 + 2 v3 x1 v1 x3 + px1 , x1 + 2 v2 x2
2 + 2 v3 x2 v2 x3 + px2 , x2 + 2 v3 x3

2

+px3 , x3 + 2 v2 x2 v3 x3 , v1 t + v2 v1 x2 + v3 v1 x3 + px1 − v1 v2 x2 − v1 v3 x3 ,
v1 x1 + v2 x2 + v3 x3 , v2 t + v1 v2 x1 + v2 v2 x2 + v3 v2 x3 + px2 ,
v3 t + v1 v3 x1 + v2 v3 x2 + v3 v3 x3 + px3 ]]

Unlike the case of two space variables, if we change the order of derivatives for x1 >
x2 > x3 > t, then the characteristic sets cannot be obtained directly, but can be computed
with the help of the previous results:

[[2 v2 v3 v1 x3 v2 x2 − 2 v1 v2 t v2 x2 − 2 v2 v3 v3 x3 v1 x3 + 2 v2 v1 t v2 x2

− 2 v1 v3 v2 x3 v3 x3 + 2 v2 v1 v3 x2 v2 x3 − 2 v1 v3 v2 x3 v2 x2

− 2 v1 px2 v3 x3 + 2 v2 v1 v3 x3
2 + v2 v1 px2 , x2 + 2 v3 2 v2 x3 v1 x3

+ 2 v3 v2 x3 px1 + 2 px2 v3 v1 x3 + 2 v2 t v3 v1 x3 − 2 v1 px2 v2 x2

+ v2 v1 px3 , x3 − 2 v1 v2 t v3 x3 − 2 v2 v1 x3 px3 + 2 v3 v2 x3 v1 t

+ 2 v2 v2 x2 px1 + v2 v1 px1 , x1 − 2 v2 v3 t v1 x3 − 2 v2 2 v3 x2 v1 x3 + 2 px2 px1

+ 2 px2 v1 t + 2 v2 t px1 + 2 v2 t v1 t, v1 x1 + v2 x2 + v3 x3 ,
v1 t + v2 v1 x2 + v3 v1 x3 + px1 − v1 v2 x2 − v1 v3 x3 ,
v2 t + v1 v2 x1 + v2 v2 x2 + v3 v2 x3 + px2 ,
v3 t + v1 v3 x1 + v2 v3 x2 + v3 v3 x3 + px3 ]]
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The result in the case, where p > v1 > v2 > v3 and t > x1 > x2 > x3, just as in the
first case, can be obtained directly; however, its size is quite large:

[[−v2 x1 v3 x1 , x3 − v2 x1 v1 x2 , x2 + v1 v2 x1 , x2 , x2 − v2 x2 v2 x1 , x1 − v2 x2 v2 x2 , x2

− v2 x2 v3 x2 , x3

+ v1 v2 x1 , x1 , x1 + v1 v3 x1 , x2 , x3 + v3 v2 x1 , x1 , x3 + v1 x2 v3 x1 , x3 + 2 v3 x1 v2 x1 , x3

+ v3 x1 , x1 v2 x3 − 2 v2 x1 , x1 v3 x3 + v2 x1 v2 x1 , x2 − v3 x1 v1 x2 , x3 − 2 v3 x3 v2 x2 , x2

+ v2 v2 x2 , x2 , x2 + v3 x2 v2 x2 , x3 + v2 v3 x2 , x2 , x3 + v3 v2 x2 , x2 , x3 + v3 v3 x2 , x3 , x3

+ v2 v2 x1 , x1 , x2 − 2 v3 x3 v3 x2 , x3 − v3 x1 , x2 v1 x3 + v3 x2 v3 x3 , x3 + v2 t, x2 , x2

+v2 t, x1 , x1

+ v3 t, x2 , x3 , v3 x1 v1 x2 , x2 + v2 v3 x2 , x3 , x3 + v3 x1 v3 x1 , x3 + v3 t, x2 , x2 + v3 t, x1 , x1

+ v3 t, x3 , x3 + v3 x2 , x2 v3 x3 − v3 x2 v2 x3 , x3 − v3 x3 v3 x3 , x3 − v3 x3 v3 x1 , x1

+v3 v3 x3 , x3 , x3

− 4 v2 x2 , x3 v2 x2 − 2 v2 x2 v3 x3 , x3 + v2 x1 , x1 v3 x2 − v3 x1 v2 x1 , x2 − 2 v3 x1 , x1 v2 x2

− v3 x1 v1 x3 , x3 − 2 v2 x1 v1 x2 , x3 + v2 v3 x1 , x1 , x2 + 2 v2 x1 v3 x1 , x2 − 2 v2 x1 , x3 v1 x2

+ v1 v3 x1 , x3 , x3 + v1 v3 x1 , x1 , x1 + v3 v3 x1 , x1 , x3 + 2 v2 x2 v3 x2 , x2

+ v2 v3 x2 , x2 , x2 − 2 v3 x3 v2 x2 , x3 + v1 v3 x1 , x2 , x2 + v3 v3 x2 , x2 , x3 + 2 v3 x2 v3 x2 , x3

+ 2 v3 x1 , x2 v1 x2 + v2 x2 , x2 v3 x2 , v1 t, x2 + v2 v1 x2 , x2 + v3 x2 v1 x3 + v3 v1 x2 , x3

− v1 v2 x2 , x2 − v1 x2 v3 x3 − v1 v3 x2 , x3 − v2 t, x1 − v1 v2 x1 , x1 − v2 v2 x1 , x2

− v3 x1 v2 x3 − v3 v2 x1 , x3 + v2 x1 v3 x3 , v1 t, x3 + v2 x3 v1 x2 + v2 v1 x2 , x3

+ v3 v1 x3 , x3 − v1 x3 v2 x2 − v1 v2 x2 , x3 − v1 v3 x3 , x3 − v3 t, x1 − v1 v3 x1 , x1

− v2 x1 v3 x2 − v2 v3 x1 , x2 − v3 v3 x1 , x3 + v3 x1 v2 x2 , v2 t, x3 + v1 x3 v2 x1

+ v1 v2 x1 , x3 + v2 x3 v2 x2 + v2 v2 x2 , x3 + v3 x3 v2 x3 + v3 v2 x3 , x3 − v3 t, x2

− v3 x1 v1 x2 − v1 v3 x1 , x2 − v2 x2 v3 x2 − v2 v3 x2 , x2 − v3 x2 v3 x3 − v3 v3 x2 , x3 ,
v1 t + v2 v1 x2 + v3 v1 x3 + px1 − v1 v2 x2 − v1 v3 x3 ,
v2 t + v1 v2 x1 + v2 v2 x2 + v3 v2 x3 + px2 ,
v3 t + v1 v3 x1 + v2 v3 x2 + v3 v3 x3 + px3 , v1 x1 + v2 x2 + v3 x3 ]]

Changing the order t > x1 > x2 > x3 for x1 > x2 > x3 > t, we obtain the
most difficult case among the computable ones. It cannot be computed directly. The
characteristic set consists of only 9 differential polynomials, but they have 81, 34, 14, 13,
6, 5, 5, and 3 terms, respectively, and occupy about three pages and a half.

For the ranking where the derivatives di1
1 . . . din

n yj are ordered in the lexicographical
order of the vectors (i1, . . . , in, j), the computations are quite similar to the case of two
space variables; i.e., the same as for the order of total degree then lexicographic. The
computation complexity depends only on the order of the derivatives: if t > x1 > x2 > x3,
then the basis is obtained directly; if x1 > x2 > x3 > t, then results for another ranking
should be used. But, in this case, the set itself has a very simple form, even simpler than
in the first case considered. However, in that case the computation time is short and the
results can be obtained directly. If x1 > x2 > x3 > t and p > v1 > v2 > v3, then the set
consists only of the reduced initial polinomials:

[[v1 t + v2 v1 x2 + v3 v1 x3 + px1 − v1 v2 x2 − v1 v3 x3 , v1 x1 + v2 x2 + v3 x3 ,
v2 t + v1 v2 x1 + v2 v2 x2 + v3 v2 x3 + px2 ,
v3 t + v1 v3 x1 + v2 v3 x2 + v3 v3 x3 + px3 ]]
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However, it cannot be obtained directly.
Finally, for the lexicographical order, we did not manage to obtain any results even in

the case of two space variables.
In conclusion I would like to express my gratitude to my scientific adviser E.V.

Pankratiev for valuable remarks while preparing this paper.
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We give an outline of a computer algebra program written in a functional language
Haskell and implementing certain piece of commutative algebra.

1 Introduction

The project of algebraic Domain Constructor DoCon [Me1] has grown into somewhat
an advanced system: permutations, linear algebra, polynomial arithmetics, GCD, factor-
ization, Gröbner bases, symmetric functions package, and some other tools.

It is written in Haskell language [Ha] (Miranda family), which we declare as sup-
porting the FTCL approach: Functional-Typeful-Categorial-LazyEvaluation style in pro-
gramming.

Also certain simplified version is presented as the BAL program [Me2] — basic algebra
library for Haskell. For anyone going to deal with DoCon we recommend to read first the
paper [Me2] discussing the main points of Haskell’s relation to computer algebra.

Why designing another CA system, is not the Axiom program [Je] sufficient?
I experimented with the FTCL approach because (a) of importance of pure func-

tionality, (b) of ‘lazy’ evaluation elegance, (c) I aimed to study the question of fitness
to programming of mathematics of several known languages: Refal, ML, Haskell, term-
rewriting logical languages . . . (d) for maintainability, free-with-source program tools,
described at all levels, are preferable.

And Haskell does provide several free-with-source implementations, among which the
recent DoCon exploits GHC [GH].

DoCon is a program package. The general notions of a class, instance, polymor-
phic type, and such — are of the Haskell language. And DoCon is a library of particular
algebraic categories, their instances and other items.

The functionality feature allows to treat a program (brought to internal form) as
symbolic expression, like say, a polynomial in mathematics. This enables (in principle)
the compiler to simplify such a program symbolically.

But it was often said that functional programming reduces the efficiency, that there
is a necessity to use a pointer, a mutable array, and so on.
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DoCon tries to shows that pure functionality and ‘lazy’ evaluation are practicable.
The benchmarks reveal a good performance. These tests are described in the Section
’pe’ of DoCon Manual [Me1]; they compare the CA programs DoCon-2.02, Axiom-2.2,
MuPAD-1.4.2 on several algorithmically complex tasks.

We also discuss the design difficulties (Section 6). The most important one is, prob-
ably, common to all ‘typeful’ systems and concerns modelling a domain depending on
a dynamic value. With existing Haskell, we find certain way out in a sample argument
approach — see Section 4.

Acknowledgements. The author is grateful to Dr. S.V.Duzhin for his administra-
tive support of the project, Russian Foundation for Basic Research (grant 98-01-00980)
and
INTAS foundation (coordinator Professor B.Jacob) — for some part of DoCon was sup-
ported by these grants, CA center MEDICIS <http//www.medicis.polytechnique.fr>

for making it possible to compare the chosen CA systems on one computer.

2 Mathematics implemented in DoCon-2.02

DoCon-2.02 includes in its functionality:
Methods:

Permutation group: composition, inversion, decomposition to cycles.
Fraction field over a gcd-ring: its arithmetic.
Linear algebra over an Euclidean domain: vector, matrix arithmetic (dense form), reduc-
tion to staircase and diagonal form of matrix, solving a system.
Polynomial arithmetic and g.c.d. in P = R[x1, . . . , xn], R a commutative ring. Four
possible representations for P , free module over P and symmetric functions are given by
the constructors UPol, Pol, RPol, EPol, SymPol; factorization in k[x, y], k a finite
field.
Gröbner basis, normal form, syzygy generators functions for P = R[x1, . . . , xn], R an
Euclidean ring, and in a free module over P [Bu, Mo, MoM].
Symmetric function package: decomposition into elementary symmetrics, to other bases,
operations with partitions [16].

Category hierarchy expressed partially via the data classes of Haskell:
Set, Semigroup, Group, Ring, LinSolvRing . . . LeftModule . . . ,
some operations with the description terms of Subset, Subgroup, Subring, Ideal.

Domain constructors: Permutation; Fraction field for a gcd-ring, Residue ring
by the ideal, and others.

Property processing: evaluation of certain small number of important algebraic
domain property values is supported: Finite, IsCyclicGroup, FactorialRing, and the
such. They serve as the correctness conditions for various methods, besides, present an
important information by themself.

But many users need to do approximate computations, compute with differential op-
erators, integration, and so on. With this respect, we point out that DoCon-2.02 is a
free-with-source program that can be taken as basis and developed by adding user li-
braries.
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3 About Haskell language

The main Haskell features are:
(F) pure functionality and high-order functions, (L) ‘lazy’ model of evaluation,
(M) evaluation by pattern matching is widely usable,
(T) recursive polymorphic parametric types with user-defined constructors, polymorphic
functions, Hindley-Milner type system with static type resolution,
(C) categorial approach to types.

We could provide many examples on the ‘lazy’ programming elegance. But let us
point it out: sometimes ‘laziness’ leads to expenses. In the worst case, it increases
the cost from ‘N steps of time + constant memory’ to ‘N steps of time + N cells of
memory’.

The recursive polymorphic types are good because
They reflect the mathematical need to describe a domain of a map preventing senseless

computations. The types describe certain part of the correctness conditions which is
relatively easy for the compiler to check.

What is categorial programming.
Haskell provides the type classes and their instances to express the idea somewhat

similar to object programming and to algebraic categories. For example, the declaration

class CommutativeRing a => GCDRing a where gcd : a -> a -> a
canAssoc : a -> a

describes abstractly all the domains (types) ‘a’ supplied with the operations gcd,
canAssoc, these operations having the specified types. Also it puts that the operations
of the category CommutativeRing (defined earlier) are inherited. The compiler controls
the types and instance match for the data but not the properties of operations, such as
associativity, opposite existence, and so on. Further, the instance declaration

instance GCDRing Integer where canAssoc n = if n < 0 then -n else n
gcd n 0 = n
gcd n m = gcd m (mod n m)

tells the compiler in what way Integer is an instance of GCDRing. Then, the declarations

data Fraction a = a :/ a ...
instance GCDRing a => AdditiveSemigroup (Fraction a)
where
(x :/ y) + (x’ :/ y’) = ... usual way to sum fractions

instance GCDRing a => Field (Fraction a) where ...

define the arithmetic of a domain Fraction a via arbitrary instance GCDRing a. After
this, our program is ready to operate uniformly with the fractions of integers, of integer
polynomials and such.

4 Particular points of DoCon design

These are
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(sa) sample argument (SA) approach to representing domain depending on a value,

(ic) implicit categories given by attribute values (see Item (bo) and Section 5),

(bo) ‘base’ operations (related to SA),

(ct) casting to domain of sample via class Cast a b,

(gx) so-called gx-ring method to operate with ideals given by generator lists

(dt) possibility to transform domains isomorphically by means of instances,

Here follow some comments.
Item (sa). The SA approach puts that an algebraic domain D = D(s) inside a type

T is defined by any data element s :: T. The meaning of D(s) is defined individually
for each known constructor C applied to form s. D(s) is defined according to C and
the parameter values contained in s. D(s) does not depend on the choice of s in the
same domain. For example, the vectors

s = Vec [0,1], Vec [0,0], Vec [-1,3,0] :: Vector Integer

define the vector domains D, D, D’ respectively, where D is the 2-dimensional vector
domain over Integer, D’ — the 3-dimensional one.

Each created element can be used further as a sample denoting a domain. With the
SA approach, the correctness conditions provided by a sample are not checked by the
compiler, they can be checked on demand by the user program. Ignoring such value
dependent domains would make many computation methods impossible. For example,
a natural design for the popular Chinese remainder method for the polynomial g.c.d.
requires operating in different residue domains R/(p), the needed set of the elements
p ∈ R is determined at the run-time. We could give other important examples.

Item (bo). The ‘base’ operations relate closely to the SA approach. Most ex-
plicit algebraic categories in DoCon export the corresponding ‘base’ operation: baseSet,
baseRing, and others. Given any domain element s :: T, a ‘base’ operation builds
the domain description term tD = tD(s) which gathers several attributes of a domain.

Item (ct). If s is an element of a certain domain, then one can use the construction
cast s x to convert various data x to corresponding canonical values in the domain

defined by s. For example, if s ∈ Z[x] is a polynomial over Integer, then the
expressions

cast s 2, cast s (2,3)

give the constant 2, considered as a polynomial, and a one-term polynomial equal to
2 ∗ x3.

Items (gx), (dt). The gx operations generalize the structures of the Gröbner basis
and Gröbner reduction operations, Euclidean extended g.c.d and remainder division and
also include the syzygy module generators finding. For example, one cannot compute
the arithmetics and the ideal inclusion in a ring P = (Integer/(4))[x, y, z] by, say,
direcly appying Gröbner basis or Gröbner reduction. Instead, DoCon has the category
instances for defining first the gx operations for Integer via the extended Euclidean

206



g.c.d. algorithm. Also the arithmetic and gx operations are defined for the domain
P ′ = Integer[x, y, z], as the generic LinSolvRing instance for E[x1, . . . , xn], the latter
basing on the (weak) Gröbner basis method over an Euclidean ring E. Further, the gx
structure is defined for the domain R = P ′/(4). This is done via the Gröbner reduction
in P ′ by the ideal (4) and via the correspondence of the ideals in P ′/(4) to their
counter-images in P ′. And it remains to exploit the computable isomorphism

P = (Integer/(4))[x, y, z] ←→ R = (Integer[x, y, z])/(4)

This scheme has to work for the domains of kind (R/I)[x1, . . . , xn]. But DoCon has
not yet implemented the above isomorhism. We tried first to use such kind of domain
transformations for setting the gx operations for the domain P = a[x1, . . . , xn][y],
where a is any domain qualified by the instance LinSolvRing (Pol a) — this asserts
that the domain a[x1, . . . , xn] has a gx structure. And in this case, DoCon uses success-
fully the isomorphism P ←→ P ′ = a[y, x1, . . . , xn]
to port the LinSolvRing instance from the ring P ′ to P .

5 Example of programming

Given two polynomials f, g with coefficients in Z = Integer, find the list of the
greatest common divisors for f, g, when their coefficients are reduced modulo several
different integers m belonging to a list ms:

[gcd(f’m,g’m) | m <- ms], ms :: [Z]

Here f’m denotes f with coefficients projected modulo m.
Let us program this in the BAL library. Its type denotations for this example are

f,g :: UPol Z, <--> Z[x]
f’m, g’m :: UPol (ResidueE Z) <--> (Z/(m))[x]

The idea is that for different m the domain of the coefficients of f’m is different.
Below, the items UPol, ResidueE, gcd, mapCoef, cast, rse, upol, smParse are of

BAL.

gcdMods :: EuclideanRing a => UPol a-> UPol a-> [a]-> [UPol (ResidueE a)]
gcdMods f g ms =

[gcd [mapCoef (cast r) f, mapCoef (cast r) g] | r <- resSamples]
where
resSamples = [rse ’f’ un m [] | m <- ms] -- :: [ResidueE a]
un = unity $ head ms -- sample for ‘a’

-- Example of usage:
let x1 = upol [(1,0)] "x" :: UPol Z -- unity polynomial: serves

-- also as a sample for Z[x]
f = smParse x1 "(x^2 +2*x +3)*(3*x +1)" -- parse value from string
g = smParse x1 "(x^2 +2*x +3)*(x +2)^3" -- using x1 as sample
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-- defining destination domain
gcs = gcdMods f g [2,3,5]
gl = last gcs --look into domain description
(pS,pR) = (justBaseSet gl, justBaseRing gl) -- of gl -for curiosity

in (gcs, (osetCard pS, subringProps pR))

This expression is output as

( [x^2 + 1, x^2 + 2*x, x^3 + 4*x^2 + 2*x + 1],

( Infinity, [(IsField,No),(Factorial,Yes),...] )

)

Here are some explanations: first on the Haskell programming in general, then — on
this particular example.

X :: T denotes that data X is of type T. [] is the type constructor for List. ‘:’
is a data constructor of prepending an element to a list. (x,y) is a pair, it has a type
(a,b) for x :: a, y :: b.

f x y === ((f x) y) denotes a function application f(x,y). So, the above cast

is a function of two arguments, cast r is a function of one argument,
[gcd (f r) (g r) | r <- resSamples] is the list of gcd-s when r runs through the
list resSamples.

Haskell also uses the $ denotation to save the parentheses in the function applica-
tions. For example, the expression f x $ g y $ h z converts to f x (g y (h z)).

Certain indentation agreement on the program lines serves to save the program struc-
tural parentheses (; { } (‘begin’,‘end’)).

The second line of the output of this program displays several attributes of the domain
related to gl. ResidueE is an abstract data type. Some initial residue element

r :: EuclideanRing a => ResidueE a

can be created by the function rse.
For example, rse ’c’ 4 3 [(3,1)] :: ResidueE Z creates the residue of 4 in the

domain Z/(3), 4 is being reduced modulo 3 to the internal representation 1; 3 goes to
internal representation and is called a ‘base’. Here rse treats the list [(3,1)] as the
given factorization of the base; its usage is shown at the page 209. Another example: (rse
’c’ 2 3 []), (rse ’c’ 4 3 []) create the two elements of the domain Z/(3) that look
internally as Rse 2 3 [], Rse 1 3 [].

The mode ’c’ makes the rse function to reduce canonically the first argument by
the base. The mode ’f’ instructs it to apply ’c’ and also to prepare the factorization
of the base — taking it as ready if it is given in the argument. The factorization can
be skipped by setting it with the empty list []. The parts of r can be extracted by
the functions rseRepr, rseBase, rseFt. Once the programmer created any element
s :: ResidueE a, other elements x :: a can be ‘projected’ standardly to the domain

of s by applying (cast s x).
The operation mapCoef is of the BAL class PolLike. (mapCoef f p) applies the

function f to each coefficient of polynomial p bringing the result to the canonical form
and returning a polynomial.

The library supplies the constructor ResidueE with
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instance EuclideanRing a => Additive (ResidueE a) where ...

and other instances, up to CommutativeRing — with usual instances for the operations
+, *, . . . The library also defines the instances

instance EuclideanRing a => GCDRing (ResidueE a) where ...
instance EuclideanRing a => Field (ResidueE a)

The above instances support the arithmetic in R= Z/(m). And since the proposed
standard instance GCDRing (UPol a) defines gcd in R[x] via the arithmetic of R, all
this enables automatically the above program to compute
gcd [f’m, g’m] :: UPol (ResidueE Z).

The expression (osetCard pS, subringProps pR) shows explicitly the two attributes of
the domain R[x] given by the last of gcd’s as by the sample. To find these attributes,
BAL analyses the domain tower Z -- Z/(m) -- (Z/(m))[x] deducing the attributes of
each domain from the ones of simpler domains.

Now suppose that we append the base 4 to the list in the above program:

gcs = gcdMods f g [2,3,5,4]

The program passes the compilation, starts running, prints the result for 2,3,5, and then
breaks reporting

Error: gcd [f,g] <- R[x], R = Z/(4) R is not a GCD Ring

This is because we model the algebraic domain R = R(m) = Z/(m) depending on the
parameter m :: Z. To compute gcd in R[x] a meaningful gcd algorithm in R is needed.
For R = Z/(m), such algorithm has sense only for a prime m. In such case Z/(m) is a
field and a GCDRing, and (gcd f’m g’m) computes by the method ‘over a GCDRing’. To
reflect all this, the library provides the instances

instance EuclideanRing a => GCDRing (ResidueE a) where ...
instance EuclideanRing a => Field (ResidueE a)

The elements resSamples :: [ResidueE Z] belong to the domains Z/(m1), Z/(m2), . . .
inside the same type ResidueE Z. The instances GCDRing, Field match formally each
domain Z/(m), but these instances are valid only for a prime m.

The function call gcdMods f g [2,3,5,4] applies (gcd f’m g’m). Then, the op-
eration gcd extracts a coefficient sample r from f’m and tests (detectGCDRing r).
If it is not Yes, gcd sets the error break. In general, the programmer may skip any
detectCategory test. But then, it is up to the user to apply the related methods only to
the domains with meaningful parameters.

Each category in BAL is accompanied by its ‘detect’ function. For example, GCDRing

has the detector detectGCDRing :: GCDRing a => a -> PropValue

The sample r is a residue element, it defines the current domain R = Z/(m), it
contains a parameter ft = rseFt r. The operation gcd applies detectGCDRing

to test whether Z/(m) is really a GCD ring. The function detectGCDRing applies
baseGCDRing . . . and looks into the above factorization part ft. At the fourth application
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in our example, it finds ft = [(2,2)], showing that m is not prime, and gcd sets the
break.

The domains like Z, (Z, UPol Z) are modelled by static type instances. In our
example, however, Z/(m) cannot be expressed so. The SA approach by DoCon recognises
a category instance partially by class instances and partially by analysing the parameters
in a sample element.

This is illustrated by the behavior of our example program on the list ms=[2,3,5,4].

6 Difficulties

The main problems encountered in the project concern
(ul) cases of unneeded ‘laziness’ (Section 3), (sa) domain depending on a value,
(le) language standard and implementation, (ct) implicit casting between domains.

Item (sa) was discussed earlier. Maybe, the dependent types feature ([Au]) can help
the compiler to understand more of the value dependent domains.
Item (le). DoCon is written not precisely in the standard Haskell-98 but in a language
including certain version of overlapping instances and some minor extensions. Mathemat-
ical needs require some further extension. But there arises a question of the standard
agreement.
Item(ct). Casting between domains via the instances of class Cast a b

is not sufficient for really nice transformations. Some other function has to set auto-
matically the operation cast of this class in appropriate places with the appropriate
samples.
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We present in this paper an implementation of the algorithms to desingularize linear
difference operators with polynomial coefficients of the form

P = fd(n)Ed + · · · + f1(n)E + f0(n), fi(n) ∈ |Q[n], n ∈ ZZ, i = 0 . . . d

where the trailing and the leading coefficients f0(n) and fd(n) are not identically zero and
have integer roots. The algorithms to solve the problem for the case where the trailing
coefficient f0(n) vanishes for some integer n are presented in [1]. Based on the relation
between the desingularization of the leading and the trailing coefficients, we present an
algorithm to solve the problem for the case where the leading coefficient fd(n) have integer
roots. We also describe an implementation of the algorithms [1] to extend a sequence
which satisfies a given operator. This can be used to compute any element of the sequence
including those in the set of the integer roots of the trailing and/or the leading coefficients.

1 Introduction

For a given linear difference operator with polynomial coefficients

P = fd(n)Ed + · · · + f1(n)E + f0(n), fi(n) ∈ |Q[n], n ∈ ZZ, i = 0 . . . d, (1)

where E denotes the shift operator, defined by E(f(n)) = f(n + 1), the problem points
of P is the set of all integer roots of either the trailing coefficient f0(n) or the leading
coefficient fd(n) of P, and the desingularization of the operator P involves the elimination
of the problem points for either f0(n) or fd(n). This is attained via the construction of
an operator Q ∈ |Q[n,E] which is “similar” to P and which does not contain the problem
points.

The algorithms as presented in [1] allow one to construct the operator Q which is a
composition of a difference operator H ∈ |Q(n)[E] and the given operator P, i.e.,

Q = H ◦ P, (2)
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where the integer roots of the trailing coefficient f0(n) in (1) are excluded.
The process of constructing such an operator where the problem points are eliminated

is named the desingularization (either by the trailing or by the leading coefficient) of the
given operator P, and the operator Q in (2) is named the desingularizing operator for
P . A description of the implementation of these algorithms is presented in section 2.1.
In section 2.2, we describe an algorithm to construct the operator Q which excludes
the integer roots of the leading coefficient. The algorithm consists of the application of
some transformations to the input operator P in order to reduce the problem to that of
excluding the integer roots of the trailing coefficient. Section 3 shows description of a
program to desingularize a given sequence, i.e., to extend the sequence based on some
given elements. For a given sequence, the problem elements are defined to be the elements
with the number from the set of the integer roots of either the trailing coefficient or the
leading coefficient, and the remaining elements are named regular elements. One can use
the program to compute both the problem and the regular elements of the sequence.

2 Desingularization of Operators

2.1 An implementation of the algorithms to desingularize oper-
ators and the ε-criterion.

For a given linear difference operator with polynomial coefficients P of the form (1), the
algorithm for the desingularization by the trailing coefficient of P [1] returns an answer
in one of the following three forms:

1) a desingularizing operator where all integer roots of the trailing coefficient f0(n) are
excluded;

2) a desingularizing operator where at least one integer root of f0(n) is excluded;

3) no operator, i.e., it is not possible to exclude even one root of f0(n).

The ε-criterion as established in [1] determines if the operator Q of the form (2)
exists. It also helps to determine the number of integer roots and which roots can be
excluded during the construction of Q. The main idea of the ε-criterion consists of the
substitution of n by n + ε where ε is an indeterminate parameter, the application of
some transformations, and finally, the back substitution of ε by 0 and the analysis of the
resulting operator. The procedure IsDesingularizable is an implementation of both
the ε-criterion and of the algorithm to construct the desingularizing operator. It has the
calling sequence

IsDesingularizable(P,E, n,Q);

where P is a linear difference operator of the form (1), E is the shift operator w.r.t. n,
and Q is an optional argument which can be any unassigned name. The output is the
result of applying the ε-criterion, i.e., it returns true if the desingularizing operator Q can
be constructed and all the integer roots in the trailing coefficient of P can be excluded,
false if it is not possible to exlude any integer root, and FAIL(ints) if it is possible to
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exclude at least one integer root. In the last case, ints is a sequence of integers specifying
the integer roots which cannot be excluded. If the optional argument Q is specified, the
constructed desingularizing operator will be assigned to Q, provided that it exists.

Example 1. Consider the operator

> P := (n-3)*(n-2)*E+n*(n-1);

P := (n − 3)(n − 2)E + n(n − 1)

> IsDesingularizable(P,E,n);

true

This means that all integer roots of the trailing coefficient can be excluded during the
construction of the desingularizing operator.

Example 2. Consider the operator

> P := (n-5)*(n-2)*E+n*(n-1)^2;

P := (n − 5)(n − 2)E + n(n − 1)2

> IsDesingularizable(P,E,n,’Q’);

FAIL(0)

The above result shows that the integer roots will be partially excluded during the con-
struction of the desingularizing operator Q in (2). To be more specific, it is possible to
exclude the root at n = 1. However, it is not possible to exclude the root at n = 0.

> Q;

1

12
nE3 −

(
1

12
n2 − 43

12
n +

59

6

)
E2 + (4 n2 + 7 n + 6) E + n

The constructed operator Q can be written as Q = H ◦ P where

H =
1

1440

1

n − 1
E4 − 1

36

1

n − 1
E3 − 1

2

1

n − 1
E2 +

1

2

15 n − 19

n2 − 2 n + 1
E +

1

n2 − 2 n + 1
.

Note that the operator H in (2) should not have polynomial coefficients.

2.2 The desingularization of the operators by the leading coef-
ficient

Consider the problem of excluding the integer roots of the leading coefficients of the
operator P in (1). An algorithm to solve this problem which is analogous to the one for the
trailing coefficient is discussed in [1]. This requires the development of two independent
programs. Therefore, it would be desirable if we are able to transform the problem for
the leading coefficient to that for the trailing coefficient.

Denote by ∗ the transformation to linear difference operators with polynomial coeffi-
cients, defined by the substitution of n by −n, and of Ea by E−a, a ∈ ZZ. The following
properties are needed subsequently. The proofs are simple and hence omitted.
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Proposition 1. For all P, P1, P2 ∈ |Q[n,E],

1) (P1 + P2)
∗ = P ∗

1 + P ∗
2 ,

2) (P ∗)∗ = P ,

3) (P1 ◦ P2)
∗ = P ∗

1 ◦ P ∗
2 .

Applying the transformation ∗ to (1) results in

P ∗ = fd(−n)E−d + · · · + f1(−n)E−1 + f0(−n). (3)

Define the operator P1 as follow.

P ∗ = P1 ◦ E−d, P1 = fd(−n) + · · · + f1(−n)Ed−1 + f0(−n)Ed. (4)

Notice that the polynomial fd(−n) is the trailing coefficient of the operator P1. If we
establish a relationship between the problem of excluding the integer roots of the poly-
nomial fd(−n) in P1 and that of the polynomial fd(n) in P , which we are interested in,
we can reduce the problem of desingularization by the leading coefficient of the operator
P to the problem of desingularization by the trailing coefficient of the operator P1.

Recall that the application of the algorithm for the desingularization by the trailing
coefficient to P1 gives two possible results: the exclusion of some roots of the trailing
coefficients (all or at least one), and the exclusion of no root (no desigularizing operator
exists). Both cases are considered in the following theorem.

Theorem 1. For a given operator P ∈ |Q[n,E] of the form (1), ord P = d, let {l1, . . . , lm},
l1 > · · · > lm be the integer roots of the leading coefficient fd(n) of P. Let the operator
P1 be as defined in (4). For 1 ≤ k ≤ m, let W ∈ |Q[n,E] be a desingularizing operator
for P where the integer roots of the leading coefficients {lk, ..., lm} are excluded, and U ∈
|Q[n,E], ord U = d1 be a desingularizing operator for P1 where the integer roots of the
trailing coefficient {−lk + d1 − d, . . . ,−lm + d1 − d} are excluded. Then the existence of
W is equivalent to the existence of U.

Proof: Suppose that the operator U exists, and can be written as

U = ud(−n) + ud−1(−n)E + · · · + u0(n)Ed + · · · + ud1(−n)Ed1 , d1 > d.

Since U is a desingularizing operator for P1, U = S ◦P1 for some S ∈ |Q(n)[E]. Therefore,
U ◦ E−d = S ◦ P1 ◦ E−d. It follows from (4) that

U ◦ E−d = S ◦ P ∗. (5)

Applying the transformation ∗ to both sides of (5) yields H = U∗ ◦ Ed = S∗ ◦ P, which
can be written in the form

H = ud1(n)Ed−d1 + · · · + u0(n) + · · · + ud−1(n)Ed−1 + ud(n)Ed.
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Since d1 > d, the coefficients of some terms Ej, j < 0 in H might not vanish. They can be
removed by multiplying H from the left by Ed1−d. This yields Ed1−d ◦H = Ed1−d ◦S∗ ◦P.
Set W = Ed1−d ◦ S∗ ◦ P. It is easy to see that W is a desingularizing operator for P, and

W = ud1(n+d1−d)+· · ·+u0(n+d1−d)Ed1−d+· · ·+ud−1(n+d1−d)Ed1−1+ud(n+d1−d)Ed1 .

Since the desingularizing operator U for P1 does not have in the trailing coefficient ud(−n)
the roots {−lk+d1−d, . . . ,−lm+d1−d}, by definition of the transformation ∗, the leading
coefficient of U∗ does not have the roots {lk − d1 + d, . . . , lm − d1 + d}. Consequently, the
leading coefficient of H does not have these roots either. Since W is obtained by applying
Ed1−d to H, by definition of the shift operator E, the leading coefficient of W does not
have the roots {lk, ..., lm}.

Suppose that the operator W exists, and can be written as

W = w0(n) + w1(n)E + · · · + wd(n)Ed + · · · + wd2(n)Ed2 , d2 > d.

Since W is a desingularizing operator for P, W = T ◦P for some T ∈ |Q(n)[E]. Therefore,

W ◦ E−d = T ◦ P ◦ E−d. (6)

Applying the transformation ∗ to both sides of (6) yields W ∗◦Ed = T ∗◦P ∗◦Ed. It follows
from (4) that H = W ∗ ◦ Ed = T ∗ ◦ P1, which can be written as

w0(−n)Ed + w1(−n)Ed−1 + · · · + wd(−n) + · · · + wd2(−n)Ed−d2 .

Since d2 > d, the coefficients of some terms Ej, j < 0 in H might not vanish. They
can be removed by multiplying H from the left by Ed2−d. This yields Ed2−d ◦ W ∗ ◦ Ed =
Ed2−d ◦ T ∗ ◦ P1. Set U = Ed2−d ◦ W ∗ ◦ Ed. U is right divisible by P1, and has the form

wd2(−n+d2−d)+· · ·+wd(−n+d2−d)Ed2−d+· · ·+w1(−n+d2−d)Ed2−1+w0(−n+d2−d)Ed2 .
(7)

Since the desingularizing operator W for P does not have in the leading coefficient wd2 the
roots {lk, . . . , lm}, by definition of the the transformation ∗, the trailing coefficient of W ∗

does not have the roots {−lk, . . . ,−lm}. Consequently, the trailing coefficient of H does
not have these roots either. Since U is obtained by applying Ed2−d to H, by definition
of the shift operator E, the trailing coefficient wd2(−n + d2 − d) of U does not have the
roots {−lk − d2 + d, . . . ,−lm − d2 + d}. It follows from (7) that U has the order d2.
Therefore, U is a desingularizing operator for P1.

Note that the function IsDesingularizable also accepts an optional argument which
is a name and has the value either lead or trail. This argument is used to determine
whether the desingularization should be done to the leading or the trailing coefficient.
The default if trail.

Example 3.

> P := (n-2)*(n^3+2)*E+n;

P := (n − 2) (n3 + 2) E + n
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> IsDesingularizable(P,E,n,Q,’lead’);

true

> Q;

− (n3 + 6 n2 + 12 n + 10) E3 −
(

2

3
n3 +

4

3
n2 + 1

)
E2 −

(
1

6
n3 − 1

3
n2 + 1

)
E − 1

6

Note that Q can be written as H ◦ P where

H =
6

n
E2 +

4

n
E +

1

n
.

2.3 On the construction of the multipliers

The algorithm of desingularization builds the resulting operator based on a set S of
constructed operators each of which excludes one root in the leading or trailing coefficient
coeff. If coeff has only one root or it is possible to exclude only one root from the whole set
of the roots of coeff, the operator constructed after the first step is the final result. In the
case when coeff has more than one roots, and it is possible to exclude m roots, m > 1, i.e.,
the set S consists of m operators T1, . . . , Tm each of which is right divisible by the given
operator and each of which has one root being excluded from coeff, then the resulting
operator with m roots in coeff being excluded is constructed as a linear combination of
the m constructed operators, i.e.,

T = μ1T1 + μ2T2 + · · · + μmTm. (8)

The construction of the multipliers μi in (8) is based on the condition in [1] which relates
to the absence of integer roots in the polynomial

m∑
j=1

μj(n − l1)
γ1 · · · (n − lj−1)

γj−1(n − lj+1)
γj+1 · · · (n − lm)γm , (9)

where {l1, . . . , lm} is the set of integer roots being excluded, and γi is the multiplicity
of the root li, 1 ≤ i ≤ m. If γi = 1 for 1 ≤ i ≤ m, we can compute the multipliers by
setting the sum in (9) to 1. Otherwise, we use the method of random fitting multipliers,
i.e., assigning an arbitrary value to μi and checking the condition on the absence of the
integer roots. In this case, it is possible that the computed operators are different for the
same input.

Example 4. In this example, the multipliers were computed by setting the sum in (9)
to 1.

> P := (n-5)^2*(n-9)*E^3+n*(n+1);

P := (n − 5)2 (n − 9)E3 + n(n + 1)

> IsDesingularizable(P,E,n,H); H;
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true

− 5

14
(n + 4)2 E12 +

(
807

7
n2 − 3383

14
n − 4637

14

)
E9

+

(
165

4
n2 − 5001

14
n +

22314

7

)
E6 +

(
161

4
n +

995

4

)
E3 − 1.

Example 5. In this example, the multipliers were selected at random.

> P := (n-3)*(n-2)*(n-1)*E+n^2*(n-1);

P := (n − 3)(n − 2)(n − 1)E + n2(n − 1)

> IsDesingularizable(P,E,n,H);

true

> H;(
1

28
n − 1

7

)
E12 +

(
165

28
n − 547

28

)
E9 −

(
9

28
n − 1821

14

)
E6 −

(
25

4
n +

139

4

)
E3 − 1

Second call to IsDesingularizable with the same input.

> IsDesingularizable(P,E,n,H);

true

> H;

− 5

222
(n + 1)(n + 2)E4 +

(
655

222
n2 − 65

111
n − 255

74

)
E3

+

(
110

37
n2 +

420

37
n +

1180

37

)
E2 +

(
99

67
n2 − 25685

2479
n +

6568

2479

)
E

+

(
99

67
n2 +

5

37
n − 5

37

)

3 Desingularization of Sequences

The second program is for desingularization of sequences. For the given several terms of a
sequence which satisfy a given operator of the form (1), the main problem is to construct
the extension of the sequence. Of most interest is the case where the direction of exten-
sion passes through the problem points. Note that the construction of a desingularizing
operator for (1) is a variant of the solution to this problem. It is shown in [1] that even
though there might exist different desingularizing operators, the sequence and its exten-
sions, obtained by the construction of new operators, will satisfy the given operator, and
the extensions from different operators will be the same.

In order to make the extension, there is no need to use the expensive algorithm to
construct the desingularizing operator. The ε-criterion clearly allows one to determine
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if it is possible to construct the desingularizing operators, and in terms of sequence,
which members we can pass through and continue the sequence. Some modification of
the ε-criterion allows one to continue the sequence (if it is possible) without the need to
construct the operator Q in (2).

It is obvious that the members of the sequence starting from α + 1 where

α = max
n∈ZZ

{n|fd(n) = 0}

to the direction of the increasing indices do not pose any problem. It is also well-known
that if we have d elements of the sequence, we can calculate any regular element. The
idea of the ε-criterion helps to remove the problem elements temporarily if we make the
transition from the given operator P to the operator Pε by replacing n by n + ε. After
that we can compute elements of the sequence as rational functions of ε, evaluate the
unknown terms step by step via c(α + 1), . . . , c(α + d + 1). After the transformations we
make the substitution ε = 0.

The procedure DesingularizedExtensionSequence is an implementation of this al-
gorithm. It has the calling sequence

DesingularizedExtensionSequence(P,E, n, ini sys, c,N);

where P is a linear difference operator with polynomial coefficients, E is the shift operator
w.r.t. n, ini sys is a set of several terms of the given sequence that satisfy P, c is the name
of the sequence, and N is an integer denoting the last/first term of the desirable extension.
The output from DesingularizedExtensionSequence is a list of the computed terms of
the sequence.

Example 6. Consider the operator P from Example 1.

P := (n − 3)(n − 2)E + n(n − 1)

We would like to compute the elements of the sequence from −4 to 4 from the value of
one element of the sequence (note that the order of the operator P is 1).

> DesingularizedExtensionSequence(P,E,n,{c(4)=1},c,-4);

[c(−4) = 105, c(−3) = −50, c(−2) = 20, c(−1) = −6,

c(0) = 1, c(1) = 0, c(2) = 0, c(3) = 0, c(4) = 1]

Notice that the problem terms c(0) and c(1) are computed. Since the regular elements
are on the right of the roots of the trailing coefficients in the positive direction of the
abscissa line, the problem points are encountered only in the case of extending the se-
quence to the left, i.e. when N < α. Obviously, the described algorithm is correct for the
case of extending the sequence to the right, i.e., when N > α without problem terms. If
α < N < minn∈ZZ{n|f0(n) = 0}, we calculate the elements analogously. The difference is
that the calculation will be to the direction of the decreasing indices.

Example 7. Let us return one more time to the operator P from Example 1.

219



> DesingularizedExtensionSequence(P,E,n,{c(-1)=1},c,4);

[c(−1) = −6, c(0) = 1, c(1) = 0, c(2) = 0, c(3) = 0, c(4) = 1]

Note that the algorithm gives a result without any error only in the case when

• the ε-criterion gives the positive answer concerning the calculation of the problem
terms;

• the elements of the sequence from α + 1 to α + d + 1 are given.

In the remaining cases, the procedure can be invoked; however, there is no guarantee
of success.

If a user provides fewer than d elements, then the remaining elements will be repre-
sented symbolically such as c(n) where n is an integer, and c is the name of the sequence.

Example 9. Consider the operator

> P := (n-1)*E^2+(1/2-n^2)*E+(1/4)*n*(2*n-1);

P := (n − 1)E2 +

(
1

2
− n2

)
E +

1

4
n (2 n − 1)

The order of the operator is 2. However, we provide only 1 element of the sequence.

> DesingularizedExtensionSequence(P,E,n,{c(5)=a},c,0);

[c(0) = − 8

13
a +

53

13
c(2), c(1) = 2 c(2), c(2) = c(2), c(3) =

51

104
c(2) +

1

13
a,

c(4) =
45

208
c(2) +

7

26
a, c(5) = a]

In this example c(2) was chosen by the system as the parameter.
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It is known that standard basis computation is a problem of great computational com-
plexity both in time and in space. Modern computer algebra systems and software for
computation of standard bases are able to compute only rather small systems. There are
at least two obstacles that prohibit the us from moving further. The first problem in the
standard bases computation is the coefficient growth. The second one consist in the diffi-
culty of parallelization of the known algorithms. There are two well-known approaches to
computation of standard bases: the classical Buchberger and the involutive basis construc-
tion algorithm. They have some obvious advantages and disadvantages but the nature of
this difference can hardly be understood. We have developed and implemented an interpre-
tation of the classical Buchberger and involutive bases computation algorithms using the
C++ and investigated the bases sizes, computational times and some other parameters of
the algorithms. From our point of view such a comparison is useful for a better under-
standing of the algorithms. We have also developed a parallel version of this interpretation
of the Buchberger algorithm.

The work was supported by INTAS( project no. 99-1222 ).

1 Introduction

There is some freedom of choice of some parameters in the Buchberger algorithm. The
most important parameter is the selection strategy. Probably, the best choice is the sugar
one, which was presented and discussed in the [1]. Another good step is to homogenize
the basis. Both approaches have some disadvantages. The sugar strategy often works not
very well. Homogenizing basis, however, is good for strategy, but not so good for the basis
to be computed, as it was noticed in [1]. We combine these options of algorithm avoid-
ing the explicit homogenization of the basis by simulating the homogeneous algorithm
described below. This version of the algorithm was never published before. The results
obtained were compared with the best freely available implementation of the Buchberger
algorithm in CAS Singular and show better computational time in many examples. We
also compare the results with the implementation of the involutive basis construction al-
gorithm implemented by prof. V.P.Gerdt and collaborators, for detailed description see
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[2]. Parallelization of pseudo-homogeneous version is also presented. There are numerous
papers described parallelization of the Bucheberger algorithm, see for example [3], [4], [5],
[6], but the results were never very good. J.C.Fauger showed that the Buchberger algo-
rithm is very sequentional one. In our parallelization we tried not to break the strategy
because it is very important task as was noticed by C.Traverso and introduced some way
to estimate the parallelization quality in addition to the computational time.

2 Buchberger algorithm

There are many interpretations of the Buchberger algorithm. We will consider the version
described by Buchberger, see [7], [8]. The principal (and essential) improvement in this
algorithm was the use of the criteria for avoiding useless S-pairs computation. There is a
nice version of the algorithm one can use in the homogeneous case. This modification is
not so well known. One can refer to paper [5] for detailed description of the homogeneous
version of the Buchberger algorithm. The main idea is to slowly rise the total degree of
polynomials and S-pairs. Experiments have shown that the coefficient growth is not so
rapid in the homogeneous case for most examples. We combine these strategies. Here we
present our interpretation of this algorithm applied to the inhomogeneous case, Pseudo-
Homogeneous Gröbner basis. As one can see, we use sugar for simulating homogeneous
computational process while not explicitly homogenizing the ideal. We slowly rise the
total degree of the polynomials and S-pairs w.r.t. their sugar. From the definition of
sugar, it is obvious, that the prove of the correctness and termination of the algorithm is
the same as for the homogeneous version.

As the criteria for avoiding unnecessary reductions in the the algorithm we used
Gebauer-Möller (see [9] and [10]), implemented as procedure syzBasis(). When com-
puting the normal form, we chose double-sugar strategy described in [1]. The main idea
behind is to perform the reduction only if it does not rise the sugar of the polynomial.
This strategy was implemented in the sugarnormalf() procedure. We tried to avoid in-
termediate basis autoreductions due to the time complexity. Instead of this we just add
every new non-zero normal form to the intermediate basis and apply procedure finalre-
duce() after the computation of the basis to find redundant polynomials. This procedure
is very simple, it just discards polynomials with the leading monomial that is a multiple
of the leading monomial of any other polynomial from the basis , and then performs full
autoreduction, which is usually very fast. Beside this, the basis before finalreduce() often
contains exactly the same number of elements as the true Gröbner basis, and is never
much more, and from our viewpoint this proves that the computation is efficient.

For detailed description of other auxiliary procedures like sugar computation, autore-
ducing and S-polynomial computations refer to [8] and [1].

We also implemented the involutive basis construction algorithm as it was described
in [11], [12], [13] and [14]. Currently there is a much more efficient version, for detailed
description refer to [2]. Our goal was to investigate the number of reductions as well as
the computation time of this algorithm compared with classical Buchberger algorithm.
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Algorithm Pseudo–Homogeneous GröbnerBasis
Input: G,≺ - admissible ordering
Output: GB, a Gröbner basis of [G]
begin

G ←− autoreduce(G)
g ←− select minimal element of G w.r.t. sugar
currentdegree ←− sugar(g)
G ←− G \ {g}
GB ←− g
while B 
= ∅ and G 
= ∅ do

(f, g) ←− select element from B with a minimal sugar of the spoly(f, g)
s ←− spoly(f, g)
while sugar(s) is equal to a currentdegree do

h ←− sugarnormalf(s,GB)
if h 
= 0
then GB ←− GB ∪ {h}

B ←− syzbasis(h,B)
end if
(f, g) ←− select element from B with a minimal sugar of the lcm(f, g)
s ←− spoly(f, g)

end while
f ←− select minimal element from G w.r.t. sugar
G ←− G \ {f}
while sugar(f) is equal to a currentdegree do

h ←− sugarnormalf(f,GB)
if h 
= 0
then GB ←− GB ∪ {h}

B ←− syzbasis(h,B)
end if
f ←− select minimal element from G w.r.t. sugar
G ←− G \ {f}

end while
currentdegree ←− currentdegree + 1

end while
(GB) ←− finalreduce(GB)
return(GB)

end

The results obtained show that the criteria are not so important in the course of the
involutive algorithm. This is the same result as in study [2]. As a test suite we used
polynomial systems collections presented by Prof. Jan Verschelde in his homepage. It
is known, that the involutive basis has the same or greater size as the corresponding
classical Gröbner basis. It can be very large in some cases. But surprisingly, there
are some examples (”eco” and ”reimer”) where the involutive basis size is considerably
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larger than that of the corresponding Gröbner basis and the same holds for the number
of reductions, but for the computational time the reverse is true. On the other hand,
there is an example (”noon”) where computational time and size of the involutive basis
is rather big. In the Fig.1 one can see the number of reductions for some systems from
the test suite, and the number of reductions reductions is usually almost the same for
the involutive and for the Gröbner bases. In the Fig.2 one can see the basis sizes for this
systems. It is interesting, that in practice there are only few cases when the involutive
basis is significantly larger than the corresponding Gröbner basis.

As for the computational time, our implementation is currently approximately two
times slower than the best free implementation of the classical Buchberger algorithm in
the CAS Singular for modular computations and is significantly faster in a number of
examples with the big integers. From our viewpoint this demonstrate that the Pseudo-
Homogeneous version is better than the classical version of Gröbner basis w.r.t. the
coefficient growth.

In our further research we will continue investigation of selection strategies and other
options of algorithms, since some of them remain unclear.
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3 Parallelization

It is not easy to parallelize the classical Gröbner basis algorithm. It seems that the
algorithm described above can be parallelized with better quality. The most successful
attempt to parallelize the classical Buchberger algorithm was made by J.C.Faugere in his
FGb software. The parallel version of the involutive basis construction algorithm was
described in [15], and the results were better w.r.t. classical version.

In this paper we present two attempts to parallelize the Pseudo-Homogeneous Buch-
berger algorithm of computation of Gröbner bases. As Faugere has showed, the problem
of Gröbner basis computation is very sequential and, therefore, every attempt to paral-
lelize essentially breaks the original algorithm. The main reason is that the result of the
polynomial reduction often heavily depends on the previously found basis polynomials.
Nevertheless, modifying a reduction strategy we can achieve some acceleration.

We explore two principle ideas. Assume, that at a current step we have a polynomial
p to be reduced. Let us denote the list of previously reduced (and added to the basis)
polynomials by P . The sequential version reduces p by P at this step and adds it to P
in the non-zero case.

What can we do? The list P can be divided into some parts, which can be distributed
on different workstations. Let us denote these portions by P1, . . . , Pn. Thus we can send
p to the first workstation and reduce it by P1. At the next step we can send the result to
the workstation, that keeps P2. And at the same time we can send the next polynomial
to be reduced, q, to P1. This is the main idea of the Pipeline algorithm (Fig.3).

The second idea is just the opposite. We distribute the whole P to all workstations
and simultaneously reduce the queue of polynomials p1, . . . , pn by P . This is the Conveyer
strategy (Fig.4).

Main ideas of the Pipeline strategy were developed in [4], and these of the Conveyer
strategy - in [5]. Of course, this brief discussion leaves many questions to be cleared
further. Experiments show that the Conveyer version is much more rapid than the Pipeline
is. Nevertheless, the Pipeline should be studied, as some questions of the character of its
operation remain unclear.

Algorithm processpipeline
Input: GB - polynomials list, B - the set of critical pairs
Output: modified set GB and B
begin

h ←− receive polynomial from the pipeline
if h 
= 0 then

if h was modified by reductions then
add h to the pendinglist

else
GB ←− GB ∪ {h}, B ←− syzbasis(h,B)
select the next slave and send h to it as new basis element

end if
end if
return (GB,B)

end
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Algorithm Pipeline GröbnerBasis
Input: G,≺ - admissible ordering
Output: GB, a Gröbner basis of [G]
begin

G ←− autoreduce(G)
g ←− select minimal element of G w.r.t. sugar
currentdegree ←− sugar(g)
G ←− G \ {g}
GB ←− g
select the first slave and send g to it as new basis element
pendinglist ←− {}
while B 
= ∅ and G 
= ∅ do

(f, g) ←− select element from B with a minimal sugar of the spoly(f, g)
s ←− spoly(f, g)
while sugar(s) is equal to a currentdegree and pendinglist is not empty do

if pendinglist is not empty then
select element from the pendinglist and send it to the pipeline

else
send s to the pipeline

end if
(GB,B) ←− processpipeline(GB,B)
(f, g) ←− select element from B with a minimal sugar of the lcm(f, g)
s ←− spoly(f, g)

end while
f ←− select minimal element from G w.r.t. sugar
G ←− G \ {f}
while sugar(f) is equal to a currentdegree and pendinglist is not empty do

if pendinglist is not empty then
select element from the pendinglist and send it to the pipeline

else
send f to the pipeline

end if
(GB,B) ←− processpipeline(GB,B)
f ←− select minimal element from G w.r.t. sugar
G ←− G \ {f}

end while
currentdegree ←− currentdegree + 1

end while
(GB) ←− finalreduce(GB)
return(GB)

end

Algorithm Reductors Conveyer GröbnerBasis
Input: G,≺ - admissible ordering
Output: GB, a Gröbner basis of [G]
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begin
G ←− autoreduce(G), g ←− select minimal element of G w.r.t. sugar
currentdegree ←− sugar(g), G ←− G \ {g}, GB ←− g, pendinglist ←− {}
send g to slaves as new basis element
while B 
= ∅ and G 
= ∅ do

(f, g) ←− select element from B with a minimal sugar of the spoly(f, g)
s ←− spoly(f, g)
while sugar(s) is equal to a currentdegree and pendinglist is not empty do

send the next S-polynomials with degree(lcm(f, g)) = currentdegree to slaves
R ←− receive reduced S-polynomials from slaves
while R 
= ∅ do

h ←− select element from R with a minimal sugar
R ←− R \ {h}
if h 
= 0 then

B ←− syzbasis(h,B) and send h to slaves as new basis element
end if

end while
(f, g) ←− select element from B with a minimal sugar of the spoly(f, g)
s ←− spoly(f, g)

end while
f ←− select minimal element from G w.r.t. sugar, G ←− G \ {f}
while sugar(f) is equal to a currentdegree and pendinglist is not empty do

send the next polynomials from G with degree(f) = currentdegree to slaves
R ←− receive reduced polynomials from slaves
while R 
= ∅ do

h ←− select element from R with a minimal sugar
R ←− R \ {h}
if h 
= 0 then

B ←− syzbasis(h,B) and send h to slaves as new basis element
end if

end while
f ←− select minimal element from G w.r.t. sugar, G ←− G \ {f}

end while
currentdegree ←− currentdegree + 1

end while
(GB) ←− finalreduce(GB)
return(GB)

end
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The operator factorization method (see, e.g., [1]) greatly facilitating the study of mul-
tiple, including simple, hypergeometric series is the main object of our further interest.

The main goal of the paper is to outline a project of a universal ”formula sythesizer”
in the theory of hypergeometric series. The main idea of the project is to convert the basic
operations of the operator factorization method into a complete set of commands serving
us as a symbolic manipulation superstructure over a computer algebra system. Presently
we do not try to carry out a program implementation of this part of the project (other
parts are well underway; see Sec. 1.5 and 4). Our only intention is to present, explicitly,
a complete list of the main operations inherent in the factorization method.

The research has been supported by Russian Foundation for Basic Research, grant
01-01-00380.

1 Computer analysis and the factorization method

1.1. Computer algebra or computer analysis? Being related to mathematical physics
by origin and to a great number of problems in a variety of sciences, by application,
the hypergeometric series do have most direct relation to mathematical analysis, by the
methods used for their study. Computer – aided approach to the study of hypergeometric
series relates, obviously, to computer analysis rather than to computer algebra.

Analysis is the heart of mathematics and the concept of function is the heart of
analysis. Functions in pure mathematics are the immaterial entities which are deprived
of all properties except those endowed at will of mathematician. As to applied analysis
the hypergeometric series serve as a universal substitute for what we call a function. In
contrast to their ”pure analogs” they show a fantastic abundance of properties endowed
by their explicit structure. Therefore any algorithm efficient enough to tackle multiple
hypergeometric series of arbitrarily complicated structure can be looked upon as a versatile
solver capable to handle with almost any problem relating to functions of practical interest.
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1.2.The central idea of the operator method is connected with an introduction of a new
simple differential operation of ”Ω-multiplication” w = u ∗ v over the functions u =
u(x1, . . . , xN) and v = v(x1, . . . , xN):

〈u ∗ v|x1, . . . , xN〉 = u (d/ds1, . . . , d/dsN) v(x1s1, . . . , xNsN) |∀sn=0 (1)

The fundamental importance of the Ω-multiplication is that it allows any series having
complicated structure to be directly expressed through simpler series thus permitting us to
use the properties of the simple series to analyze any property of the initial complicated se-
ries. Let NF [A; x1, . . . , xN ], NF [B; x1, . . . , xN ] and NF [A,B; x1, . . . , xN ] be the series
of the power functions xi1

1 . . . xiN
N /(i1! . . . iN !) with coefficients A(i1, . . . , iN), B(i1, . . . , iN)

and A(i1, . . . , iN)B(i1, . . . , iN), respectively. The in(n = 1, . . . , N) are summation in-
dices of the series (in = 0, 1, 2, . . .).

The general factorization formula for the series NF [A,B] reads

F N [A,B; x1, . . . , xN ] = 〈NF [A] ∗N F [B]|x1, . . . , xN〉 (2)

In short, F [A×B] = F [A]∗F [B]. This formula conveys the property of Ω - representablility
of multiplication operation over coeffifients of an arbitrary power series. It shows also that
the factorization method can be looked upon as a disguised form of algebraization of the
theory of hypergeometric series.
1.3. Conceptual basics of the method. First, any hypergeometric series is expressed only
through hypergeometric series (closure property). No necessity in employment of any
other auxiliary representation is arisen.

Second, the functional relation f ∗ f1 = f ∗ f2 will be called Ω-equivalent to the
relation f1(x1, . . . , xN)=f2(x1, . . . , xN). The concept of Ω-equivalence allows classes of
Ω-equivalent relations to be introduced. In each class a simplest relation which will be
called a proto-relation can be chosen. Having proved the proto-relation we thus prove all
formulas belonging to the class.

Third, using Ω-multiplication Ω-equivalent operators F1 ⇔ F2 can be introduced.
They defined by

F1 (d/ds, s) Ψ(xs)
∣∣
s=0

= F2 (d/ds, s) Ψ(xs)
∣∣
s=0

, (3)

where Ψ is an arbitrary function. Note that F1 and F2 are not necessarily identical to one
another. The possibility to substitute F1 for F2 in an Ω-product is an inportant technical
expedient of the method.

Fourth, by analogy with arithmetically identical expressions the algebraic expressions
connected by finite number of arithmetic operations and Ω-multiplication operations will
be called Ω-identical expressions. Transformation of an expression to an Ω-identical form
is another important technical expedient.
1.4. Three approaches to the use of factorization method. Altogether we can see three
approaches. The first one is to derive all formulas manually being dispensed completely
with the necessity of working with computer. Even in this case the factorization method
offers great advantages over traditional methods. The second approach implies the manual
derivation of basis sets of formulas with subsequent application of symbolic computer
programs for exaustive search of all different combinations of the basis formulas. The third
way consists in full–scale computerization of all operations inherent in the factorization
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method which would open up the possibility for computer–aided derivation of any formula
relating to the theory of hypergeometric functions. One of the goals of the present paper
is to substantiate, theoretically, the feasibility of the third approach.
1.5. An experience in development of symbolic computer programs. All programs devel-
oped so far [2, 3] are based on the second (intermediate) approach. These programs utilize
not the factorization method per se, but the result of its application to a certain class of
formulas with the aim to derive manually, without using a computer, a set of basic rela-
tionships playing the role of building blocks for a chosen class of formulas. Applying such
a ”bounded–universal” procedure to one or another of several score classes of formulas
making up the backbone of the theory of hypergeometric series one can obtain, in prin-
ciple, sufficiently complete computerized version of the theory indirectly connected with
the factorization method. The initial steps in this direction covering the transformation
theory of hypergeometric series are made, with sufficient completeness, in the programs
announced in [2, 3].

The notable success of this approach was corroborated by the computer–aided deriva-
tion [4] of an important reduction formula given by Gelfand at al. [5] and its numerous
non-trivial generalizations.
1.6. An outline of the project. The accumulated experience suggests the desirability of
expanding the programs’ potentialities, in the spirit of the third approach (see Section 1.4).

The central part of the core (CPC) of the projected program complex is conceived to
perform, directly, all operations of the operator factorization method thus placing at the
user’s disposal a sort of a universal interactive ”formula synthesizer”.

The peripheral part of the core (PPC) is planned to consist of macro-commands im-
plementing the sets of basic relations obtained with the help of the CPC. Many of these
relations have been already obtained manually [4, 6]. Very large sets of relations can be
obtained with the help of the PPC in an automatic mode.

If the relations presenting little interest for derivation of new formulas are consided
to be valuable on their own they will be placed at date base surrounding (DBS). The
DBS will play the role of an information reference system. The DBS is expected to be of
moderate size for the main bulk of relations will be generated in PPC.
1.7. How the method would work in the program. The functionality of the method in
the program would not differ much from the work using hand and pencil. There are
two general schemes for carrying out calculations with the help of operator factorization
method.

The first scheme consists of four steps.
Step 1 (analysis) breaks up a series into an Ω-product of simpler series. Step 2 (simple
series transformations) utilizes the known properties of the simpler series for trans-
formation of factorized terms. Step 3 (auxiliary transformations) uses a finite set of
auxiliary identities converting the resultant expression into a form allowing application
of a (possible new) factirization formula. Step 4 (synthesis) transforms the operator
expression into an algebraic form with the help of a suitable factorization formula.

The second scheme is based on the concept of Ω-equivalence (see Section 1.3). Intro-
ducing a simple relation we can multiply its both sides by an Ω-factor thus obtaining a
new relation.

Despite the seemingly exotic nature of these approaches, they prove in practice to be
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quite simple, universal and effective, and thus fairly suitable for the role of a superstructure
over one of the existing analytical manipulation systems.

2 Instruction set underlying the central part of the

core (CPC) of the proposed program complex

The instruction set duplicates the main operations of the factorization method. Each
definition of a formula giving us a project of a future entry of the instruction set is supplied
with capital boldface label. Sometimes mnemonic synonyms of the instructions names are
indicated in parentheses. The numbers attached to the labels of kindred formulas are to
be subsituted, in course of the program implementation, by exact specific indications of
the commands formats.

The references to the definitions will be denoted by lower case boldface labels. The
whole set of formulas given below constitutes a project of a specialized algorithmic lan-
guage. This language may give an origin to a program complex aimed at a full-scale
computerization of a substantial part of applied mathematical analysis. For convenience,
all formulas are subdivided into several classes.

Sometimes, if a formula written for the case of one variable can be extended directly
to the case of several variables we do not present the latter explicitly.

For notation see Refs. [1] and [13].
2.1. Factorization formulas
FACT1. Factorization of the series F [d; x]

F [d1 ; x1 d(s)] F [d2; x2s]|s=0 = F [d1,d2 ; x1 x2] , d(s) = d/ds (4)

FACT2. Factorization of the series in one variable containing compound parameter

F [d1 ; x1 d(s)] F [d2; x2s
m]|s=0 = F [< d1 | m >, d2 ; xm

1 x2] (5)

FACT3. General factorization of the series NF

NF [L1, L2 ; x1, . . . , xN ]

=N F
[
L1 ; d(s1), . . . , d(sN)] NF [L2 ; x1s1, . . . , xNsN

] ∣∣
∀sn=0

(6)

FACT4. Special factorization of the series NF

NF [< d | m1, . . . ,mN >, L ; x1, . . . , xN ]

= F [d ; d(s)] NF [L ; x1s
m1 , . . . , xNsmN ]

∣∣
s=0

(7)

FACT5. Factorization of NF containing the glueing operator F [d0 ; xdm(s)]

F [d0 ; xdm(s)] F [d1 ; x1s
m] · · ·F [dN ; xNsm]|s=0

= F

[
d0,

1

m
, . . . ,

m − 1

m
: d1 ; . . . ; dN ; xx1m

m, . . . , xxNmm

]
(8)
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FACT6. Factorization of multiple series containing constant arguments

Ω =N+P F [〈d|m1, . . . ,mN+P 〉, . . . : x1
d

ds1

, . . . , xN
d

dsN

, u1, . . . , uP ]

×N+QF [〈d′|l1, . . . , lN+Q〉, . . . : y1s1, . . . , yNsN , v1, . . . , vQ] | ∀sn=0 (9)

=N+P+Q F [〈d|m1, . . . ,mN ,mN+1, . . . ,mN+P , 0, . . . , 0︸ ︷︷ ︸
Q

〉,

〈d′|l1, . . . , lN ,

P︷ ︸︸ ︷
0, . . . , 0, lN+1, . . . , lN+Q〉, . . . :

x1y1, . . . , xNyN , u1, . . . , uP , v1, . . . , vQ] (10)

2.2. General properties of the Ω-multiplication operation
OMEGA 1. Commutativity property u ∗ v = v ∗ u (COMM)

u(d(s))v(xs)|s=0 = v(d(s))u(xs)|s=0 (11)

OMEGA 2. Coupling rule (COUP)

u(d(s))v(xs)|s=0 = u(xd(s))v(s)|s=0 (12)

OMEGA 3. Associativity property (ASSOC)

< w ∗ (u ∗ v)|x >=< (w ∗ u) ∗ v|x > (13)

OMEGA 4. exp(x) plays the role of Ω-unit (OMUN) that is exp ∗f = f ∗ exp = f ,
or

exp(d(s))f(xs)|s=0 = f(d(s)) exp(xs)s=0 = f(x) (14)

OMEGA 5. The Ω-”unitarity” can be interpreted as ”renaming” (s for x) property
(REN)

exp xd(s)f(s)|s=0 = f(x) = f(x)|s⇒x (15)

2.3. Ω-equivalent operators
The case of EQUIV1. an arbitrary operator multiplied by power function

F (d(s))sn Ψ(s)|s=0 = F (n)(d(s)) Ψ(s)|s=0 (16)

The case of EQUIV2. an arbitrary operator multiplied by exponential function

F (d(s))exs Ψ(s)|s=0 = F (d(s) + x) Ψ(s)|s=0 (17)

The case of EQUIV3. the binomial operator multiplied by exponential function

F 1
0 [a; d(s)]exs Ψ(s)|s=0 = (1 − x)−aF 1

0 [a; d(s)/1 − x] Ψ(s)
∣∣
s=0

(18)

2.4. Relationships containing operators (without setting differentiation variable to zero)
OPER1. Shift operator identity (SHIFT)

exp(u d(x))f(x) = f(x + u) (19)
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OPER2. Similarity transformation (F and f are arbitrary functions, A is an arbitrary
operator) (SIMIL)

f−1 F (A) f = F (f−1Af ) = F (A + f−1[A, f ] ) (20)

OPER3. Operator argument displacement formula (DISP)

exp(−vx)F [d(x)] exp(vx) = F [d(x) + v] (21)

OPER4. Applying of a differential operator to exp(x) (OPEXP)

F (d(x)) exp(ux) = F (u) exp(ux) (22)

OPER5. Generalized Leibnitz rule (LEIB)

F (d(x)) f1(x)f2(x) = F (d(x1) + d(x2))f1(x1)f2(x2)|x1=x2=x (23)

OPER6. Differentiation of simple hypergeometric series (DIFHYP)

dn(x) F [d; ux] = un(d, n) F [d + n; ux] (24)

2.5. Elementary reduction formulas
RED1. Reduction of the exponential series F 0

0 (REDEXP)

F 0
0 [∗//∗; x] = exp(x) (25)

RED2. Reduction of the binomial series F 1
0 (REDBIN)

F 1
0 [a//∗; x] ≡ F [a; x] = (1 − x)−a (26)

RED3. Reduction of an infinite geometrical progression (GEOINF)

1 + x + x2 + · · · ≡ F 1
0 [1; x] = (1 − x)−1 (27)

RED4. Reduction of the finite geometrical progression (GEOFIN)

1 + x + x2 + · · · + xN = (1 − xN+1)/(1 − x) (28)

RED5. Reduction of the series NF with empty glueing set

NF [∗//∗ : d1 ; . . . ; dN ; x1, . . . , xN ] = F [d1; x1] · · ·F [dN ; xN ] (29)

RED6. Reduction of the series NF with empty individual sets

NF [d : ∗ ; . . . ; ∗ ; x1, . . . , xN ] = F [d ; x1 + · · · + xN ] (30)

2.6. Auxiliary algebraic identities
ALG1 Gauss-Legendre multiplication formula for the Pochhammer symbol

(MULT(m))

(α,m i) = mm i
( α

m
, i
)(α + 1

m
, i

)
· · ·
(

α + m − 1

m
, i

)
(31)

236



ALG2. Inversion formula for Pochhammer symbol (INVER)

(a, −I) = (−1)I (1 − a, I)−1 (32)

ALG3. Cancellation or, vica versa, introduction of equal parameters in numerator and
denominator of a series (CANC, INTRO)

F [d; x] = F [a, d//a; x] (33)

ALG4. Vertical transfer of parameters (VERT)

NF [〈a|m1, . . . ,mN〉, L; x] =N F [L//〈1 − a|m̄1, . . . , m̄N〉; (−1)m x] , (34)

x = [x1, . . . , xN ], (−1)m x = [(−1)m1x1, . . . , (−1)mN xN ]
ALG5. Any series NF is symmetric with respect to simultaneous permutation of argu-
ments xi � xj, individual sets of parameters di � dj and all corresponding spectral
numbers mi � mi, li � lj, etc. (PERM)

ALG6. Uniformization of the argument of the binomial series F 1
0 [a; x + u] (UNIF)

F 1
0 [a; x + u] = (1 − x − u)−a = (1 − u)−a F 1

0 [a; x/(1 − u)] (35)

ALG7. Factorization of geometrical progression F 1
0 [1; x] into a product of two progres-

sions (PROG)

F 1
0 [1; x] =

(
N−1∑
r=0

xr

)
F 1

0 [1; xN ] (36)

ALG8. Decomposition of ex into a sum of N series F 0
N−1(x

N) (DEXP(N))

ex =
N−1∑
r=0

xr

r!
F

[
1 ; xN

〈1 + r|N〉
]

=
N−1∑
r=0

xr

r!
F

[ ∗ ; (x/N)N

1+r
N

, · · · , N−1
N

, N+1
N

, · · · , N+r
N

]
(37)

ALG9. Addition formula for binimial series (ADDBIN)

F 1
0 [a; x1 + x2] =

∞∑
n=0

(a, n)

n!
xn

1 F 1
0 [a + n; x1] x

n
2 F 1

0 [a + n; x2] (38)

3 Examples suggestive of functionality specifics of

the proposed CPC commands

3.1. An elementary example can be seen from comparison between relationships prog and
dexp(N) which prove to be Ω-equivalent one to another! The elementary formula prog
follows from the formulas geofin and geoinf. Thus it is just the prog plays the role of
proto-relation (see Sec. 1.3). Applying the operator F 0

1 [∗//1; z d(x)]|x=0 to the both parts
of prog we use the operations fact1, canc and redexp in the left-hand part and the
operations equiv1, difhyp, fact2, mult(m) and canc in the right-hand part. Then
the dexp(N) follows immediately. More general relations belonging to this class can be
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obtained in analogous way if we apply F [d; zd(x)]|x=0, instead of the F 0
1 , to the both

parts of prog.
3.2. Already published examples. In fact, we are delivered from the necessity of giving
many examples of how the method could work in practice. Numerous examples of the
kind are given in the already published papers [1], [7]-[13]. Many simple examples illus-
trating application of operations (4) - (38) are given is Ref. [1]. The same operations were
emlpoyed for derivation of new recurrence relations [7]. Some new generating functions
for the Laguerre polynomials were presented in Ref. [8]. More general generating func-
tions, as well as a complete set of Meixner-type formulas and a new class of Lagrangean
polynomials were introduced in [9]. Very important special transformations of the Appel
F4 and the Horn H1 and G2 functions were obtained in [10]. A new approach to derivation
and generalization of involved Burchnall and Chaundy expansions playing a particularly
important role in the theory of double hypergeometric series was found in [11]. A sophis-
ticated analysis of many particular problems originated from contemplation of a classical
relation between Bessel functions was given in [12]. A heavy use of the operations (4) -
(38) was made in [13] for analysis of linearization relations and addition formulas including
a generaliztion of an important Koornwinder formula of the Jacobi polynomials. Special
attention has been given in Ref. [13] to the details of the new technology of analytical
transformations based on the operations (4) - (38).
3.3. An additional example. The references given in Sec. 3.2 relate mostly to the main
scheme involving the four steps mentioned in Sec. 1.7. The second scheme based on
the concept of Ω-equivalency was paid lesser attention in the above examples and needs
therefore a little bit more substantiation. To this end we introduce the notation

u1 = 1 − z + ξ1z, u2 = 1 − z + ξ2z
and consider the elementary relationship

L ≡ F 1
0 [c; (1 − ξ1)(1 − ξ2)z] = (1 − z)c(u1u2)

−c F 1
0 [c; ξ1ξ2z/u1u2] ≡ R. (39)

which is readily verified by using the reduction rule redbin. We then transform the proto-
relation (39) to an Ω-identical form facilitating transition to Ω-equivalent relations. Using
twice the operation fact1 we get the preliminary Ω-identical (see Sec. 1.3) transformation

F 1
0

[
c;

ξ1ξ2z

u1u2

]
=
∏2

n=1
F 1

0

[
c;

ξn(1 − z)

un

d

dsn

]
F 0

1

[∗;
c

s1s1z

(1 − z)2

]∣∣∣∣
s1=s2=0

(40)

To simplify dependence on ξ1, ξ2 we multiply eq. (40) by u−c
1 u−c

2 (see eq. (39)), transform
the both operator series F 1

0 with the help of redbin, allow for definitions of u1, u2, make
some elementary algebraic manipulations, use, inversely, the redbin and employ equiv2.
Thus we have

u−c
n F 1

0

[
c;

ξn(1 − z)

un

d

dsn

]
= (1 − z)−c F 1

0

[
c; ξn

(
d

dsn

+
z

z − 1

)]
⇔ (1 − z)−c F 1

0 [c; ξnd(sn)] exp[zsn(z − 1)−1]. (41)

Inserting (40) and (41) into (39) we finally have the desired Ω-identical representation of
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R:

R = (1 − z)−c F 1
0 [c; ξ1d(s1)]F

1
0 [c; ξ2d(s2)]

× exp

(
zs1

z − 1

)
exp

(
zs2

z − 1

)
F 0

1

[∗
c

; s1s2z

(1 − z)2

]∣∣∣∣
s1=s2=0

. (42)

With the help of redbin the left-hand side L can be writhen as:

L =
∑∞

n=0

(c, n

n!
F 1

0 [−n, ξ1]F
1
0 [−n, ξ2] z

n . (43)

Then we apply the operator

F 0
1 [∗//c; x1d(ξ1)]F

0
1 [∗//c; x2d(ξ2)] |ξ1=ξ2=0

to the both sides of the identity L = R where L and R are given by eqs. (42) and (43)
respectevely. In case of the L the only operation fact1 is needed. In case of the R we
apply fact1, canc, redexp and ren, consecutively. The result∑∞

n=0

(c, n)

n!
F 1

1

[−n

c

; x1

]
F 1

1

[−n

c

; x2

]
zn

= (1 − z)−c exp

[
(x1 + x2)z

z − 1

]
F 0

1

[∗
c

; x1x2z

(1 − z)2

]
(44)

is equivalent to the Hille-Hardi bilinear generating function for Laguerre polynomials (see
[14], vol.1).

Applying to the both sides of eq. (44) the operator product

F 1
0 [a1; ξ1d(x1)]F

1
0 [a2; ξ2d(x2)]|x1=x2 ,

using twice fact1 on the left and equiv3 (see eq. (41)) and fact1 on the right we obtain
the apparently new bilinear generating functions for Gaussian polynomials F [−n, a//c; ξ]:∑∞

n=0

(c, n)

n!
F 2

1

[−n, a1

c

; ξ1

]
F 2

1

[−n, a2

c

; ξ2

]
zn

= (1 − z)a1+a2−c u−a1
1 u−a2

2 F [a1, a2//c; ξ1ξ2z/u1u2] . (45)

An attempt to apply eq.(45) to the Gegenbauer polynomials Cλ
n(x) may seem to make no

sense whatever because any of the known hypergeometric representations of Cλ
n(x) in the

form of F 2
1 contains two parameters dependent on n whereas each of the F 2

1 in eq. (45)
contains only one such parameter. Being sure that the list of representations for the
Cλ

n(x) given in literature is not complete we looked into a question of how many different
formulas for the Cλ

n(x) may exist. We used the linear (x → x−1, x → 1−x, x → x/(x−1))
and quadratic transformations (see [14], vol. 2 and the Sec. 4.2 below) conserving the
polynomial structure of the transformed functions. We found altogether 18 different
representations. The formula

Cλ
n(x) =

(2λ, n)

n!
[x + (x2 − 1)1/2]n F 2

1

[−n, λ ;

2λ

2(x2 − 1)1/2

x + (x2 − 1)1/2

]
(46)
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which is incidentally absent in literature is of prime interest for applications.
This formula is remarkable for that the dependence on the order n of the polyn-

jmial F [−n, λ//2λ] in the definition (46) in the same as in the case of the polynomials
F [−n//α + 1] occuring in the definition of the Laguerre polynomials. The structural
similarity of the Cλ

n(x) and Lα
n shows that solution of the problems where dependence

on n plays an essential role would have, formally, much in common for the Cλ
n(x) and

Lα
n despite the fact that the Gegenbauer polynomials are a natural particular case of the

Jacobi polynomials which have nothing to do with the Laguerre polynomials. Beyond the
factorization method this formal observation would hardly be of any significance. On the
contrary, within the factorization method the simple observation gives us a powerful tool
for obtaining new interesting results. For example, letting a1 = a2 = λ, c = 2λ in eq. (45)
and using eq. (46) to express the resultant F 2

1 polynomials through Cλ
n(x) we can read-

ily obtain a seemingly new bilinear generating function for the Gegenbauer polynomials.
Derivation of bilateral, for the Lα

n and Cλ
n(x), generating function can be also performed

with ease.

4 Examples of macro-commands constituiting

the peripheral part of the core (PPC) of the pro-

posed program complex

As was already mentioned above (see Sec. 1.5 and 1.6) along with the universal set of
”low-level” derivation rules (4) - (38) we are going to use the generators of formula classes
consisting of a few specialized ”high-level” basic relationships. In distinction to the CPC
operations many of the PPC macro-commands have been already programmed [2, 3] and
applied for analysis of multiple hypergeometric series [4, 15].

We first give typical instances of macro-commands and then present some examples
of using these macro-commands (all necessary definitions and notation are given in the
refs. [1, 13]).
4.1. Linear transformations
LIN(K). Linear transformation connecting two series having the Kummer type (1//1)
with respect to x0 (the L∗ symbolizes the coefficients independent of summation index
i0):

F

[ 〈ν1|1,m1〉 , L∗ ; x0,x
〈ν0|1,m0〉

]
= ex0 F

[ 〈ν01|1,m01〉, 〈ν1|0,m1〉, L∗ ; −x0,x
〈ν0|1,m0〉 , 〈ν01|0,m01〉

]
(47)

LIN(G). Three linear transformations linking the series having the Gauss type (2//1)
with respect to x0. For each series we use a canonical representation [1, 13], where all
spectral numbers connected with x0 are equal to 1. The three transformations change,
consecutively, the first (G01), the second (G02) and the both (G00) numerator parameters.
The symbol following G in (GOQ) is the number of argument.

F

[ 〈ν1|1,m1〉 , 〈ν2|1,m2〉 , L∗ ; x0,x
〈ν0|1,m0〉

]
=
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LIN(G01) = L0
1F ≡ (1 − x0)

−ν2 ×

×F

[
〈ν01|1,m01〉 , 〈ν2|1,m2〉 , 〈ν1|0,m1〉 , L∗ ;

x0

x0 − 1
,

x

(1 − x0)m2

〈ν0|1,m0〉 , 〈ν01|0,m01〉

]
(48)

LIN(G02) = L0
2F ≡ (1 − x0)

−ν1 ×

×F

[
〈ν1|1,m1〉 , 〈ν02|1,m02〉 , 〈ν2|0,m2〉 , L∗ ;

x0

x0 − 1
,

x

(1 − x0)m1

〈ν0|1,m0〉 , 〈ν02|0,m02〉

]
(49)

LIN(G00) = L0
0F ≡ (1 − x0)

ν012 ×

×F

[ 〈ν01|1,m01〉, 〈ν02|1,m02〉, 〈ν1|0,m1〉 , 〈ν2|0,m2〉 , L∗ ; x0,X
〈ν0|1,m0〉, 〈ν01|0,m01〉, 〈ν02|0,m02〉

]
, (50)

X = x(1 − x0)
−m012 .

4.2. Quadratic transformations
The ”classical” theory of quadratic transfornations even in case of simple series lacks
simplicity and transparency of structure to say nothing of multiple case. The relationships
which follow are applicable to any multiple series satisfying some necessary conditions.
Moreover instead of 9 functions we can confine ourselves, at the first step, but to 3
functions:

F1 ≡ F1[〈ν1|1,m1〉, 〈ν1 + 1/2|1,m1〉, L∗//〈ν0|1,m0〉; x0,x], (51)

F2 ≡ F2[〈ν1|1,m1〉, 〈ν2|1,m2〉, L∗//〈1 + ν12̄|1,m12̄〉; x0,x], (52)

F3 ≡ F3[〈ν1|1,m1〉, 〈ν2|1,m2〉, L∗//〈2ν2|1, 2m2〉; x0,x]. (53)

Just these functions occur in the following three basic quadratic transformations:
QUAD32. The transformation relating F3 to F2 is

F3 = [(2/(2 − x0)]
ν1F1

[ 〈ν1

2

∣∣1, m1

2
〉, 〈ν1+1

2

∣∣1, m1

2
〉, L∗; x13,x13

〈ν2 + 1/2|1,m2〉
]

(54)

x13 = x2
0(2 − x0)

−2, x13 = 4m12̄ x (2 − x0)
−m1 .

QUAD21. The transformation linking F2 and F1 has the form

F2 = (1 + x0)
−ν1F1

[ 〈ν1

2

∣∣1, m1

2
〉, 〈ν1+1

2

∣∣1, m1

2
〉, 〈ν2|0,m2〉, L∗; x12,x12

〈1 + ν1 − ν2|1,m1 − m2〉
]

(55)

x12 = 4x0(1 + x0)
−2, x12 = 2m1x(1 + x0)

−m1 .
QUAD32. The transformation expressing F3 through F2 is

F3 = [2/(1 +
√

1 − x0)]
2ν1F2

[ 〈ν1|1,m1〉, 〈ν12̄ + 1
2
|1,m12̄〉, L∗; x23,x23

〈ν2 + 1/2|1,m2〉〈ν12̄ + 1
2
|0,m12̄〉

]
(56)

x23 = (1 −√
1 − x0)

2(1 +
√

1 − x0)
−2, x23 = 4m12̄x(1 +

√
1 − x0)

−2m1 .
All other quadratic transformations follow from eqs. (54)-(56) by using the three oper-
ations lin(G) for F1, F2, F3 occuring in (54)-(56). This adds 6 new functions. Letting
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N = 0 we thus obtain a complete systematic set of quadratic transformations of the Gauss
function F 2

1 .
4.3. Examples. Many interesting examples can be found in ref. [4] where the macro-
commands lin(G) were applied to Gelfand functions on grassmanians G2,4 and G3,6.
These functions depend on three and four variables, respectively. The linear transforma-
tions permitted us to use a new algorithm of finding reducible cases of these functions.
The idea of the algorithm lies in transforming the functions to the form allowing one out
of 6 elementary self-explanatory reduction rules to be used. The list of the elementary
reductions is given in ref. [4].

To conclude with, we give, without going into details, the results of computer analysis
of the special Appell function F4[a1, a2, a1, b2; x1 , x2]. We first used a representation of the
general F4 function through a complete series of the third order [10] and then, confining
ourselves to the special case, we obtained two different expressions of the general F4 in
the form of the following non-Hornian functions:

Kgb = F

[
α

β

:

:

a1, a
′
1

b1

;

;

a2

∗
; x1, x2

]
, (57)

Γbg = F

[〈α1|1, 1̄〉〈α2|1̄, 1〉 :

:

a1

∗
;

;

a2, a
′
2

b2

; x1, x2

]
. (58)

The processing of these functions consisted in using all possible linear commands lin(G)
along with an auxiliary bilinear transformation applicable to the functions containing an
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Kδ
bg

Gδ
ke

F γ
2

F β
2

Kβ
bg

Gβ
ke

Kγ
gb

Gγ
ek F γ

1
F γ

3
Kγ

bg

Gγ
ke

F δ
2

Fα
2

Kα
bg

Gα
ke

H̃β
2

H̃δ
2

Γδ
bg

F δ
3

F δ
1

Kδ
gb

Gδ
ek

H̃γ
2Γα

bg

Γβ
bg

H̃α
2

Γγ
bg

Kα
gb

Gβ
ek F β

1

Fα
1

Kβ
gb

Gα
ek

Fα
3

F β
3

”indefinite” parameter 〈0|1, 1̄〉. The
process performed in automatic mode
gave us the following 5 functions:

Gek = F

[
α1, α2

β

:

:

∗
∗

;

;

a2

b2

; x1, x2

]
(59)

F1 = F

[
α

β

:

:

a1

∗
;

;

a2

∗
; x1, x2

]
(60)

F2 = F

[
α

∗
:

:

a1

b1

;

;

a2

b2

; x1, x2

]
(61)

F3 = F

[ ∗
β

:

:

a1, a
′
1

∗
;

;

a2, a
′
2

∗
; x1, x2

]
(62)

H̃2 = F

[〈α|1̄, 1〉 :

:

a1, a
′
1

∗
;

;

a2

b2

; x1, x2

]
(63)

The result of all transformation is represented at the diagram. Black nodes at the
ends of short segments denote arguments of the double series. Long lines symbolize linear
transformations. For more details see Ref.[15].
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5 Concluding remarks

The program implementation of the ”central part of the core” (see Sec. 2) would allow
us, instead of using a ”manual”, with pen and paper, calculation technique, to perform
all analytical transformations with the help of computer in an interactive mode, in this
way relieving the researcher of the tedious copying of cumbersome formulas and placing
at his disposal a universal ”formula synthesizer” of a sort.

An addition of new macro-commands to the ”peripheral part of the core” (see Sec. 4)
would give us an access to hundreds and thousands of new relationships, whose publication
in the traditional form of books and periodicals would hardly have been practicable.

An inappropriately cumbersome user interface may well happen to become a sub-
stantial practical obstacle to the effective program realization of the global approach. A
detailed look at the work with the formulas’ ”screen images” and sophisticated investi-
gation of different variants of its organization seems to be obligatory condition for the
effective man–machine formula interface. We hope that recourse to ”semantics-oriented”
tools, like XML, OpenMath, etc., may help us to solve the problem.
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Usage of the computer algebra system Mathematica for solving some problems of
analytical and general theory of nonlinear ordinary differ ential equation of the second
and the third orders is discussed.

Introduction

There are some problems arising on investigating of the nonlinear second and third orders
ordinary differential equations of P-type (solutions of such equations have not movable
critical singular points) that can be successfully solved with computer algebra system
Mathematica ([1,2]). In present paper we’ll consider several such problems and show
how they can be solved using the corresponding Mathematica codes. In the case of
the second order differential equations of P-type it is possible to make refer to the next
problems.

Problem 1. Construction the systems that are equivalent to the
six non - reducible Painleve equations.

We start from construction of the equivalent system for the third Painleve equation (P3)
that can be defined as

eq = w′′[z] ==
w′[z]

w[z]
− w′[z]

z
+

1

z
(α w[z]2 + β) + γ w[z]3 +

δ

w[z]
;

If such system would be constructed then we could build the Baklund’s transformation
for this equation. Let us seek this system in the form ([3])

eq1 = w′[z] == a0[z] + a1[z]w[z] + a3[z]w[z]2 + a6[z]w[z]2v[z];

eq2 = v′[z] == b0[z] + b1[z]w[z] + b2[z]v[z] + b4[z]w[z]v[z] + b6[z]v[z]2w[z];

where aj(z), bi(z) (j = 0, 1, 3, 6; i = 0, 1, 2, 4, 6) are some functions. Solving eq1 on v(z)
and substituting the result into eq2 we obtain the next second order differential equation:

sol1 = DSolve[eq1,v, z]//Flatten;
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eq3 = w′′[z] == (w′′[z]/.Solve[eq2/.sol1,w′′[z]][[1]]);

In order the system of equations eq1, eq2 to be equivalent to the second order differential
equation of P-type eq3 should coincide with (P3)-equation. To satisfy this requirement
we should introduce some restrictions on coefficients aj(z) and bi(z). First we equalize
denominators of the right sides of eq3 and eq.

eq4 = Denominator[Together[eq3[[2]] == Denominator[Together[eq[[2]]

w[z] a6[z] == z w[z]

Solving equation eq4 we obtain the function a6(z) (sol4 = DSolve[eq4, a6, z][[1]] {a6 →
(#1&)}). Then we define numerators of the right sides of eq3 and eq taking into account
the solution sol4.

eq5 = Collect[Numerator[Together[eq3[[2]]/.sol4]], {w′[z],w[z]}];
eq6 = Numerator[Together[eq[[2]]]];

Equalizing coefficients of w′(z)2 in eq5 and eq6 we can find the function b6(z).

eq7 = Coefficient[eq5,w′[z],2] == Coefficient[eq6,w′[z],2]

2 z + b6[z] == z

sol7 = DSolve[eq7,b6, z]//Flatten

{b6 → (−#1 &)}
Then we equalize coefficients of w′(z)w(z)2 in eq5 and eq6 and obtain the function b4(z).

eq8 = Coefficient[eq5/.sol7,w′[z]w[z]2] == Coefficient[eq6,w′[z]w[z]2]

2 z a3[z] + z b4[z] == 0

sol8 = DSolve[eq8,b4, z][[1]]

{b4 → (−2 a3[#1 ] &)}
Substituting functions b4 and b6 determined in sol7 and sol8 into expression eq5 and
equalizing the corresponding coefficients of w′w, wn (n = 0, 4) in eq5 and eq6 we can find
functions b2, b1, b0 a0 and a1. This algorithm is realized below.

eq9 = Coefficient[eq5/.sol7/.sol8,w′[z]w[z]] == Coefficient[eq6,w′[z]w[z]]

1 + z a1[z] + z b2[z] == −1

sol9 = DSolve[eq9,b2, z][[1]]

{ b2 → (−2 + # 1 a1[# 1]

# 1
& ) }

eq10 = Coefficient[eq5/.sol7/.sol8/.sol9,w[z]4] == Coefficient[eq6,w[z]4]

z a3[z]2 + z2 b1[z] == z γ
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sol10 = DSolve[eq10,b1, z][[1]]

{ b1 → (−−γ + a3[# 1]2

# 1
& ) }

eq11 = (eq5/.w → (0 &)/.sol7) == (eq6/.w → (0 &)) {−za0[z]2 == z δ}
sol11 = DSolve[eq11, a0, z][[1]]

{ a0 → (−I
√

δ & ) }
eq12 = Coefficient[eq5/.sol7/.sol8/.sol9/.sol10/.sol11,w[z]3] =

Coefficient[eq6,w[z]3]

−a3[z] + (2 + z a1[z]) a3[z] + z2 b0[z] + z a′
3[z] == α

sol12 = DSolve[eq12,b0, z][[1]]

{ b0 → (−−α + a3[# 1] + #1 a1[#] a3[#] + #1 a′
3 [#1]

# 12
& ) }

eq13 = Coefficient[eq5/.sol7/.sol8/.sol9/.sol10/.sol11/.sol12,w[z]2] =

= Coefficient[eq6,w[z]2]

−a1[z] − z a1[z]2 + a1[z] (2 + z a1[z]) + z a′
1[z] == 0

sol13 = DSolve[eq13, a1, z][[1]]

{ a1 → (
C[1]

#1
& ) }

eq14 = Coefficient[eq5/.sol7/.sol8/.sol9/.sol10/.sol11/.sol12/.sol13,w[z]] =

= Coefficient[eq6,w[z]]/.w′[z] → 0

I
√

δ + 2I
√

δ C[1] − I
√

δ (2 + C[1]) == β

sol14 = DSolve[eq14,C[1]][[1]]

{ C[1] → −I (β + I
√

δ)√
δ

}

Now we can substitute all functions found above into eq3 and rewrite it as

w′′[z] = (eq3[[2]]/.sol4/.sol7/.sol8/.sol9/.sol10/.sol11

/.sol12/.sol13/.sol14//Collect[#, w′[z],w[z], Simplify] &)

w′′[z] ==
β

z
+

δ

w[z]
+

α w[z]2

z
+ γ w[z]3 − w′[z]

z
+

w′[z]2

w[z]

We see that this equation exactly coincides with the third Painleve equation. So the
system of equations eq1, eq2 with functions aj(z), bi(z) found above is equivalent to (P3)
equation and its generalizes the corresponding system obtained in [3].

With functions aj(z), bi(z) found above we can rewrite this system as

{eq1, eq2}/.sol4/.sol7/.sol8/.sol9/.sol10/.sol11

247



/.sol12/.sol13/.sol14///Simplify

{w′[z] == −I
√

δ + (1 − Iβ√
δ
)

w[z]

z
+ (z v[z] + a3[z])w[z]2, v′[z] ==

1

z2
(α − z3v[z]2w[z] − 2a3[z] +

Iβ a3[z]√
δ

+

+ z v[z] (−3 +
Iβ√

δ
− 2z w[z] a3[z]) + z w[z](γ − a3[z]2) − z a′

3[z]) }

Now let us consider the sixth Painleve equation (P6) [4]. To investigate characteristics
of non-movable singular points and also to solve some other problems it is better to use
an equivalent system instead of (P6) equation. Such system consists of two differential
equations of the first order. Let the first equation has a form

w′ = F1(z, w) + F2(z, w)v. (P6)

The second equation is determinated with the form of equation (P6). Differentiating
equation (P6) and equating the right part of the equation obtained to the right part of
(P6) (that is given in a normal form) after some transformations we have obtained the
second equation of the equivalent system in the next form

F2 v′ + φ0 + φ1 v + φ2 v2 = 0,

where φ2 = ( ∂ F2

∂ w
− l(z, w) F2) F2,

φ1 =
∂ F2

∂ z
− m(z, w) F2 − 2 l(z, w) F1 F2 + F2 +

∂ F1

∂ w
+ F1

∂ F2

∂ w
,

φ0 =
∂ F1

∂ z
− n(z, w) − m(z, w) F1 − l(z, w) F 2

1 + F1
∂ F1

∂ w
,

l(w, z) =
1

2
(
1

w
+

1

w − 1
+

1

w − z
), m(z, w) = − (

1

z
+

1

z − 1
+

1

w − z
),

n(z, w) =
w(w − 1)(w − z)

z2(z − 1)2
(α + β

z

w2
+ γ

z − 1

(w − 1)2
+ δ

z(z − 1)

(w − z)2
),

where α, β, γ, δ are some constants. In general case functions F1 and F2 may be
arbitrary. Consequently realization of this algorithm is very complicated. It requires a
lot of calculations, which can not be done without CAS (for example, Mathematica)([4]).
Thus, using Mathematica it’s easy to build an equivalent system for the equation (P6).

Using the results obtained for problem 1 the next two problems can be solved.

Problem 2. Reduction of the system obtained to the correspond-
ing equation of geodesic lines and investigation of geometrical
properties of its solution ([5,6])

Let us solve the problem for the more general system that include the equivalent to (P6)
system as partial. We define the system in the form

ur1 = z(z − 1)w′[z] == a[w[z],v[z]]z + b[w[z],v[z]]; (1)
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ur2 = z(z − 1)v′[z] == c[w[z],v[z]]z + d[w[z],v[z]]; (2)

From equation (2) we have found v′[z]: sol2 = Solve[ur2,v′[z]][[1]]

{v′[z] → −−zc[w[z], v[z]] − d[w[z], v[z]]

z(z − 1)
.}

Dividing equation (1) on (2) and considering v as a new independent variable we have
found dw

dv
in the form

ur3 = w′[v] == (ur1[[2]]/ur2[[2]]/. φ [z] → φ)

{w′[v] ==
z a[w, v] + b[w, v]

z c[w, v] + d[w, v]
} (3)

Let us find z solving equation (3): sol3 = Solve[ur3, z][[1]]

{z → −b[w, v] + d[w, v] w′[v]

a[w, v] − c[w, v] w′[v]
} (4)

The right part of (4) is a function of three variables, i.e. f(w, v, dw
dv

). And we can calculate
a derivative v′[z]: φ[v ] = z/.sol3/.φ [w,v] → φ[w[v],v];

dv = v′[z]/.sol2/.φ [w[z],v[z]] → φ[w[v],v]/.z → φ[v]//Simplify

(b[w[v], v] c[w[v], v] − a[w[v], v] d[w[v], v])(−a[w[v], v] + c[w[v], v]w′[v])

(b[w[v], v] − d[w[v], v] w′[v])(a[w[v], v] + b[w[v], v] − (c[w[v], v] + d[w[v], v])w′[v]))

Now let us consider the main equation eq4 = dv ∂v φ[v] == 1;

sol4 = Solve[eq4,w′′[v]][[1]]//Simplify;

From the equation obtained we can find the coefficient k(w, v)

k[w ,v ] = −1/((w′′[v]/.sol4//Factor)[[2]])/.w[v] → w

−(b[w, v] c[w, v] − a[w, v] d[w, v])2

In a similar way we can find other coefficients e[w, v], f [w, v], g[w, v], h[w, v]

rest = (w′′[v]/.sol4//Factor)[[3]]//Collect[#,w′[v],Simplify]&;

e[w ,v ] = Coefficient[rest,w′[v],3]/.w[v] → w//Simplify

(a[w, v] d[w, v]2c(1,0)[w, v] + c[w, v]d[w, v](d[w, v] − b[w, v]c(1,0)[w, v]−
−a[w, v] d(1,0[w, v]) + c[w, v]2(d[w, v] + b[w, v]d(1,0)[w, v])

f [w ,v ] = Coefficient[rest,w′[v],2]/.w[v] → w//Simplify

b[w, v]2c[w, v]c(1,0)[w, v] + a[w, v]d[w, v](d[w, v](−1 + c(0,1) − a(1,0)[w, v])+

+c[w, v](−2 − d(0,1)[w, v] + b(1,0)[w, v]) + a[w, v]d(1,0)[w, v])+
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+b[w, v](c[w, v]2(−1 + d(0,1)[w, v] − b(1,0)[w, v]) − a[w, v]d[w, v]c(1,0)[w, v]−
−c[w, v](d[w, v](2 + c(0,1)[w, v] − a(1,0)[w, v]) + a[w, v]d[w, v]c(1,0)[w, v]−

−c[w, v](d[w, v](2 + c(0,1)[w, v] − a(1,0)[w, v]) + a[w, v]d(1,0)[w, v]))

g[w ,v ] = Coefficient[rest,w′[v],1]/.w[v] → w//Simplify

b[w, v]c[w, v](d[w, v]a(0,1)[w, v] − c[w, v]b(0,1)[w, v] + b[w, v](1 + c(0,1) − a(1, 0)[w, v]))+

+a[w, v]2d[w, v](1 + d(0,1)[w, v] − b(1,0)[w, v]) + a[w, v](d[w, v]

(−d[w, v]a(0,1)[w, v] + c[w, v]b(0,1)[w, v]) + b[w, v](d[w, v](2 − c(0,1)[w, v]+

+a(1,0)[w, v]) + c[w, v](2 − d(0,1)[w, v] + b(1,0)[w, v])))

h[w ,v ] = Coefficient[rest,w′[v],0]/.w[v] → w//Simplify

−b[w, v]2c[w, v]a(0,1)[w, v] + a[w, v]b[w, v](−b[w, v] + d[w, v]a(0,1)[w, v]+

+c[w, v]b(0,1)[w, v]) − a[w, v]2(b[w, v] + d[w, v]b(0,1)[w, v])

Thus we have built the second order differential equation of geodesic lines of the next
kind

k[w, v]
d2w

dv2
= e[w, v](

dw

dv
)3 + f [w, v](

dw

dv
)2 + g[w, v]

dw

dv
+ h[w, v]. (5)

Let us substitute now the values of a[w, v]z + b[w, v], c[w, v]z + d[w, v] for (P6)

a[w,v]z + b[w,v] = λz +((r−λ)z − (1 +λ +q))w+c2w
2 + c1w(w−1)(w−z)v;

c[w,v]z+ d[w,v]= μ−((r−λ)z−(1+λ+q))v−2c2wv− c1

2
(3w2−2zv−2w+z)v2;

where μ ≡ 2α−c22
2c1

, α, λ, r, c1, c2 are constants ([7]). Then coefficients of equation (5) for P6

are determined as e[w, v], f [w, v], g[w, v], h[w, v], k[w, v]. For example, k[w, v] has a form

k[w, v] = −1

4
(vw(−2r + 2λ + c1v(2v − 1))(−1 − q − λ + c1vw(w − 1) + c2w)+

+(rw + λ − λw − c1vw(w − 1))(v2w(3w − 2)c1 − 2(v + qv + λv + μ − 2c2vw)))2.

Problem 3. Construction Backlund’s transformation for Painleve
equations

Using the functions a0(z), a1(z), a3(z), a6(z), b0(z), b1(z), b2(z), b4(z), b6(z) obtained above
we can introduce the next transformations for equation P3:

H : w → v =
w′ − a0 − a1 w − a3 w2

a6 w2
;

G : v → w =
v′ − b0 − b1 v

b1 + b4 v + b6 v2
,

T : w → σ1 wk1 , z → σ2 zk2 (σ1, σ2, k1, k2 
= 0).
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Choosing parameters σ1, σ2 (k1 = k2 = 1) we can fix two nonzero parameters in (P3)
equation. Let φ(z) is a solution of (P3). Then we can construct new solutions of (P3)
using the next transformations ([7])

T1 : φ → σ1 φ(σ2z, α σ−1
1 σ2, β σ1 σ2, γ σ−2

1 σ2
2, δ σ2

1 σ2
2),

T2 : φ → φ−1(z,−β,−α, −δ, −γ),

T3 : φ(z, α, β, 0, 0) → φ1/2(z2, 0, 0, 2 α, 2 − β),

Actually, these new solutions w̃(z, α̃, β̃, γ̃, δ̃) can be built according to the scheme:

w
H→ v

Tj→ ṽ
G→ w̃ (j = 1, 2, 3).

Each transformation Tj gives us the corresponding Baklund’s transformation. Such proce-
dure may be also realized for (P6) equation ([7]). In the case of the third order differential
equations of P-type let us consider

Problem 4.

To find one-parametrical family of solutions (for example, in the form of solutions of
Riccati equation) for differential equation of the third order with six singular points

y′′′ =
6∑

k=1

(y′ − a′
k)(y

′′ − a′′
k) + Ak(y

′ − a′
k)

3 + Bk(w
′ − a′

k)
2 + Ck(y

′ − a′
k)

y − ak

+

+Dy′′ + Ey′ +
6∏

i=1

(y − ak)
6∑

k=1

Fk

y − ak

, (7)

where Ak, Bk, Ck, Fk (k = 1, 6), D, E are functions of x and ak (k = 1, 6) are constants.
J.Chazy found the necessary and sufficient conditions of the solution of equation (7) to
have no movable singular critical points, namely, functions Ak, Bk, Ck, Fk D, E and
ak (k = 1, 6) have to satisfy the system of 31 algebraic and differential equations. Using
this result we rewrite equation (7) in the form ([8])

p(y)(y′′′ − Dy′′ − Ey′) =
6∑

i=1

qi(y)vi(y
′′, y′) + p(y)

6∑
i=1

qi(y) Fi, (8)

where p(y) = y6 + σ2y
4 − σ3y

3 + σ4y
2 + σ6,

qi(y) = y5 + aiy
4 + ω2iy

3 − ω3iy
2 + ω4i(y + ai),

ω2i = σ2 + a2
i , ω3i = σ3 − aiσ2 − a3

i , ω4i = σ4 − aiσ3 + a2
i σ2 + a4

i ,

vi(y
′′, y′) = y′y′′ − 1

ai

y′3 + Bi y′2 + Ci y′ (i = 1, 6),

σj (j = 2, 3, 4, 6) are elementary symmetric polynomial composed of the elements ak (k =
1, 6). We double differentiate an expression y′ = α(x) y2 + β(x) y + γ(x) and substitute
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y′, y′′, y′′′ into equation (8). Comparing the coefficients of powers yn (n = 0, 11) we obtain
a system of equations for determination of the unknown functions α(x), β(x), γ(x).

For example, for certain coefficients conditions of equation (8) the equations

y′ = α(y2 ± 1

6σ2

(∓4σ2
2 + 6σ4 +

√
4σ4

2 − 27σ2σ2
3 − 24σ2

2σ4 + 36σ2
4))

determine one-parametric family of the equation (8) solutions.
The authors would like to thank Prof. N.A.Lukashevich for the interesting discussion

of the considered problems.
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Cosmological Creation of Vector
Bosons and Integrals of Motion in

General Relativity

D. Proskurin, V.N. Pervushin

Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research,

Dubna, Russia

The cosmological creation of primordial vector bosons and fermions is described in
the Standard Model of strong and electro-weak interactions given in a space-time with
the relative standard of measurement of geometric intervals. Using the reparametrization
- invariant perturbation theory and the holomorphic representation of quantized fields
we derive equations for the Bogoliubov coefficients and distribution functions of created
particles. The main result is the intensive cosmological creation of longitudinal Z and W
bosons (due to their mass singularity) by the universe in the rigid state. We introduce
the hypothesis that the decay of the primordially created vector bosons is the origin of
the Cosmic Microwave Background radiation.

253



Analytical Design of SIMD
Computer Application Software

V.S. Richvitsky, A.P. Sapoznikov, A.G. Galperin

Laboratory of Information Technologies,
Laboratory of High Energies,

Joint Institute for Nuclear Research,
141980 Dubna, Russia;

e-mail: rqvtsk@cv.jinr.ru

1 APE-100 supercomputer

One of the aim of the APE100 group [2, 3] is the realization of a supercomputer specially
designed to solve specific problem arising from QCD community, but suitable also for
other applications.

The family of computers APE is array-parallel computing systems with distributed
memory and SIMD architecture. The basic distinctive feature of architecture SIMD (Sin-
gle Instruction, Multiple Data) is the fact, that all processors, included in structure of
the computing system, synchronously carry out the same program, and each processor
processes the complete set of local data.

To the present time APE-100 is successfully maintained in Italy, Great Britain and
Germany. A 32-processor complete set (the configuration 8x2x2) is established and in
JINR [1].

The basic programming language in APE-100 is language TAO of a high level with
fortran-like syntax and built-in support of parallel architecture of the machine.

2 APE-100 programming

The programming of computers with SIMD architecture is very difficult. Some Fortran
compilers has regimes of automatic parallelization of usual programs. The present article
gives another approach.

The original mathematical problem is to be solved must seemed contain some prop-
erties to be parallelizable. For example, if may be the set of processes with the identical
program over data of the same structure, that are not communicate each other, such as
Monte-Carlo simulation.

In other cases the processes may be parallel and execute the identical instruction
stream but communicate at some points. If some big row of data is distributed among
the number of processors for summation, the total sum will be obtained when processors
communicate their partners their partial sums and after that each of them can calculate
total sum.
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Task of data distribution is may be solvable due to some symmetries in calculations
such as some permutation group of assignments, that not affect on results. Mentioned
group property is thought be more the property of the original mathematical task, than
of the numerical method or the derived algorithm in language of programming.

So, if the formulas of task solution derived with analytical tools such as Maple, this
analytical tool can find the symmetries for distribution the data among processors and
such methods of their communications that give the total results.

Usually, the programmer mentions, that each method of programming may be given
by some macro, so that the task from initial formulation on some formal language using
formal syntax and formal context rules may be decomposed into sequence of applications
of macro to primitive objects and to the preceding ones. The primitive objects are the
data distribution and the programming forms.

Our approach is to discover the symmetries in the original task formulation, that
preserving in derived formulas and programming statements. Then the analytical tool
may fill the structures of data distribution in memory with additional structures, that
distribute the data among processors, parallelize calculations and collect results of them.

The Maple power is enough for analyzing the structure of formulas, the relations
between and assignments ’producer-consumer’, group calculations and writing the text of
output program in some suitable language of parallel programming to file.

2.1 Program control

The control of the program may be global and local. The usual control operators -
branching and cycles - concern to global, i.e. work simultaneously on all processors (since
a flow of teams one).

The local branching is carried out on each processor individually. Actually, the branch,
which should not be run, running on all the processors, but the results of calculations are
not writing down to a memory.

Local conditions is usual logic expression. The global condition will be formed from
local with the some specific logic functions.

2.2 Data control

Every processing node can access data stored on the nodes at its right, left, up, down, front
and rear. The RIGHT, LEFT, UP, DOWN, FRONT and REAR keywords can be added
to the address of an array in order to access the data stored in one of the neighbouring
nodes.

Example 1. The procedure summarizes same variable s1 on all processors and leaves
a copy of a sum in variable sum also on each processor.

subroutine SumAllLocals(real s1, real sum) real t[1] !! must be

declared as array because we use "indexes"

t[0]=s1

sum=s1 !! start from own local value

do i=2,imachinelx !! summation in x-direction
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t[0]=t[left]+sum

enddo

sum=t[0]

do j=2,imachinely !! summation in y-direction

t[0]=t[back]+sum

enddo

sum=t[0]

do k=2,imachinelz !! summation in z-direction

t[0]=t[up]+sum

enddo

sum=t[0] !! final result

end

3 Analytical calculations in automatic program con-

struction

The problem of SIMD is such distribution of data between processors, that it ”was divided
without reminder”.

Methods of data distribution must be packed into Maple procedures, that analyze the
variable dependence and try any possible allocations of them including division arrays on
parts and duplication of simple variables in memories of different processor nodes.

Example 2. Scalar product of vectors v1 [160] and v2 [160] is calculated which are
placed on sixteen processors, connected in a cyclically closed square (i.e. torus). The
known way of summation is divided into two parts: local summation and summation
between processors.

real v1[10],v2[10] real s[1] sum=0. do i=1,10

sum=sum+v1[i]*v2[i]

enddo s[0]=sum do i=2,4

s[0]=s[left]+sum

enddo sum=s[0] do i=2,4

s[0]=s[down]+sum

sum=s[0] enddo

Backtracking algorithms for retrieve combinatorial schemes are known in Prologue
language [5, 6], where backtracking is fundamental mechanism of proof.

4 The analysis of structure of calculations and pro-

gram construction

We shall assume, that the problem is described by the disordered list of calculations of a
kind

var = formula, ....
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It is required to determine dependence between variables and to order assignments,
by receiving thus program.

4.1 Ordering calculations

Each calculation creates the relation of preceding between variables. Variable X directly
precedes variable Y (X ¡ Y), if the formula for calculation Y contains X. The relation X ¡
Y is transitive closure of direct precedence.

The precedence derives a lattice with operations ∨ and ∧: Z = X ∧Y , if Z is greatest
such, that Z < X and Z < Y . Similarly Z = X ∨ Y , if Z is least such, that X < Z
and Y < Z. If the lattice is incomplete, it should be filled up with greatest and least (by
definition) symbols.

An ideal in a lattice U is a set B, that a) if x ∈ B and y ∈ U , than x ∨ y ∈ B, b) if
x ∈ B and y < x, than y ∈ B.

The greatest ideal in U will be set {z = x ∨ y : x, y ∈ U}.
Ordering calculations is reached by executing of the following algorithm:

U:=set of all variables;

While U <> {} do

B:=greatest ideal in U;

Print out calculations of variables of U-B;

U:= B

End.

It is the not most effective algorithm, but it is useful, as it is a basis of all further circuits
of calculations.

The procedure Symlist builds for each expression the list variable, from which it de-
pends:

Symlist:=proc(x) local s,i,a,b,t:

if type(x,symbol) then {x} else

if type(x,atomic) and whattype(x)<>indexed then {} else

if op(0,x)=‘::‘then

i:=op(1,op(1,x)): a:=op(1,op(2,op(1,x))):

b:=op(2,op(2,op(1,x))): t:=op(2,x):

Symlist(t) union Symlist(a) union Symlist(b) minus {i}

else

s:={}: for i from 1 to nops(x) do:

s:=s union Symlist(op(i,x)):

od:

s

fi

fi

fi

end:
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Example 3.
Symlist(2 ∗ cos(phi)/d + r ∗ sin(phi))

results
{r, d, phi}.

The procedure Stream orders calculations:

Stream:=proc(s) local rr,rl,rp,ru,r0,re,rs,rv,r:

rr:=Union(map(x->Symlist(rhs(x)),s));

rl:=Union(map(x->Symlist(lhs(x)),s));

rp:=rr minus rl; ru:=rr union rl minus rp;

r0:=s: r:=[]: rs:=[]; while ru <> {} do:

re:=select(x->(Symlist(rhs(x)) intersect ru)={},r0);

r:=[r,re]; rv:=map(x->lhs(x),re);

r0:=r0 minus re; ru:=ru minus rv;

od:

List(r)

end:

List:=proc(s) local i:

if type(s,set) or type(s,list) then seq(List(s[i]),i=1..nops(s))

else s

fi

end:

Example 4.
Stream({a = b + c, c = d/e, b = e})

results
c = d/e, b = e, a = b + c.

The procedure Translate builds the program under the list of the formulas:

Translate:=proc(S) local i,a,b,t:

if op(0,S)=‘::‘ then

i:=op(1,op(1,S)):

a:=op(1,op(2,op(1,S))):

b:=op(2,op(2,op(1,S))):

t:=op(2,S):

print(cat(‘for ‘,i,‘:=‘,a,‘ to ‘,b,‘ do begin‘));

Translate(t);

print(‘end;‘);

else

if type(S,list) then

for i from 1 to nops(S) do:

Translate(S[i]);

od:
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else

if type(S,set) then

Translate([Stream(S)]);

else

print(S);

fi

fi

fi

end:

Example 5.

S := {(i = 0..3) :: z[i] = r[i] − b, r[i] = f [i] + i, b = c/d} : Translate(S);

results

b = c/d do i=0,3 r[i] = f[i] + i z[i] = r[i] - b enddo
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Let be given a linear homogeneous ordinary differential equation Ly(x) = 0 with
coefficients which are polynomial over a field K of characteristic 0. There is a method [3] to
build a local fundamental system of formal solutions for the equation in a neighbourhood
of x = x0.

A formal solution has the form

y(t) = eQ(1/t)tλΦ(t), x(t) − x0 = Λtp,

where the regular part Φ(t) = Φs(t)+Φs−1(t) log(t)+ · · ·+Φ0(t) logs(t) can be built by the

well known Frobenius’ algorithm. The power series Φ0(t) =
∑∞

n=0 c
(0)
n tn has coefficients

which satisfy a linear homogeneous recurrence Rc(0) = 0 with polynomial coefficients. The
others series Φi(t) =

∑∞
n=0 c

(i)
n tn, 1 ≤ i ≤ s, have coefficients which satisfy homogeneous

or inhomogeneous recurrences: Rc(i) = fi(n). Using these recurrences, we can compute
formal solutions with arbitrary accuracy.

We present a method to select a subspace of formal solutions that content only
such power series which are polynomial (i.e. c

(i)
n = 0 for all large enought n) or m-

hypergeometric (i.e. c
(i)
n+m/c

(i)
n ∈ K̃(n), m ≥ 1, for all large enought n). In this case we

can write series from formal solutions in the closed form. To arrive at our goal we use the
algorithms from [1] and [2] for finding all m-hypergeometric solutions of the homogeneous
and inhomogeneous recurrence.
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An algorithm of numerical solution of the inverse problem for two-dimensional Shrödinger
equation had been worked out [1]. The problem reduces to reconstruction of five-diagonal
M ×N matrix with given spectrum and given first N components for each of basic eigen-
vectors. But all N components can’t be chosen arbitrary. It’s stated that they must satisfy
(N −1)2(M −1) additional conditions and N conditions of compatibility. We succeeded to
clear the statement of the problem to the end in the process of concrete calculating. It had
been shown that the lacking components can be determined by solving the system of the
polynomial equations. Deriving and solving huge polynomial system had been performed
on SPP by using CAS REDUCE 3.6. This time we succeeded to overcome difficulties
[1], arising in solving, by choosing proper variables and proper initial data. In our report
we discuss as well the inverse problem, when symmetry of basic eigenvectors is reserved.
Then the problem reduces to solving polynomial system not so big order (36 instead 62 in
concrete example). But additional difficulties connected with the statement of the problem
arise. The symmetry of basic eigenvectors leads to symmetry of blocks of found matrix.
As result we can’t even disturb spectrum arbitrarily. First N components must satisfy ad-
ditionally some ”symmetry conditions”. In our report we show how such inverse problem
is stated and solved in concrete case.

1 General statement of the problem

Wave motion on the lattices in discrete quantum mechanics is described [2] by finite-
difference Schrödinger equation:

−ψi−1,j − 2ψi,j + ψi+1,j

h2
x

− ψi,j−1 − 2ψi,j + ψi,j+1

h2
y

+ Uijψij = λψi,j.

We consider the problem in rectangle 1 ≤ i ≤ M, 1 ≤ j ≤ N, with zero boundary
conditions: ψ0,j = ψM+1,j = ψi,0 = ψi,N+1 = 0.

In the case of zero potential (Ui,j = 0) the eigenvalues and basic eigenvectors are
determined by formulae

λm,n ==
4

h2
x

sin2 πm

2(M + 1)
+

4

h2
y

sin2 πn

2(N + 1)
,

Vm,n = ||vm,n(i, j)|| = 2
√

hxhy|| sin πmi

M + 1
sin

πnj

N + 1
||,
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1 ≤ i,m ≤ M, 1 ≤ j, n ≤ N, l = MN.

We arrange the eigenvalues in order of increasing:

λ1 ≤ λ2 ≤ λ3... ≤ λl.

Consider vectors Eξ = [e1(ξ), ..., el(ξ)] =

= [vmn(1, 1), ..., vmn(1, N), ..., vmn(M, 1), ..., vmn(M,N)].

λξ, Eξ (determined for zero potential and hx = hy = 1 ) are solution the spectral
problem for symmetric five-diagonal matrix

C =

⎡⎢⎢⎣
A1 D1 0 . . . 0
D1 A2 D2 . . . 0
. . . . . . . . . . . . DM−1

0 0 . . . DM−1 AM

⎤⎥⎥⎦ , Ai =

⎡⎢⎢⎣
4 −1 0 . . . 0
−1 4 −1 . . . 0
. . . . . . . . . . . . −1
0 0 . . . −1 4

⎤⎥⎥⎦ ,

and on the lateral diagonals Di = −I blocks stay, where I are the unit matrices of N
order.

The problem of reconstruction of perturbed discrete Schrödinger operator from spec-
tral data is stated. What is equivalent to the problem of reconstruction of C perturbed
five-diagonal matrix: on the lateral diagonals of C diagonal blocks

Di =

⎡⎢⎢⎣
−1 + vqi+1 0 . . . 0

0 −1 + vqi+2 . . . 0
. . . . . . . . . . . .
0 . . . 0 −1 + vqi+N

⎤⎥⎥⎦ , i = 1, ...,M − 1,

qi = (i − 1)N , stay. And on the main diagonal

Ai =

⎡⎢⎢⎣
4 + θqi+1 −1 + uqi+1 . . . 0
−1 + uqi+1 4 + θqi+2 . . . 0

. . . . . . . . . −1 + uqi+N−1

0 . . . −1 + uqi+N−1 4 + θqi+N

⎤⎥⎥⎦ , i = 1, ...,M,

blocks stay. In what follows, we note

4 + θi = tei, − 1 + ui = uui, − 1 + vi = −vvi.

The orthonormality of basic eigenvectors implies [3] the orthonormality of ei vectors
constituted of i-th components of basic eigenvectors: ei = [ei(1), ei(2), ..., ei(l)]. From
this a simple algorithm (presented in Section 5 of [1]) for computing C symmetric five-
diagonal matrix of given spectrum and given first N components for each basic eigenvector
arises. C matrix has lacuna between the second and (N + 1)-th diagonals. As result all
N components can’t be given arbitrary.

These components besides N(N + 1)/2 orthonormality conditions must satisfy
(N − 1)2(M − 1) additional conditions, guaranteeing orthonormality of the following
components of basic eigenvectors:

(e1, ej) = 0, ..., (ej−1, ej) = 0, j = N + 1, ..., l,
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computed simultaneously with matrix. In addition compatibility conditions guaranteeing
satisfying N low equations of CEj = λjEj spectral system for all j must be fulfilled.

Inverse problem for two-dimensional discrete Schrödinger equation reduces [1] to re-
construction of symmetric five-diagonal matrix of given spectrum and given k(M,N), 1 ≤
k < N, first components for each basic eigenvector.

Elements of matrix are computed simultaneously with ”lacking” (N − k) components
by solving polynomial equations system, which along with the orthonormality conditions,
the additional conditions and the compatibility conditions contain relations defining ma-
trix elements as functions of λj and components of basic eigenvectors.

2 New system and new initial approximation

The results presented in [1] were stated in process of numerical experiments with first
spectra point λ1 = 0.96775... was disturbed to λ̃1 = 0.96. The lacking components of
basic eigenvectors had been found by solving the system of 62 polynomial equations with
62 variables. The polynomial system contains:

• 9 conditions of orthonormality,

• 18 additional conditions, providing orthogonality of computed components of basic
eigenvectors,

• 4 compatibility conditions,

• 28 relations,determining 28 elements of found matrix and 3 relations

sui =
l∑

j=1

(λjei(j))
2, defining sui, i = 2, 3, 4.

62 variables are:

• 31 the lacking components: e2(j), j = 1 : 7; e3(j), e4(j) j = 1 : l;

• 28 elements of matrix: tei, i = 2 : l; uui, i = 1 : 3, 5 : 7, 9 : 11; vvi = 1 : 8;

• 3 variables su2, su3, su4.

Original values corresponding to non-perturbed matrix had been chosen as initial data.
In such way we had perfect result [1] by using NUMERIC package of REDUCE 3.6 [4]
for λ̃1 = 0.96 and λ̃1 = 0.973. But for λ̃ = 0.975 the Newton type iterations realized
in NUMERIC diverge.

In the case of λ̃ = 0.975 we succeeded to solve the inverse problem by including
of e5(j), ..., e12(j), j = 1 : l in the set of variables. The relations, determining new
variables recursively, complete the system of 62 equations to the system of 158 equations.
It’s nothing but the equations of spectral system, starting from the 5th, for all given
eigenvalues. This time original initial data are corrected: matrix elements and sui are
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recomputed of given disturbed eigenvalues and original basic eigenvectors components.
In addition te12 is determined by spur equation and relations

(e9, e7) = 0, (e10, e8) = 0, (e12, e9) = 0

are used instead of the corresponding additional conditions which contain multipliers

(te1 + te2 + te3), (te2 + te3 + te4), (te1 + te2 + te3 + te4)

and are fulfilled not so good after correction of initial data. Remark, that equations of
new system have much more simple structure. As a matter of fact this system of 62
equations is obtained of the system of 158 equation by excluding new variables using the
recursive relations defining new variables. As result the times of computing are the same
approximately:

(0.975, 25, 9, 13), SPP, t = 2853020, 158 equations,

(0.96, 25, 15, 10), SPP, t = 2871840, 62 equations.

Computing 13 iterations takes 2583020ms in the case of 158 equations and computing
10 iterations takes 2871840ms in the case of 62 equations. We believe that this ( when
all components of basic eigenvectors are variables ) is more natural way of solving the
considered inverse problem. But attempts to solve in such way the inverse problem with
λ̃1 = 0.96 gave no result. The Newton type iterations realized in NUMERIC diverge.

3 Inverse problem with reserving symmetry condi-

tions

In this section we discuss the inverse problem when the symmetry of basic eigenvectors
are reserved. With such symmetry we can prolong the eigenvalues, determining in the
rectangle on the whole plain. We consider again m = 3, n = 4 . This time problem reduces
to solving polynomial system of order 36 only instead of 62. But new difficulties appear in
statement of the problem. The symmetry of basic vectors lead to special symmetry block
structure of found matrix. As result we can’t even to disturb spectrum points arbitrarily.
We discuss solving such problem in concrete example only. When m = 3, n = 4,

4 � 8 � 12 �
... . . .

... . . .
...

3 � 7 � 11 �
... . . .

... . . .
...

2 � 6 � 10 �
... . . .

... . . .
...

1 � 5 � 9 �

Basic eigenvectors of original problem have such symmetries:

e1(j) = (−1)j−1e4(j), j = 1 : 12; (1)
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e5(j) = (−1)j−1e8(j), j = 1 : 12, (2)

e5(i) = e8(i) = 0, i = 5 : 8; (3)

e9(j) = (−1)j−1e12(j), j = 1 : 12; (4)

e2(j) =

{
e10(j), j = 1 : 4, 9 : 12,

−e10(j), j = 5 : 8;
(5)

e3(j) =

{
e11(j), j = 1 : 4, 9 : 12,

−e11(j), j = 5 : 8;
(6)

e1(j) =

{
e9(j), j = 1 : 4, 9 : 12,

−e9(j), j = 5 : 8;
(7)

e4(j) =

{
e12(j), j = 1 : 4, 9 : 12,

−e12(j), j = 5 : 8;
(8)

As tei =
12∑

j=1

λjei(j)
2, sui =

12∑
j=1

(λjei(j))
2, vvi =

12∑
j=1

λjei(j)ei+4(j), the symmetry

conditions (1),(2) give te1 = te4, su1 = su4 vv1 = vv4. And taking in account relations
su1 = te12 + uu12 + vv12, su4 = te42 + uu32 + vv42 we find, that uu1 = uu3. Using
additionally the first and the fourth equations of the spectral system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(te1 − λj)e1(j) + uu1 · e2(j) + vv1 · e5(j) = 0,

uu1 · e1(j) + (te2 − λj)e2(j) + uu2 · e3(j) + vv2 · e6(j) = 0,

uu2 · e2(j) + (te3 − λj)e3(j) + uu3 · e4(j) + vv3 · e7(j) = 0,

uu3 · e3(j) + (te4 − λj)e4(j) + vv4 · e8(j) = 0,

vv1 · e1(j) + (te5 − λj)e5(j) + uu5 · e6(j) + vv5 · e9(j) = 0,

vv2 · e2(j) + uu5 · e5(j) + (te6 − λj)e6(j) + uu6 · e7(j) + vv6 · e10(j) = 0,

vv3 · e3(j) + uu6 · e6(j) + (te7 − λj)e7(j) + uu7 · e8(j) + vv7 · e11(j) = 0,

vv4 · e4(j) + uu7 · e7(j) + (te8 − λj)e8(j) + vv8 · e12(j) = 0,

vv5 · e5(j) + (te9 − λj)e9(j) + uu9 · e10(j) = 0,

vv6 · e6(j) + (te10 − λj)e10(j) + uu10 · e11(j) = 0,

vv7 · e7(j) + (te11 − λj)e11(j) + uu11 · e12(j) = 0,

vv8 · e8(j) + uu11 · e11(j) + (te12 − λj)e12(j) = 0,

(9)

we get new symmetry
e2(j) = (−1)j−1e3(j). (10)
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So it’s natural, when we find the lacking of 4 first components, to suppose that they
satisfying (1) and (10). This leads immediately to the following relations te1 = te4, te2 =
te3, uu1 = uu3, su1 = su4, su2 = su3, vv1 = vv4, vv2 = vv3, e5(j) = (−1)j−1e8(j).
Taken in account additionally and the second and the third equations of the spectral
system (9), we get one more symmetry e6(j) = (−1)j−1e7(j) . This and the symmetry
condition (2) give te5 = te8, te6 = te7, uu5 = uu7, su5 = su8, su6 = su7.

These, the previous found relations and

su5 = vv12 + te52 + uu52 + vv52, su8 = vv42 + uu72 + te82 + vv82

su6 = vv22 + te52 + uu52 + te62 + uu62 + vv62, su7 = vv32 + uu62 + te72 + uu72 + vv72

give vv5 = vv8, vv6 = vv7. Using 5th and 8th equations of (9) we have, that

e9(j) = (−1)j−1e12(j), te9 = te12 = te1. (11)

With additional request (3) and symmetry conditions (5), (7) we obtain, that vv1 =
vv5. Using the fifth equation of the spectral system (9) we find, that e6(j) = 0, j = 5 : 8,
which implies vv2 = vv6. Using 6th and 7th equations of the spectral system (9), relations
vv2 = vv3, uu5 = uu7, te6 = te7, vv6 = vv7 and symmetries:

e2(j) = (−1)j−1e3(j), e5(j) = (−1)j−1e8(j), e6(j) = (−1)j−1e7(j)

we get, that e11 = (−1)j−1e10(j). The last and (11) imply te10 = te11, uu9 = uu11.
As result we proved, that disturbed matrix, whose basic eigenvectors satisfy the sym-

metry conditions (1),(5),(7) and additional request (3), has special symmetric block-
diagonal structure:

M =

⎡⎣ A W 0
W B W
0 W A

⎤⎦ , A =

⎡⎢⎢⎣
a1 b1 0 0
b1 a2 b2 0
0 b2 a2 b1

0 0 b1 a1

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
α1 β1 0 0
β1 α2 β2 0
0 β2 α2 β1

0 0 β1 α1

⎤⎥⎥⎦
and W = diag(d1, d2, d3, d4). Eigenvalues of M are solutions of

Det[−(A − λI)(2 − W−1(B − λI)W−1(A − λI))] = 0,

where I is the unit matrix of order 4. The spectrum of such matrix can’t be arbitrary.
We can’t to disturb the spectrum of original matrix arbitrarily and hope to find matrix
having given disturbed spectrum and reserving the symmetric block-diagonal structure.

The eigenvectors E = [E1, E2, E3, E4]
T , Ei − column-vectors of order 4, satisfy a

system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(A − λI)E1 + WE2 = 0,

WE1 + (B − λI)E2 + WE3 = 0,

WE2 + (A − λI)E3 = 0.
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By subtracting the third equation from the first we get

(A − λI)E1 = (A − λI)E3.

So, if λ is not eigenvalue of A, then E1 = E3. For original matrix λ5, λ6, λ7, λ8 form
the spectrum of A. We succeeded to solve the inverse problem for two disturbed spectra.

First we put δ = 0.003, Δa1 = Δa2 = δ, Δa3 = 1 − √
1 + δ − δ2, Δa4 = 2δ, the

other elements of matrix stay nonperturbed. Then λi with odd i are disturbed and with
even i stay nonperturbed.

Second we put δ = 0.001, Δa1 = δ, Δa2 = 3δ, Δa3 = −δ,
Δa4 = −2δ, Δb1 = 2δ, Δb3 = 2δ, Δb4 = 3δ, Δc1 = −2δ, Δc2 = −3δ,
Δc3 = −2δ, Δb4 = −3δ, the other elements of matrix stay nonperturbed. Then all λi

were disturbed.
In both cases perturbed matrix M̃, whose basic eigenvectors reserve the symmetry,

was reconstructed of given spectrum by solving a system of 36 polynomial equations with
36 variables:

e1(j), e2(j), j = 1 : 12; te1, te2, te5, te6, uu1, uu2, uu5, uu6, vv1, vv2; su1, su2.

The system consists of 6 orthonormality conditions, 6 additional conditions (instead of 18
in [1]), 4 compatibility conditions and 8 symmetry conditions.

Orthonormality conditions are

||e1|| = 1,
12∑

j=1

e1(j)
2 = 1; ||e2|| = 1,

12∑
j=1

e2(j)
2 = 1;

(e1, e2) = 0,
12∑

j=1

e1(j)e2(j) = 0; (e1, e3) = 0,
12∑

j=1

e1(j)e2(j)(−1)j = 0;

(e1, e4) = 0,
12∑

j=1

e1(j)
2(−1)j = 0; (e2, e3) = 0,

12∑
j=1

e2(j)
2(−1)j = 0.

Additional conditions are

e5 ⊥ e3,

12∑
j=1

λje1(j)e3(j) = 0; e5 ⊥ e4,

12∑
j=1

λje1(j)e4(j) = 0;

e6 ⊥ e5,

12∑
j=1

λ2
je1(j)e2(j) = uu1(te1 + te2);

e7 ⊥ e5,
12∑

j=1

λ2
je1(j)e3(j) = uu1 · uu2;

e7 ⊥ e6,

12∑
j=1

λ2
je2(j)e3(j) = uu2(te2 + te3); e8 ⊥ e5,

12∑
j=1

λ2
je1(j)e4(j) = 0.
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Compatibility conditions are e5(j) = 0, j = 5 : 8. Symmetry conditions are e1(j) =
e9(j), j = 1 : 4; e2(j) = e10(j), j = 1 : 4. The rest 12 equations of the system
determine matrix elements and su1, su2. The first 8 equations (9) determine recursively
ei(j), i = 5 : 12, as functions of chosen 36 variables. The corresponding functions are
substituted in the right parts of

tei =
12∑

j=1

λjei(j)
2; uui =

12∑
j=1

λjei(j) · ei+1(j); sui =
12∑

j=1

(λjei(j))
2.

The obtained system of 36 equations is solved by using NUMERIC, REDUCE 3.6.
The original values of variables, corresponding to nonperturbed matrix are used as initial
data. We have perfect results in both cases: when all eigenvalues are disturbed and when
only λi with odd i are disturbed.

Inverse problem on lattice, odd eigenvalues are disturbed$ Time:

42340 ms plus GC time: 180 ms la1; {0.973752448877015,15,9,10}$

Given spectrum. Found spectrum. Original spectrum. spi

:= { sp := { spo:={ 0.973752448877015,

la=0.973752448877015, 0.9677524488770101029937243,

1.96775244887701, la=1.96775244887_677,

1.967752448877010102993724, 3.2098204263768,

la=2.38796601125_285, 3.203820426376799799402898,

4.2038204263768, la=3.20982042_594845,

4.203820426376799799402898, 2.38796601125011,

la=3.38196601_231218, 2.381966011250105151795413,

3.38196601125011, la=3.80217957_13511,

3.381966011250105151795413, 4.6240339887499,

la=4.2038204_3090632, 4.618033988749894848204587,

5.61803398874989, la=4.6240339_7973626,

5.618033988749894848204587, 3.80217957362321,

la=4.7961795_8022541, 3.796179573623200200597102,

4.7961795736232, la=5.618033988_01261,

4.796179573623200200597102, 6.038247551123,

la=6.038247551_38763, 6.032247551122989897006276,

7.03224755112299}$ la=7.0322475511_1343}$

7.032247551122989897006276}$ rsys := {0.0240180000000204,18}$

Here rsys - result of substitution of initial data into the system. The maximum of
absolute value of errors is in the 18th equation. 10 iterations were produced. Precision
was 15, accuracy - 9. The found 4 first components of basic eigenvectors were used to
compute by primitive algorithm matrix with given spectrum presented in first column.
The spectrum of found matrix is presented in the second column. The given and found
spectra coincide in 7 digits after the point. In the third column the spectrum of original
nonperturbed matrix is presented.

Inverse problem on lattice, all eigenvalues are disturbed$ Time:
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60120 ms plus GC time: 330 ms la1;

{0.9665691027195753794729945,25,15,10}$ Given spectrum.

Found spectrum. spi := { sp := {

0.9665691027195753794729945, la=0.9665691027195753794729_854,

1.966479843598617085136807, la=1.966479843598617085136_768,

2.382071494687886682758795, la=2.38207149468788668275_9047,

3.201930178484952829213039, la=3.2019301784849528291_82246,

3.383176353169839514484215, la=3.383176353169839514_559909,

3.802704231391624853279469, la=3.802704231391624853_128874,

4.201014526413978981566726, la=4.201014526413978981_837853,

4.619928505312113317241205, la=4.61992850531211331_6772882,

4.801348034174387164076531, la=4.801348034174387164_400907,

5.622823646830160485515785, la=5.622823646830160485_484107,

6.036796487403846938034527, la=6.0367964874038469380_44792,

7.037157595813016769219905}$ la=7.037157595813016769219_662}$

rsys := {0.02630705693190862570881944,23}$

This time maximum of absolute value of errors is in the 23th equation. 10 iterations
were produced. Precision was 25, accuracy - 15. The given and found spectra coincide in
18 digits after the point. The calculations had been produced on SPP.
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Compatibility analysis of partial differential equation systems is a kind of problem
where Computer Algebra Systems (CAS) can be very helpful [4, 5, 6, 7, 8, 9, 10, 11].
There is mathematical definition of two equivalent algorithms in this problem: Cartan’s
one [1, 2] and one of Janet-Spencer-Kuranishi) [3]. In applications this problem demands
long symbolic computations.

In terms of symbolic computations, compatibility analysis consists of a certain se-
quence of algebraic differential procedures. Given system PDE (S) we differentiate it by
all independent variables and add to it all differential consequences, thus constructing the
prolonged system (PS) (prolongation operation). Then, we calculate dimensions of the
embedded linear spaces sequence, related to ranks of matrices of coefficients (PS). Coordi-
nates in these spaces are dependent and independent variables in (S) and all derivatives of
the latter in (PS). Then, we use the Cartan criterion that is expressed numerically through
dimensions of the embedded spaces sequence. If Cartan criterion is not fulfilled, (PS) is
taken for the given system and the next prolongation is made. It continues this way until
Cartan criterion is fulfilled (system (PS) in involution) or contradiction is obtained in
the form of equation of independent variables (system (S) is contradictory). The theory
guarantees that one of these results is reached within a finite number of prolongations.
Only solutions of system in involution (PS) are solutions of system (S).

Realisation in CAS of an algorithm, which would be suitable for analysis in a general
case, is a very complicated problem. The main difficulty is that in a nonlinear case, while
calculating ranks of the matrices, one has to make assumptions, that should be tested on
a variety defined by (PS) in the space of all variables and derivatives. Here, in a nonlinear
case the algorithm can branch out into many cases, and it is difficult to describe them
all formally. However, particular cases show that the last difficulty can be overcome in
the dialogue mode, because in practice the number of subcases can be small. Analysis of
PDE compatibility as one of the algorithm’s steps is a part of the Differential Constraints
Method (DCM) or non-classical symmetries and of group analysis method for systems
of partial differential equations (PDE). If the initial system (S) contains equations whose
forms are indefinite because of the ”indefinite elements” in them (for example, the form of

1This work was partially supported by the Russian Foundation for Basic Research (grants 99-01-00515
and 00-01-00370) and INTAS (proposal 1222).
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quasi-linear equation coefficients is indefinite), then the Cartan criterion can be fulfilled
by applying restrictions to the ranks of corresponding matrices of (PS) coefficients. In
general case this will be expressed in the form of differential equations on the indefinite
elements. If one manages to find solutions for such equations, thus he finds the form for
the indefinite elements, which make the initial system (S) compatible. This form has to
be defined in the differential constraints method while looking for constraints compatible
with a given system, and also in the method of intermediate integral.

In the present paper MATHEMATICA is used first of all for formulating the compat-
ibility conditions, whose operator form can be obtained before using CAS. For example,
in the case of overdetermined systems of quasi-linear hyperbolic equations, the form of
the compatibility conditions is shown in the terms of full differentiation operators [7]. A
similar situation can take place in the case of overdetermined systems of linear equations.

Compatibility analysis of overdetermined uniform linear systems of partial differential
equations of one unknown function is carried out with help of the well known Poisson
brackets algorithm. Despite the relatively simple form, its applications lead to huge
symbolic computations. In the present paper a program in MATHEMATICA system is
realised, whose input data is the number of equations, number and designation of the
variables, the form of the equations. It uses the standard functions of the system. The
program makes one prolongation and finds number of algebraically independent equations
in the prolonged system (PS) by calculating the ranks of the corresponding matrices. In
the dialogue mode the number of prolongations is limited by the computer resources only.
If system (S) has indefinite elements, then by demanding the corresponding matrices
determinants to be zero, one can obtain conditions for the indefinite elements, which
would make the prolonged system complete (i.e. in involution).

The following is a sample problem solved by the program. One-dimensional equations
of polytropic gas dynamics in Lagrangian variables

ut + px = 0, ψ(x)p−kpt + ux = 0, ψt = 0 (1)

by introducing potential φ by formulas u = −φx, p = φt, are reduced to equation

ψ(x)(φt)
−kφtt − φxx = 0. (2)

We seek intermediate integral for it in the form (variable t is not among the coefficients
(2))

F (x, φ, φt, φx) = C. (3)

Equation (2) contains indefinite element ψ(x) that is a function pertaining to the entropy
and defining its gas particle distribution as a function of Lagrangian variable x. It follows
from the known definition that intermediate integral (3) for equation (2) exists if in respect
to function F (x, φ, φt, φx) two linear equations are fulfilled

L1 = Fφx ± φ
k/2
t (ψ(x)−1/2)Fφt = 0,

L2 = Fxφ
k/2−1
t ψ(x)−1/2 ± (1 ± φ

k/2−1
t ψ(x)−1/2φx)Fφ = 0.

(4)

In the dialogue mode two system prolongations are made (4). From the demand of
the prolonged system involution (corresponding determinants equal zero) we obtain an
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ordinary differential equation of the second order on indefinite element ψ(x) with general
solution ψ = (c1x + c2)

k−4. Taken the latter into account, we can solve system (PS) and
thus obtain intermediate integral (3). Moreover, in this case one can obtain solutions of
equation (3). These solutions will have one-functional arbitrariness of the initial equation
(2) and thus they will be solutions of gas dynamics equations (1). They generalize the
known isoentropic Riemann waves on the case of non-isoentropic flows with two constants
arbitrariness in entropy distribution on Lagrangian variable x. We do not have enough
space here to go into details of this example.

As the other examples in the present paper, we sought conditions for existence of
one and a system of intermediate integrals for equations of the second order with three
independent variables. Similar to the definition in the two-dimensional case in the classical
theory of differential equations, by intermediate integral for equation of the second order

F (x1, x2, x3, u, u1, u2, u3, u11, ..., u33) = 0 (5)

in the three-dimensional case we will call differential equation of the first order

V (x1, x2, x3, u, u1, u2, u3) = c1, (6)

whose any non-special solution is a solution of equation (5). Here u(x1, x2, x3) is an
unknown function, ui = ∂u

∂xi
, uij = ∂ui

∂xj
, c1 is an arbitrary constant. System of equations

(5), (6) is overdetermined and needs to be analysed for compatibility. Let us differentiate
(6) once by each variable x1, x2, x3:

vx1 + u1vu + vu1u11 + vu2u21 + vu3u31 = 0,
vx2 + u2vu + vu1u12 + vu2u22 + vu3u32 = 0,
vx3 + u3vu + vu1u13 + vu2u23 + vu3u33 = 0.

(7)

On non-special solution intermediate integral (6) can be resolved in respect to ui0 which
is one of ui (i=1,2,3), while system (7) can be resolved in respect to three corresponding
ui0j, (j=1,2,3). By definition, substitution of found ui in (5) turns it to identity.

Consider quasi-linear equation

3∑
i,j=1

aijuij + l = 0 (aij = aji), (8)

where coefficients aij, l are functions of x1, x2, x3, u, u1, u2, u3. In order to turn (8) to
identity due to equations (6), all minors of the fourth order in the matrix of second
derivative coefficients and free terms in system (7), (8)⎛⎜⎜⎝

vu1 vu2 vu3 0 0 0 vx1 + u1vu

0 vu1 0 vu2 vu3 0 vx2 + u2vu

0 0 vu1 0 vu2 vu3 vx3 + u3vu

a11 2a12 2a13 a22 2a23 a33 l

⎞⎟⎟⎠
must equal zero. Hence, we obtain four proportions between vui

, vxi
, that can be formu-

lated in the following way

μ21vu2 = vu1 , μ31vu3 = vu1 , μ32vu3 = vu2 ,
a11vx1 + a22μ21vx2 + a33μ31vx3 + (a11u1 + a22μ21u2 + a33μ31u3)vu − lvu1 ,

(9)
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where μij = (aij ±
√

a2
ij − aiiajj)/aii. Moreover, from this we obtain μ31 = μ32μ21 —

restriction on coefficients aij, (i, j = 1, 2, 3). Equation system (9) is linear and uniform in
respect to function v. Its compatibility is investigated with help of Poisson brackets. In
doing this, the program in MATHEMATICA system described above essentially helps a
mathematician to carry out the symbolic computations. Example. For equation

a(z)u11 + 2b(z)(u12 + u13) + c(z)(u22 + 2u23 + u33) = 0, z = u2 + u3

after one prolongation system (9) becomes complete (in involution). By its integration
we find intermediate integral

v ≡ u1 +

∫
cdz

b ±√
b2 − ac

= c1.

In two-dimensional case a separate intermediate integral selects for an equation of
the second order a class of solutions with one arbitrary function of one argument. In
the three-dimensional case a separate intermediate integral selects for an equation of the
second order a class of solution with one arbitrary function of two arguments. But a more
essential distinction of the three-dimensional case from the two-dimensional one consists
of the fact that an equation of the second order with three independent variables can have
system of two intermediate integrals, which selects a class of solutions with one arbitrary
function of one argument.

By a system of intermediate integrals for equations of the second order (5) we will call
system of differential equations of the first order

Ψ(x1, x2, x3, u, u1, u2, u3) = c1, Ω(x1, x2, x3, u, u1, u2, u3) = c2, (10)

whose any non-special solution is a solution of equation (5).
Equation system (5), (10) is overdetermined. Its compatibility should be investigated

by a general algorithm with use of Cartan criterion. A part of the analysis can be carried
out before using CAS. Let us differentiate equations (10) by all independent variables.
The obtained equations can be written in the form

AY = t, (11)

where Y = (u11, u12, u13, u22, u23, u33, )
′ and t = (t1, t2, ..., t6)

′ are column vectors. From
calculations we obtain that det(A) ≡ 0, therefore matrix A rank is less than six. It can be
proved that A rank equals five. At that for compatibility of (10) it is necessary that rank
of the extended matrix of system (11) also equals five. If the last condition is fulfilled in
the space of variables (x1, x2, x3, u, u1, u2, u3, ) on variety (10) identically, then according
to Cartan criterion it can be shown that system (10) is in involution with arbitrariness in
one function of one argument. The last condition can be reduced to the form

(t1Ψu1 + t2Ψu2 + t3Ψu3 − t4Ωu1 − t5Ωu2 − t6Ωu6). (12)

In the non-linear case it is difficult to obtain a definite answer, whether equations
(10) are a system of intermediate integrals for (5). Such an investigation is easier in the
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case of quasi-linear and linear equations. With help of the program it is possible to carry
out complete investigation in more simple cases, because the further investigations are
reduced to substitution of some expressions into others, obtaining coefficients at certain
variables in the problem, and to some other operations which can be easily programmed
in MATHEMATICA. For example it is found out that there is a wide class of weakly
nonlinear equations

∑3
i,j=1 aijuij +

∑3
i=1 aiui + l = 0, aij = aji, which have weakly

nonlinear intermediate integrals Ψ ≡ u1 − du3 − f = 0, Ω ≡ u2 − gu3 − h = 0, where
aij, ai, d, g are functions of x, l, f, h are functions of x, u.

For wave equation
u11 − a2(u22 + u33) = 0, (13)

where a = const, we have managed with the help of CAS to complete all sequence of the
described algorithm’s steps and obtain solutions, which are known functionally invariant
solutions in a particular case. It is shown that among solutions of the intermediate
integrals there are those which are not functionally invariant.

As another example, CAS MATHEMATICA was applied to investigation of invo-
lution of overdetermined systems, which appear in result of the differential constraints
method (non-classical symmetries) application to one-dimensional gas dynamics equa-
tions [8]. Compared to the old version in REDUCE the new program version has new
features: deduction of characteristic equations and of proportions along the characteris-
tics for overdetermined systems under consideration, transition to different notations of
initial equations and results in order to obtain them in a convenient form for subsequent
processing.

We will mention here some peculiarities that we have found while solving this problem
in CAS.

1) There are two essentially different ways in MATHEMATICA to differentiate com-
plicated expressions. The first one is to apply differentiation functions available in the
language. The second one is to reduce differentiation operation to rules of replacement of
one expression by another. The first way is easier for new users. Programming the second
way is similar in both CASs and are more labour-intensive, because it is easy to make a
mistake in complicated cases, so a thorough program testing is needed.

In problems of compatibility analysis the first way leads to overgrowth of intermediate
operations, because there can be many function arguments. For example, intermediate
integral (6) has seven of them. In space of second derivatives indefinite elements will have
thirteen arguments. The number of arguments essentially increases if we consider equation
systems. In MATHEMATICA a particular function is written with all arguments to allow
the system differentiate by a given argument. Of course, in end of solving problem, when
differentiation is not needed anymore, we can set transformation rules, which rewrite the
obtained expressions without function arguments. However, it leads to overgrowth of the
program itself.

In using the second way, one can go without ascribing arguments to the function
descriptor. Moreover, in CAS REDUCE function arguments can be mentioned only one
time. The second way allows one to obtain shorter expressions, thus making process of
preliminary analysis and integration of differential equations in the dialogue mode easier.

2) The transformation mentioned above, pertaining to removing arguments of com-
plicated functions, demand description of different transformation rules in the program.
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There is an opportunity in MATHEMATICA to write all necessary consequence of trans-
formation as one compound operator with help of embeded simple operators. However,
in this case such a compound operator often works much slower than in the case when
separate transformations are realised by consequence of commands with simple operators
of needed quantity. In the latter case the program is bigger. It has to be mentioned also
that one compound transformation operator may be unable to make all transformations
written in simple transformations, that is in the first case additional result transformations
may be needed. This makes it of little use in solving the problems under consideration.

3) In application of operators (functions) with similar purposes to operations with frac-
tional rational functions REDUCE often provides more simple expressions than MATHE-
MATICA. The latter for similar simplifications demands use of other additional functions,
in particular function Simplify[].

4) Application of CAS to problems, whose solution is not guaranteed without reali-
sation in the program of complete algorithm, demands that the user knows the complete
algorithm of its solution and understands the results he can obtain, that is that he knows
the problem and ways of its solving. Simple example. Characteristic matrix Ch(λ) for
two-dimensional equations of gas dynamics in plain (ν = 0) and axisymmetric (ν = 1)
cases:

uτx + vτy − τux − τvy = ν τv
y

, uux + vuy + τpx = 0,

uvx + vvy + τpy = 0, upx + vpy + A(ux + vy) = −ν Av
y

.
(14)

has four proper values λi, (i = 1, ..., 4). Here, λ ≡ y′ = dy/dx, (u, v) are coordinates of
the velocity vector along axes x, y; p is pressure, τ is specific volume, c is sound speed,
A = c2/τ .

MATHEMATICA could not solve the characteristic equation in symbolic form. Two
characteristic directions y′

2,3 = v/u are known to coincide with direction of gas particles
velocity. If we eliminate consequently these two roots with help of command

Chp3[λ] = Together[Ch[λ]/(x − v/u)]//Simplify,

Chp2[λ] = Together[Chp3[λ]/(x − v/u)]//Simplify,

then in result command Solve[Chp2[x] == 0, λ] produces two other (of a more compli-
cated form) roots of the characteristic equation.

In more difficult cases CAS user can act in a similar way: to apply it only to a part
of operations in a complicated algorithm of symbolic computations. The rest part of the
operations can be realised in the dialogue mode, using knowledge of the problem specifics.
Thus, the technique used here of applying CAS only to a part of calculations needed for
complete involution analysis can be justified.
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Moveable Singularities of Polynomial
Differential Equations

S. Sobolevsky

Minsk, Belarus

Solutions of ordinary differential equations in complex domain can admit singularities
of two types: fixed (depending on the coefficients singularities) and movable (which location
varies from one solution to another). The investigation of ordinary differential equations
solutions movable singularities has been started by the remarkable series of papers by Fuchs
[1] (concerning the first-order equations), Painlevé [2,3] and Gambier [4] (concerning the
second-order equations). The main results are summarized in Ince [5]. Further, Chazy
[6], Garnier [7], and Bereau [8] have obtained partial results concerning the rational third-
order differential equations.

In the present paper we consider the arbitrary-order polynomial differential equations
of the form

w(n) = P (w(n−1), w(n−2), . . . , w, z), (1)

where n is an entire positive number and P is a nonlinear polynomial on w and its
derivatives with coefficients, analytic on z in a certain domain U ⊂ C.

We shall prove that every equation of class (1) admits movable singular points, i.e.
not all of its solutions are analytic in U . Further we’ll present an algorithm and the
corresponding Mathematica program for investigation of these singularities.

Let us rewrite the equation (1) in the following form

w(n) =
∑
χ∈S

aχ(z)
n−1∏
j=0

(w(j))χj , (2)

where S is a certain set of n-vectors with nonnegative integer coordinates
χ = (χ0, χ1, . . . , χn−1) and aχ are functions, analytic in domain U . For each χ ∈ S let us
assume

|χ| =
n−1∑
j=0

χj, ν(χ) =
n−1∑
j=1

jχj.

Consider two cases: I. max
χ∈S

ν(χ) < n and II. max
χ∈S

ν(χ) ≥ n.

I. First, consider a case max
χ∈S

ν(χ) < n. For all real t let us assume

ϕ(t) = min
χ∈S

{t(|χ| − 1) − ν(χ) + n}, S(t) = {χ : χ ∈ S, t(|χ| − 1) − ν(χ) + n = ϕ(t)}.
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It’s easy to see that function ϕ has at least one negative real root t = t0 because ϕ is a
continuous on the real axe function, lim

t→−∞
= −∞, ϕ(0) = n−max

χ∈S
ν(χ) > 0. This root is

rational because t0 = (n − ν(χ))/(|χ| − 1) for all χ ∈ St0 .
Then after introducing the parametric variable replacement w = αt0v, z = z0 + αx for

z0 ∈ U we’ll transform the equation (2) to the following form

v(n) =
∑
χ∈S0

aχ(z0)
n−1∏
j=0

(v(j))χj + õ(α), (3)

where S0 = S(t0) and õ(α) denotes the sum of terms with positive rational degrees of α.
For the equation (1) to be free of movable critical singular points it is necessary that the
equation (3) for α 
= 0 would admit no solutions with critical singularities in zero as well
as the reduced equation

v(n) =
∑
χ∈S0

aχ(z0)
n−1∏
j=0

(v(j))χj . (4)

Let us call the value t0 the Bureau number for the equation (4).
The equation (4) admits solutions of the form

v = λxt0 ,

where λ satisfies an equation

t0(t0 − 1) . . . (t0 − n + 1)λ =
∑
χ∈S0

aχ(z0)

[
n−1∏
j=0

t0(t0 − 1) . . . (t0 − j + 1)

]
λ|χ|. (5)

Let us call the equation (4) regular if the equation (5) admits nonzero roots and
irregular in the opposite case. The regular equations (4) with noninteger Bureau sym-
bol obviously admit solutions with critical algebraic singular point in zero. The regular
equations (4) with integer Bureau symbol admit solutions with pole in zero.

Let us show that the irregular equations (4) always admit solutions with critical sin-
gularities in zero.

Consider the irregular equation (4). In this case the right side of the equation (4)
admits parametric family of solutions v = λxt0 for arbitrary λ. Variable replacement
x = es/α1/M

, v = xt0u, α = εM for sufficiently great positive integer M reduces the
equation (4) to the form

εmu(n) = F (u(n−1), u(n−2), . . . , u, ε), (6)

where m is a natural number; F is a polynomial on all variables, and F (0C
n−1 , u, 0) ≡ 0

and F (0C
n−1 , u, ε) 
≡ 0.

We’ll need the following
T h e o r e m 1. Consider an equation

αmw(n) = F (w(n−1), w(n−2), . . . , w, z, α) (7)
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where m and n are natural numbers and F is function, analytic in a neighborhood of some
point (wn−1

0 , wn−2
0 , . . . , w0, z0, 0) ∈ Cn+2. Let w = ϕ0(z) be a solution of the equation (7)

for α = 0 satisfying the initial conditions ϕ(j)(z0) = wj
0, j = 0, n − 1.

Then in every neighborhood of z0 there exists such a point z1 and a sequence w = ϕα(z)
of solutions of the equation (7) for real positive α which, for α → +0, uniformly converges
to ϕ0(z) in some neighborhood of z1.

To prove theorem 1 we’ll need the following two lemma.
L e m m a 1. Consider the system⎧⎨⎩ αkgu′

g =
s∑

l=1

Agl(z)ul + Fg(αu, αv, z, α), g = 1, s

v′ = B(z)u + C(z)v,
(8)

where u = (ug, g = 1, s), ug ∈ Cng , ng ∈ N; v ∈ Cm; z, α ∈ C; kg ∈ N, k1 > k2 > . . . >
ks; Agl, B(z), C(z) are correspondingly the ng × nl-, m × n- and m × m-matrixes with
coefficients, analytic on z in the certain domain U ⊂ C; F is a mapping from Cn+m+2

to Cn, analytic in a neighborhood of a set {(0C
n+m , z, 0) : z ∈ U}, where n =

s∑
g=1

ng, and

F (0C
n+m , z, 0) ≡ 0. Let us assume that in the domain U the determinants of matrixes(

Agl, l = 1, θ

l = 1, θ

)
for θ = 1, s are nonzero.

Than for every positive real α there exists a solution u = ϕα(z), v = φα(z) of the
system (8) such that for α → +0 the sequences ϕα(z), φα(z) uniformly converge to zero
in some closed subdomain V ⊂ U .

Proof of the lemma 1. We may consider Agl ≡ 0 for g < l, because in the opposite
case it is sufficient to introduce the following replacements:

u0
g = u0

g, j = 1, s, A0
gl = Agl, j, l = 1, s,

uθ
g = uθ−1

g − αkθ−kgAθ−1
gθ (z)(Aθ−1

θθ (z))−1u1, g = θ + 1, s,

Aθ
gl = Aθ−1

gl − Aθ−1
gθ (Aθ−1

θθ )−1Aθ−1
θl , g = θ + 1, s, l = 1, s,

θ = 1, s − 1.

The correctness of these replacements implies from that fact, that for θ = 1, s takes place

0 
= det

(
Agl(z), l = 1, θ

l = 1, θ

)
= det

(
Ag−1

gl (z), l = 1, θ

l = 1, θ

)
=

s∏
g=1

Ag−1
gg (z), ∀z ∈ U.

In this case, on a lemma condition, for all g = 1, s and z ∈ U we have detAgg(z) 
= 0.
We may also consider, that Agl ≡ 0 for g > l, because in the opposite case it is sufficient
to introduce the following replacements:

ũg = ug + A−1
gg

(
s∑

l=g+1

Agl(z)ul

)
.
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It is easy to see, that there exists such a point z0 ∈ U , in which neighborhood matrixes
Agg, g = 1, s could be represented as Agg(z) = Qg(z)Jg(z)Q−1

g (z), where Qg(z) are
matrixes with analytic in a neighborhood of z0 coefficients and nonzero in a neighborhood
of z0 determinant, Jg(z) = diag(Jg

j (z), j = 1, τg), τg ∈ N, Jg
j (z) is a Jordan cell of

dimension ζg
j with analytic in a neighborhood of z0 diagonal element μg

j (z), and
τ∑

j=1

ζg
j =

ng.
Having made in (8) a variable replacement ug = Qg(z)xg, g = 1, s, we’ll obtain{

αkgx′
g = Jg(z)xg + F̃g(αx, αv, z, α), g = 1, s,

v′ = B(z)Q(z)x + C(z)v,
(9)

where F̃g(a, b, z, α) ≡ Q−1(z)Fg(Q(z)a, b, z, α)−αkQ(z)−1Q′(z)a, Q(z) = diag(Qj(z), j =
1, s).

We will need the following proposition
P r o p o s i t i o n 1. Consider a linear differential system

du

dz
= J(z)u + b(z), (10)

Where u is an n-vector function, τ ∈ N, J(z) is a Jordan cell of dimension n with
analytic in the convex closed area V ⊂ C diagonal element μ(z), b is an analytic in V
n-vector function. Let’s also assume that for some point z0 ∈ V and every point z ∈ V
the inequalities

||b(z)|| < M,
Re[μ(z)(z − z0)/|z − z0|] < −σ, z 
= z0,

(11)

where M,σ > 0, take place. Then the system (10) admits a private solution u = ξV,J,b(z)
such, that for all z ∈ V , the inequality

|ξV,a,b(z)| < M(
n∑

l=1

σ−l)

takes place.
P r o o f of the proposition 1. Let’s rewrite the system (10) in the following form{

duj

dz
= μ(z)uj + uj+1 + bj(z), j = 1, n − 1,

dun

dz
= μ(z)un + bn(z),

(12)

where u = (u1, u2, . . . , un), b = (b1, b2, . . . , bn).
In the case n = 1 the required solution ξV,a,b may be found in the following way:

u(z) =
z − z0

|z − z0|

|z−z0|∫
0

exp
{ z − z0

|z − z0|

|z−z0|∫
s

a(z0 + τ
z − z0

|z − z0|)dτ
}

b(s)ds.

For this solution the required inequality

|u(z)| < M

|z−z0|∫
0

exp
{ |z−z0|∫

s

Re[a(z0 + τ
z − z0

|z − z0|)
z − z0

|z − z0| ]dτ
}

ds <
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M

|z−z0|∫
0

exp
{
−

|z−z0|∫
s

σdτ
}

ds =< M

t∫
0

exp {σ(s − t)}ds =
M

σ
(1 − e−t) < M/σ

holds.
Then the system (12) admits a solution

un = ϕn(z) = ξV,μ(z),bn(z)(z),

uj = ϕj(z) = ξV,μ(z),bj(z)+ϕj+1(z)(z), j = n − 1, 1,

which satisfies inequalities

|un| ≤ M/σ, |uj| ≤ (M + |uj+1|)/σ = M(

j∑
l=1

σ−l), j = n − 1, 1

i.e. is the required one. The propositon 1 proof in comlete.
Let’s choose a complex number r such, that |r| = 1, and for all g, j an inequality

Re[rμg
j (z0)] 
= 0 takes place (it is obvious, that such r exists). As a required area V we

shall choose the closed neighborhood of point z0 in a form of a rhomb with the center in
z0 and vertexes z0 +pr, z0−pr, z0 +pri, z0−qpri, where p, q are positive real numbers. It
is easy to see, that choosing p and q small enough, it is always possible to achieve, that for
any point z ∈ V \ {z0 + pr, z0 − pr} and any g, j inequalities Re[(z − (z0 + pr))μg

j (z)] 
= 0
would take place, Re[(z − (z0 − pr))μg

j (z)] 
= 0. Then there will be σ > 0 such, that for
any g, j either Re[(z−(z0 +pr))μg

j (z)] < −σ for all z ∈ V or Re[(z−(z0−pr))μg
j (z)] < −σ

for all z ∈ V . We shall also consider q small enough, such that diamV = 2pr.
Let’s build solutions ϕα(z) = (ϕg

α, g = 1, s), φα(z) in the closed area V as limits of
the following sequences. Let’s assume

ϕα,1(z) ≡ 0C
n , φα,1(z) ≡ 0C

m .

For any j ∈ N, j > 1 let’s assume

ϕg
α,j(z) = ξV,Jg ,hg

j (z)(z), z ∈ V, g = s, 1

where hg
j (z) =

s∑
l=g+1

Ãgl(z)ϕg
α,j(z) + F̃g(αϕα,j−1(z), αφα,j−1(z), z, α), and as φα,j we shall

choose a solution of a linear system

dv

dz
= C(z)v + B(z)Q(z)ϕα,j−1(z)

with initial conditions v(z0 − pr) = 0.
Let’s consider ε, δ,M,N, σ > 0, such that for every n + m-vector which component

modulo it is less than n-vector δ, 0 < α < ε and all z ∈ V , inequalities take place

||∂F̃

∂a
(a, z, α)||, ||∂F̃

∂α
(a, z, α)|| < M,⇒ ||F̃ (a, z, α)|| < (|α| + ||a||)M
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||B(z)Q(z)|| < N, ||C(z)|| < T, ||diag(Jj(z), j = 1, τ)|| < N.

Let’s assume + =

max
1≤q≤s,1≤κ≤τq

ζq
κ∑

l=1

σ−l.

By induction on j in view of proposition 1 it is simple to show, that at all j ∈ N, z ∈ V
and 0 < α < χ = min{1, ε, δ/(1+ δ)/M/+, δT/(N+(e2prT − 1), 1/(2M+(1+2δ(N(e2prT −
1)/T )))} the inequalities

||ϕq
α,j(z)|| < α(1 + δ)M+ < δ, q = 1, s,

||φα,j(z)|| < α(1 + δ)MN+(e2prT − 1)/T,
||ϕq

α,j+1(z) − ϕq
α,j(z)|| < α(1 + max{N(e2prT − 1)/T ||ϕα,j−1(z) − ϕα,j−2(z)||,

||ϕq
α,j(z) − ϕq

α,j−1(z)||})M+ < ||ϕq
α,j(z) − ϕq

α,j−1(z)||/2, q = 1, s,
||φα,j+1(z) − φα,j(z)|| < N(e2prT − 1)/T ||ϕα,j(z) − ϕα,j−1(z)||.

(13)

take place.
From inequalities (13), for every fixed α ∈ (0, χ) the sequences {ϕα,j(z), j ∈ N},

{φα,j(z), j ∈ N} uniformly on V converge to some limiting vector-functions ϕα(z), φα(z),
and the pair ϕα(z), φα(z) is a private solution of the system (9), satisfying the inequalities

||ϕα(z)|| ≤ α(1 + δ)M+, ||φα(z)|| ≤ α(1 + δ)MN+(e2prT − 1)/T.

Thus sequences ϕα(z), φα(z) are the required ones. The proof of lemma 1 is now complete.
L e m m a 2. Consider an equation

αmw(n) = F (αkiw(i), i = 0, n − 1, z, αr) (14)

where m, r, ki are nonnegative rational numbers such that m > kn−1 ≥ kn−2 ≥ . . . ≥ k0 = 0
and r > 0; F is a function, analytic in a neighborhood of a set {(0C

n , z, 0) : z ∈ U} for
some domain U ⊂ C, and F (0C

n , z, 0) ≡ 0. Let us also assume that for τ = max
ki=0

i the

condition ∂F
∂w(τ) (0C

n , z, 0) 
≡ 0 holds.
Then for every positive real α there exists a solution w = ϕα(z) of the equation (14)

such that for α → +0 the sequence ϕα(z) uniformly converges to zero in some closed
subdomain V ⊂ U .

Proof of lemma 2. Let us take rational numbers 0 < ρτ+1 < ρτ+2 < . . . < ρn = m such
that there exist indexes τ = i0 < i1 < i2 < . . . < is = n and positive rational numbers
0 < d0 < d1 < d2 < . . . < ds−1 such that ∂F

∂w(ij) (0C
n , z, 0) 
≡ 0 and for ij < k ≤ ij+1 the

condition ρk = ρij + dj(k − ij) holds.

Then lemma 2 follows from lemma 1 after a replacement w(i) = αρiui, i = τ + 1, n − 1,

w(i) = ui, i = 0, τ − 1, w(i∗) = ui∗ −
(

τ∑
i=0

∂F
∂w(i) (0C

n , z, 0)ui

)
/ ∂F

∂w(τ) (0C
n , z, 0), α = εM ,

where M is a sufficiently great natural number.
R e m a r k 1. For every natural N , one may represent the solutions ϕα(z) in the

following form

ϕα(z) =
N∑

j=1

αj/Mφj(z) + αN/M ϕ̃α(z), (15)
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where M is a number from lemma 2 proof, φj are analytic in V functions and the sequence
ϕ̃α(z) uniformly in V converges to zero for α → +0.

The representation (15) can be obtained by repeated application of the replacement
v = α1/M(φ(z) + ṽ) which does not change the form of the equation (14) for certain φ.

Now theorem 1 implies from the obvious proposition, that every equation (7) may be
transformed either to the form (14) or to the form (7) with m = 0 with the help of the
replacement

w = ϕ0(z) +
s∑

j=1

αkjφj(z) + αkv,

where k > kj > kj−1 . . . k1 > 0 are rational numbers, φj are some function, analytic in
some point z1 from a neighborhood of z0.

From the proposition above and the remark 1 one can obtain
R e m a r k 2. For certain natural M and every natural N , one may represent the

solutions ϕα(z) in theorem 1 in the following form

ϕα(z) = ϕ0(z) +
N∑

j=1

αj/Mφj(z) + αN/M ϕ̃α(z)

where φj are analytic in a certain neighborhood V of the point z1 functions and the se-
quence ϕ̃α(z) uniformly in V converge to zero for α → +0.

Now from the theorem 1 and remark 2 for arbitrary constant C and positive real α
and arbitrary natural N there exist solutions u = ϕα(z̃) of the equation (6) of the form

ϕε(s) = C +
N∑

j=1

εj/Kφj(s) + εN/Kϕ̃α(s),

where φj(s) are analytic in a certain neighborhood V of some point z1 which in spite of the
equation (6) autonomy may be considered to be zero, and the sequence ϕ̃α(s) uniformly
in V converges to zero for ε → +0. It is simple to see that for sufficiently great N not all
φj are constant, because F (0C

n−1 , u, ε) 
≡ 0.

Then the equation (4) admits a solution of the form

w = ζα(x) = C +
N∑

j=1

αj/KMφj(α
1/M ln x) + αN/M ϕ̃α1/M (α1/M ln x),

where some φj are nonconstant and therefore admits movable critical singular points.
From the aforesaid we have the following
P r o p e r t y 1. The solutions of regular equation (4) with Bureau number p always

admit poles or critical poles of order p in zero. The solutions of irregular equation (4)
always admit critical singularities in zero.

II. Now let us consider the equation (2) in the case max
χ∈S

ν(χ) ≥ n. Assume

|χ|τ =
n−1∑
j=τ

χj, ν(χ) =
n−1∑

j=τ+1

(j − τ)χj.
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Consider two cases: 1) there exists such a τ ∗ that max
χ∈S

ντ∗(χ) = n− τ ∗, 2) there does not

exist such a τ ∗.
1) In this case let us apply a variable replacement

z = z0 + αx, w(j) = wj
0 + αwj, j = 0, τ ∗ − 1, w(τ∗) = u

for arbitrary constant z0, w
j
0. For α = 0 we’ll obtain a reduced equation of the form

u(m) =
∑
χ∈H

cχ(u)
m−1∏
j=1

(u(j))χj , (16)

where m = n−τ ∗; H is a certain set of m−1-vectors with nonnegative integer coordinates

χ = (χ1, . . . , χm−1) such that
m−1∑
j=1

jχj = m; cχ are not identically equal to zero polynomials

on u with constant coefficients. One can choose z0, w
j
0 so that the set H would not be

empty. Let us denote the degree and the senior coefficient of polynomial cχ by dχ and kχ

correspondingly, and |χ| =
m−1∑
j=1

χj.

The replacement
x = αx̃,
u = v/α,
u′ = αt−1p

for positive rational t reduces an equation (2) to a system{
p(m−1) =

∑
χ∈H

αt(|χ|−1)−dχkχ(p(m−2))χm−1(p(m−3))χm−2 . . . pχ1vdχ + o(α1/M),

v′ = pαt+1,
(17)

where M is a sufficiently great natural number. For t = max
χ∈H

dχ/(|χ| − 1) > 0 and

H0 = {χ ∈ H : dχ = t(|χ| − 1)} the reduced at α = 0 system (17) takes form{
p(m−1) =

∑
χ∈H0

kχ(p(m−2))χm−1(p(m−3))χm−2 . . . pχτ+1vdχ ,

v′ = 0.
(18)

For constant v the first equation of this system is a (4)-type equation with Bureau number
−1. Thus, from the property 1, p in the system (18) admits movable simple poles or critical
singular points. Let p = p0(x̃), v = v0 be a solution of the system (18) where p0 admits a
pole or a critical singularity. Then the system (17) admits a solution of the form

p = p0(x̃) + o(α1/M ), v = v0 +

(∫
p0(x̃)dx̃ + o(α1/M )

)
αt+1,

i.e. admits movable critical singular points. It means that the equation (2) in the consid-
ered case admits them.
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2) In this case let us denote τ ∗ = max
max
χ∈S

ντ∗(χ)>n−τ
τ , m = n − τ ∗. Consider a function

ϕ(t) = min
χ∈S

{t(|χ|τ∗+1 − 1) − ντ∗(χ) + m}. This function is obviously continuous on the

segment [0, 1], while ϕ(0) = s − mτ < 0 and ϕ(1) = s − 1 − mτ+1 > 0. Hence the
function ϕ has at least one root t = t0 on an interval (0, 1). Assume S0 = {χ : χ ∈
S, t0(|χ|τ∗+1 − 1) − ντ∗(χ) + m = 0.

Then after introducing in the equation (2) the replacement

z = z0 + αx, w(j) = wj
0 + αwj, j = 0, τ ∗ − 1, w(τ∗) = wτ∗

0 + αt0u,

with constant wj
0, z0 one can obtain at α = 0 the reduced equation of the form

u(m) =
∑
χ∈S0

(
aχ(z0)

τ∗∏
j=0

(wj
0)

χj

)
(u(m−1))χn−1(u(m−2))χn−2 . . . (u′)χτ∗+1 . (19)

One can choose constants z0, w
j
0 so that the right side of the equation (19) would be not

identically equal to zero. Then the equation (19) would be the (4)-type equation with
noninteger Bureau number t0. According to the property 1 it means that the reduced
equation (19) as well as the initial equation (2) admits movable critical singular points.

From the aforesaid we have the following
P r o p e r t y 2. The (2) satisfying an inequality max

χ∈S
ν(χ) ≥ n always admits

movable critical singular points.
From properties 1,2 the following theorem follows.
T h e o r e m 2. The equation (1) always admits movable singular points. It can be

free of movable critical singular points only if for equation (2) the inequality max
χ∈S

ν(χ) < n

holds and the corresponding equation (4) is regular with an integer Bureau number.
Let us continue the investigation of the equation (1) under the necessary for the

absence of movable critical singular points conditions of theorem 2. After reducing it to
the form (3) its solution can be found in the form

v(x) =
∞∑

j=0

vj(x), (20)

where the function v0 satisfies the equation (4); the function v1 satisfies the equation (4)

v(n) =
n−1∑
j=0

Lj(v0)v
(j), (21)

where Lj(v0) =
∑

χ∈S0

aχ(z0)χj

(
n−1∏
i=0

(v
(i)
0 (x))χi

)
/v

(j)
0 (x); and vj for j > 1 satisfy linear

differential equations of the form

v(n) =
n−1∑
j=0

Lj(v0)v
(j) + f(v0, v1, . . . , vj−1),
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which homogeneous part coincides with (21) and f is a function which polynomially
depends on v0, v1, . . . , vj−1.

The equation (21) is called the Euler equation for the equation (3). It can be also
directly obtained from the equation (3) as a reduced equation after introducing the re-
placement v = v0 + αṽ and assuming α = 0.

The necessary condition for the equation (3) to be free of solutions with critical sin-
gularities in zero is that its Euler equation for any v0 satisfying the equation (4) must
admit no solutions with critical singularity in zero. The numerical test for the absence
of movable critical singular points for the equation (3) can be obtained by consideration
Euler equations for v0 = λxt0 where λ is an arbitrary nonzero solution of the algebraic
equation (5). For this v0 Euler equation takes form

v(n) =
n−1∑
j=0

lj(λ)v(j)xj−n, (22)

where lj are polynomials on λ with constant coefficients. This equation admits solutions
of the form v = xr where r is an arbitrary solution of an equation

n−1∏
i=0

(r − i) =
n−1∑
j=0

lj

j−1∏
i=0

(r − i). (23)

Furthermore if the equation (23) admits multiple roots then the considered Euler equation
(22) admits solution with logarithmic branch points. So the solution of the equation (22)
admit no critical singularities in zero if and only if the equation (23) roots are integer and
pairwise different.

The special case when l0 = l1 = . . . = ln−1 = 0 needs special consideration. In this
case the equation (4) admits solutions with critical singularities in zero. Really, the after
introducing the replacement v = v0 + αṽ we’ll find the obtained equation’s solution in
the form ṽ = C + αkg(x) + o(αk) where C is a constant, k is a natural number and g
satisfied an equation g(n) = h(x) where h admits a pole of order less than n, i.e. g admits
logarithmic branch point in zero.

From aforesaid one can obtain the following
P r o p e r t y 3. For the equation (2) satisfying an inequality max

χ∈S
ν(χ) < n to be free

of movable critical singular points it is necessary that for any λ satisfying the equation (5)
the equation (22) has not identically equal to zero right side and the equation (23) roots
are integer and pairwise different.

If the condition of property 3 holds the further investigation of the equation (3) con-
sists of sequential determination of v2, v3, . . . for all v0 and λ and investigation of there
singularities in zero.

From property 3 one can obtain the following corollary concerning the special class of
equations (1).

T h e o r e m 3. The equation (1) which right side does not essentially depend on
w(n−1) and w(n−2) always admits movable critical singular points.
Proof of theorem 3. Let us denote the corresponding equation (23) roots by r1, r2, . . . , rn.
According to the property 3 for the equation (1) to be free of movable critical singular
points it is necessary that r1, r2, . . . , rn would be integer and pairwise different. Let it be.
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Under the theorem 3 conditions the equality ln−1 = ln−2 = 0 for the equation (23)
holds. It means that r1 + r2 + . . . + rn = 0 + 1 + . . . + n − 1 and r2

1 + r2
2 + . . . + r2

n =
02 +12 + . . .+(n−1)2. One can easily sea that it is possible only if r1, r2, . . . , rn are equal
to 0, 1, . . . , n− 1. But this is possible only in the case l0 = l1 = . . . = ln−1 = 0 which does
not satisfy the condition of proposition 3. The proof of theorem 3 is now complete.

From theorem 3 one can sea that for equations (1) free of movable critical points the
corresponding equation (4) would essentially depend on v(n−1) or v(n−2) and so its Bureau
number would be −1 or −2.

From aforesaid we obtain the following algorithm of equation (1) movable singularities
investigation.

Step 1. Check the inequality max
χ∈S

ν(χ) < n. If it does not hold the original equation

admits movable critical points.
Step 2. Compute the Bureau number and check whether it is equal to −1 or −2. If

it does not hold the original equation admits movable critical points.
Step 3. For any nonzero λ satisfying the equation (5) check whether at least one of

lj(λ) is nonzero and whether the roots of equation (23) are integer and pairwise different.
If it does not hold the original equation admits movable critical points.

This program realization of this algorithm has been obtained using the Mathematica
4 system in the form of the following module

BeginPackage[”ADE‘”]
Diffinst::usage = ”evalutes substitution in ODE”
Check1::usage = ”check of condition 1”
Check2::usage = ”check of condition 2”
Evalute::usage= ”Evaluates the investigation of a given equation eq of order n in the given
or arbitrary point z0”
Begin[”‘Private‘”]
Diffinst[de , u , x , u1 , x2 , x1 ] := {Module[{},

de[[1]] /. {de[[2]] -> Function[{z}, u1[u[x1[z]], x1[z]]],
de[[3]] -> x2[x]}], u, x}
Check1[de , n ] := Module[{u,x,a,z0},((Expand[aˆn*

Diffinst[de, u, x, Function[{u, x}, u], Function[{x}, z0 + a*x],
Function[{z}, (z - z0)/a]][[1]]]) /. a -> 0 )=== 0]

Check2[de , n ,u ,x ,a ,z0 ] := Module[{de0,b},
de0:=Expand[aˆ(n+1)*Diffinst[de, u, x, Function[{u, x}, u/a], Function[{x}, z0 +

a*x],
Function[{z}, (z - z0)/a]][[1]]];
b=If[((de0/.a->0)=!=0)&&((de0/.a->0)=!=ComplexInfinity),1,
de0:=Expand[aˆ(n+2)*Diffinst[de, u, x, Function[{u, x}, u/aˆ2], Function[{x}, z0

+ a*x],
Function[{z}, (z - z0)/a]][[1]]];
If[((de0/.a->0)=!=0)&&((de0/.a->0)=!=ComplexInfinity),2,0]];{b,de0}]

Evalute[de ,n ,z0 ]:=Module[{de0,d0,re,a,i,j,l,k,ks,eul,reul,r,r0,dec,dec0},
Off[Power::infy];
If[Not[Check1[de,n]],Print[”Weight-power condition doesn’t hold, so the considered
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equation admits movable critical singularities”],
Print[”Weight-power condition holds”]; de0=Check2[de,n,de[[2]],de[[3]],a,z0];
If[de0[[1]]==0,Print[”Bureau number is different from 1 or 2, so the considered equa-

tion admits movable critical singularities”],
Print[”Bureau number is ”,-de0[[1]]]; d0=de0[[2]]/.a->0; Print[”The reduced equa-

tion is ”,D[de[[2]][de[[3]]],{de[[3]],n}]==d0];
re=Expand[de[[3]]ˆ(de0[[1]]+n)*Diffinst[{D[de[[2]][de[[3]]],{de[[3]],n}]

-d0,de[[2]],de[[3]]}, de[[2]],de[[3]],
Function[{u,x},k*xˆ(-de0[[1]])],Function[{x},x],Function[{x},x]][[1]]];

ks=Solve[re==0,k]; If[Length[ks]< =1,
Print[”The considered equation is irregular and admits movable critical singularities”],

ks=NSolve[re==0,k]; dec0=True;
For[l=1;j=1,l¡=Length[ks],l++,If[(k/.ks[[l]])=!=0.,
Print[j,”]. ”,de[[2]]==(k/.ks[[l]])*de[[3]]ˆ(-de0[[1]])];j++;
Print[”The corresponding Euler equation”];
eul=Sum[(D[d0,D[de[[2]][de[[3]]],{de[[3]],i}]]/.{de[[2]]->Function[{z},

(k/.ks[[l]])*zˆ(-de0[[1]])]})*D[de[[2]][de[[3]]],{de[[3]],i}],{i,0,n-1}];
If[eul===0.,Print[”Euler equation is degenerative”];dec0=False,
Print[D[de[[2]][de[[3]]],{de[[3]],n}]==eul];
Print[”admits roots”];
reul=Expand[de[[3]]ˆ(-r+n)*Diffinst[{D[de[[2]][de[[3]]],{de[[3]],n}]

-eul,de[[2]],de[[3]]},
de[[2]],de[[3]],Function[{u,x},xˆr],Function[{x},x],Function[{x},x]][[1]]];

r0=r/.NSolve[reul==0,r];
Print[r0];
dec=True; For[i=1,i¡=Length[r0],i++,

dec=(dec && (Abs[FractionalPart[r0[[i]]]]<0.0005))];
If[dec,Print[”Euler numbers seem to be integer”],Print[”Some of the Euler numbers

are noninteger”]]; dec0=(dec0 && dec)]]];
If[dec0,Print[”All necessary conditions for the considered equation to be free of mov-

able critical singularities hold”],
Print[”The considered equation amdits movable critical singularities”]];
]]]]

End[];
EndPackage[]

The module provides a function ”Evalute” which checks the conditions necessary for
the given equation to be free of movable critical singularities. The syntax is following:

Evalute[rhs, w, z, n, z0], where rhs is the equation’s right-hand side, w is a dependant

variable, z is an independant variable, n is the equation’s order, and z0 is a point z0

in which the investigation is being carried out. Here are the examples of this function
applications.

Example 1. Second order equation w′′ = w′3:
Input: Evalute[w’[z]ˆ3, w, z, 2, z0]
Output: Weight-power condition doesn’t hold, so the considered equation admits movable
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critical singularities
Example 2. Abel equation w′ = w3:

Input: Evalute[w[z]ˆ3, w, z, 1, z0]
Output: Weight-power condition holds Bureau number is different from 1 or 2, so the
considered equation admits movable critical singularities

Example 3. Second order equation class w′′ = 2w′w+w3 +a(z)w2 +b(z)w′+c(z)w+
d(z):
Input: Evalute[2*w’[z]*w[z] + w[z]ˆ3 + a[z]*w[z]ˆ2 + b[z]*w’[z] + c[z]*w[z] + d[z], w, z,
2, z0]
Output: Weight-power condition holds
Bureau number is -1
The reduced equation is w”[z]=w[z]ˆ3+2w[z]w’[z]
1]. w==-0.732051/z
The corresponding Euler equation
w”[z]==3.0718w[z]/zˆ2-1.4641w’[z]/z
admits roots
{-2,1.5359}
Some of the Euler numbers are noninteger
2]. w==2.73205/z
The corresponding Euler equation
w”[z]==16.9282w[z]/zˆ2+5.4641w’[z]/z
admits roots
{-2,8.4641}
Some of the Euler numbers are noninteger
The considered equation amdits movable critical singularities

Example 4. Chazy barrier equation [6] w′′′ = ww′′ − 2w′2:
Input: Evalute[w[z]*w”[z] - 2*w’[z]ˆ2, w, z, 3, z0]
Output: Weight-power condition holds
Bureau number is -1
The reduced equation is w”’[z]==-2w’[z]ˆ2+w[z]w”[z]
The considered equation is irregular and admits movable critical singularities

Example 5. First Painlevé equation w′′ = 6w2 + z:
Input: Evalute[6*w[z]ˆ2 + z, w, z, 2, z0]
Output: Weight-power condition holds
Bureau number is -2
The reduced equation is w”[z]==6w[z]ˆ2
1]. w==1/zˆ2
The corresponding Euler equation
w”[z]=12w[z]/zˆ2
admits roots
{-3,4}
Euler numbers seem to be integer
All necessary conditions for the considered equation to be free of movable critical singu-
larities hold
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Summary

In the present paper the nonlinear arbitrary-order polynomial differential equations are
considered. It is shown that there solutions always admit movable singularities and the
algorithm of these singularities investigation is given. The program realization of this
algorithm in Mathematica 4 system is presented.
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Bargmann-Darboux Transformations
for Time-Dependent Quantum

Equations

A.A. Suzko 1

Joint Institute for Nuclear Research,
Dubna, Russia

A procedure is elaborated of constructing a time-dependent periodic Hamiltonian for
which Schrödinger equations admit analytic solutions. The method is based on the trans-
formation of time-independent soluble problems into time-dependent ones by a set of uni-
tary time-dependent transformations and a proper choice of initial states. A class of 2×2
periodic time-dependent potential matrices with cyclic matrix solutions is constructed in
a closed explicit form. The expectation value of Hamiltonian, total, dynamical, and geo-
metric phases are derived in terms of the obtained solutions.

1 Introduction

Extensive study of time-dependent quantum oscillators [1]–[5], the study of quantum
systems with a dynamical semisimple Lie group [6] have shown that an algebraic approach
is a very useful tool for investigation of the evolution of dynamic quantum systems. The
method of separation of variables [7], and the supersymmetry method [8] were suggested
for construction of time-dependent exactly solvable potentials. In this paper, we elaborate
the technique of constructing a periodic time-dependent Hamiltonian admitting exact
solutions with the use of an exactly soluble time-independent Hamiltonian, unitary time-
dependent transformations and a proper choice of initial states.

The technique of Bargmann-Darboux transformations and the supersymmetry method
in quantum mechanics yield a variety of soluble stationary models [9, 10, 11]. Each of
these models, to our mind, can be generalized to obtain the corresponding family of time-
dependent exactly soluble Hamiltonians. Our main findings are as follows. First, we
explicitly show how to construct exactly soluble time-dependent generalizations of any
exactly soluble time-independent model for a 2 × 2 Hamiltonian. We do this by using
unitary time-dependent transformations which change time-independent problems into
time-dependent ones and by choosing initial states so that to derive cyclic solutions which
require the initial states to be eigenstates of a time-independent Hamiltonian. We show
how to generate a large family of time-dependent models from one time-independent model
by employing a family of special time-dependent operators of transformation. Finally, as
an application of our method, we present explicit expression of an expectation value of

1Permanent address: Radiation Physics and Chemistry Problems Institute, Academy of Sciences of
Belarus, Minsk
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Hamiltonian, the nonadiabatic geometric phase, total and dynamical phases which are
derived in terms of the obtained cyclic solutions. In particular, we demonstrate how to
construct a set of periodic time-dependent Hamiltonians whose expectation values do not
depend on time. This procedure can be used for modeling quantum wells and wires.

Low-dimensional physical systems have attracted considerable attention as from the-
oretical and as well as from the practical point of view. Recent achievements in micro-
fabrication technology give opportunities to construct two-dimensional quantum wells,
superlattices, quantum wires and dots with properties of particle confinement. As it was
shown in [12] and [13] that under definite conditions a particle can be localized in a nonuni-
form high frequency electromagnetic field. Recently Tralle [14] following Cook et.al. [15]
considered a particle motion in a rapidly oscillating field of the form V (r, t) = V (r) cos ωt
in terms of the Shcrödinger equations with periodic and aperiodic V (r), correspond-
ingly. The main result of these authors is that for a sufficiently high frequency ω the
time-dependent potential is, in a sense, equivalent to the time-independent effective po-
tential and as a sequence a particle can be confined. This result is equivalent to the
result [13] where the classical movement was considered. Here we generate more com-
plicate time-dependent potentials which with special initial functions give the effect like
time-independent potentials, in particular, the expectation values of the time-dependent
Hamiltonian for cyclic solutions do not dependent on time. It means that these states
behave equivalent stationary states with conserve energy.

2 Construction of a time-dependent Hamiltonian

To simplify the description below, we give a scheme of generation of a time-dependent
Hamiltonian with corresponding solutions from a time-independent one [16]. Suppose
that the state |Ψ(t) > of a dynamical system evolves according to the matrix Schrödinger
equation

i
∂|Ψ(r, t) >

∂t
= H(r, t)|Ψ(r, t) > (1)

with � = 1 and T periodic time-dependent Hamiltonian, H(t) = H(t + T ),

H(r, t) = −∇2
r + V (r, t), (2)

the potential matrix V (r, t) = {Vij(r, t)} is Hermitian. Our goal is to give the procedure
of obtaining a wide class of time-dependent Hamiltonians H(t) for which exact solutions
of (1) can be found. To this end, we use the time-independent Hamiltonian

H̃(r) = −∇2
r + V (r) (3)

with a real symmetric potential matrix V (r) and �2/2m = 1, and a unitary time-
dependent transformation S(t) [6, 16]

|Ψ(r, t) >= S(t)|Φ(r, t) >, (4)
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by means of which the known time-independent Hamiltonian (3) is changed into the
time-dependent one

H(t) = S(t)H̃S†(t) + iṠ(t)S†(t). (5)

Here |Φ(r, t) > satisfies the equation of motion with the time-independent Hamiltonian

H̃(r)

i
∂|Φ(r, t) >

∂t
= H̃(r)|Φ(r, t) > (6)

and it is of the form

|Φ(r, t) >= exp(−iH̃(r)t)|Φ(r, 0) > . (7)

It is evident, the solutions |Ψ(r, t) > and |Φ(r, t) > can be defined, at corresponding
choice of initial functions, by solutions of the time-independent problem

H̃|Φ(Ẽ) >= Ẽ |Φ(Ẽ) > . (8)

If the system of Schrödinger equations (8) with some known time-independent Hamil-

tonian H̃(r) is exactly soluble, the system of equations (1) with the time-dependent
Hamiltonian (5) admits exact solutions too.

2.1 Construction of a 2 × 2 T -periodic Hamiltonian H(t)

Now consider reconstruction of the 2 × 2 periodic time-dependent Hamiltonian taken in
the form (2). We start with the time-independent Hamiltonian (3) with the 2 × 2 real
symmetric potential matrix V (r), V12(r) = V21(r). By means of a unitary time-dependent
transformation taken in the form

S(t) = exp(−is · h(t)) = exp(−i
3∑

i=1

sihi(t)) (9)

the time-independent Hamiltonian (3) with regard to equations (1) and (5) turns into the
time-dependent Hamiltonian

H(r, t) = −∇2
r + exp(−is · h(t))V (r) exp(is · h(t)) + (s · ḣ(t)). (10)

Here s = (1/2)σ is the spin operator, σ = (σ̂1, σ̂2, σ̂3) and σ̂i are the Pauli matrices and
a dot means a time-derivative. The solutions of (1) with Hamiltonian (10), according to
(4), are represented as

|Ψ(r, t) >= exp(−is · h(t) exp(−iH̃(r)t)|Φ(r, t = 0) > . (11)

It is convenient to present the 2 × 2 Hamiltonian (3) by the sum of diagonal and zero
trace matrices as

H̃(r) = −∇2
r +

(
V11(r) V12(r)
V21(r) V22(r)

)
=
(
−∇2

r + q(r)
)
Î + 2(s · B(r)), (12)
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with the evident notations : q(r) = (V11(r) + V22(r))/2, B1(r) = V12(r), B2(r) = 0,
B3(r) = (V11(r) − V22(r))/2 and Î is the identity matrix. Then the time-dependent
Hamiltonian (10) can be represented as

H(r, t) =
(
−∇2

r + q(r)
)
Î + 2 exp(−is · h(t))(s · B(r)) exp(is · h(t)) + (s · ḣ(t)). (13)

Obviously, the transformation (9) does not change the first term of (12) and transforms the
second term. It is evident that the Hamiltonian for the two coupled system of equations
corresponds to the three- or two-dimensional problem with coordinates Bi(r) dependent
on the extra parameter r. Such a Hamiltonian may be considered as an analog of the
inhomogeneous magnetic field B(r) or a model Hamiltonian for describing a two-level
atom.

In terms of the evolution operator U(t) = U(t, 0), the solution |Ψ(r, t) > is

|Ψ(r, t) >= U(t)|Ψ(r, 0) >, U(0) = 1. (14)

In the case when |Ψ(r, 0) >= |Φ(r, 0) >, it is easy to find from (11) and (14) a very
important relationship between the operators U(t) and S(t)

U(t) = S(t)) exp−iH̃t = exp(−is · h(t)) exp(−iH̃t). (15)

The evolution operator in one period is written as

U(T ) = exp(−is · h(T )) exp(−iH̃T ). (16)

In assumption that S(T ) and H̃ commute [S(T )H̃] = 0, we easily obtain that U(T ) and

H̃ commute. Indeed,

U †(T )H̃U(T ) = S†(T ) exp(−iH̃T )H̃ exp(iH̃T )S(T ) = S†(T )H̃S(T ) = H̃,

i.e.,

[U(T )H̃] = 0 (17)

and therefore U(T ) and H̃ have common eigenvectors |Φν >.
Now consider cyclic solutions that after one period T (T = 2π/ω) are recovered up to

the phase, i.e., initial states |Ψν(0) > are eigenvectors of U(T ) and because of (17) they

are eigenvectors of the effective Hamiltonian H̃. This leads to

|Ψν(r, T ) >= U(T )|Ψν(r, 0) >= exp(−iβν)|Ψν(r, 0) >, (18)

|Ψν(0) >= |Φν >, (19)

where βν is the total phase. From this, the matrix representation of U(T ) can be written
as

U(T ) =
∑

ν

exp(−iβν)|Φν >< Φν |
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and U(T ) has a set of linearly independent eigenvectors |Φν > with eigenvalues exp(−iβν).
With allowance for (11) the recurrent solutions at any time are written as

|Ψν(r, t) >= exp(−is · h(t)) exp(−iẼνt)|Φν(r) > . (20)

It is evident now, to determine the cyclic solutions we need time-independent solutions.
Thus, whenever H̃(r) is an exactly soluble time-independent Hamiltonian, the properly
generated time-dependent system of equations has cyclic exact solutions. The evolution
of an arbitrary initial state |Ψ(r, 0) >=

∑
ν αν |Ψν(r, 0) > can be represented as a su-

perposition of a basis set of recurrent linearly independent vector solutions, |Ψ(r, t) >=∑
ν αν |Ψν(r, t) > .
Now we can proceed to calculations of geometric phase, associated with the evolution

of cyclic solutions, dynamical phase and the expectation value of Hamiltonian. To find
the dynamical phase δν , we need the expectation value εν(t) of H(t),

δν =

∫ T

0

εν(t)dt =

∫ T

0

< Ψν(r, t)|H(t)|Ψν(r, t) > dt

=

∫ T

0

< Ψν(r, 0)|U †(t)H(t)U(t)|Ψν(r, 0) > dt. (21)

By using (15) and (5) we have

U †(t)H(t)U(t) = eiH̃(r)t
(
H̃(r) − iS†(t)Ṡ(t)

)
e−iH̃(r)t.

Since for cyclic solutions |Ψν(r, 0) >= |Φν(r) > and |Φν(r) > is an eigenstate vector of

H̃(r) with an eigenvalue Ẽν we express the expectation value εν(t) and the dynamical
phase δν as

εν(t) = Ẽν− < Φν(r)|iS†(t)Ṡ(t)|Φν(r) >, (22)

δν = ẼνT −
∫ T

0

< Φν(r)|iS†(t)Ṡ(t)|Φν(r) > dt. (23)

Hence, the geometric phase ϕν , given by removing the dynamical phase from the total
phase βν , is

ϕν = βν − δν = βν − ẼνT +

∫ T

0

< Φν(r)|iS†(t)Ṡ(t)|Φν(r) > dt. (24)

It should be noted that for a time-periodic and unitary S(t), the expression (24) for
the geometric phase is simplified

ϕν =

∫ T

0

< Φν(r)|iS†(t)Ṡ(t)|Φν(r) > dt. (25)

Really, in this case in contrast with (16) the time evolution operator after one period

is U(T ) = exp(−iH̃(r)T ). Since |Ψν(0, r) > is an eigenstate of U(T ) with eigenvalue
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exp(−iβν) then |Ψν(0, r) > is also eigenstate of H̃ with eigenvalue βν/T . At the same

time, since eigenvalues of H̃ are Ẽν , then βν/T = Ẽν and (25) is valid.

Examples. Consider some particular examples of constructing a time-dependent
Hamiltonian (13) with the corresponding solutions by using SU(2) transformation (9) in
which the components of h(t) are linear functions of time, hi(t) = ωit

S(t) =
3∏

i=1

Si(t) = exp(−is · wt).

1 case. Let S(t) = S3(t) = exp(−iσ̂3ωt/2) where ω is some constant angular velocity.
Then, in accordance with (5) or (13) the time-independent Hamiltonian (12) is trans-
formed into the time-dependent one as

H(r, t) =
(
−∇2

r + q(r)
)
Î +

(
V11(r)−V22(r)+ω

2
V12(r) exp(−iωt)

V21(r) exp(iωt) −V11(r)−V22(r)+ω
2

)
. (26)

It is evident that H(r, t) is time-periodic, H(r, t = 0) = H(r, t = T ), T = 2π/ω. Its

Routhian is H̃(r) connected with H(r, t = 0) by H(r, 0) = H̄(r) + ω
2
σ̂3. By using (20) the

cyclic solutions can be written as

|Ψν(r, t) >=

(
exp(−i(Ẽν

1 + ω3/2)t) 0

0 exp(−i(Ẽν
2 − ω3/2)t)

)
|Φν(r) >, (27)

where Ẽν
α = (Ẽν − Δα) and Δα can be the energy of inner structure (threshold).

2 case. If S(t) is chosen as an operator of rotation around y-axis

S2(t) = exp(−iσ̂2ω2t/2) =

(
cos(ω2t/2) − sin(ω2t/2)
sin(ω2t/2) cos(ω2t/2)

)
, (28)

then in accordance with (13) the time-dependent Hamiltonian H(t) takes another form

H(r, t) = (−∇2
r + q(r))Î + (29)

+

(
V11−V22

2
cos ω2t − V12 sin ω2t V12 cos ω2t + V11−V22

2
sin ω2t − iω2/2

V12 cos ω2t + V11−V22

2
sin ω2t + iω2/2 −(V11−V22

2
cos ω2t − V12 sin ω2t)

)
.

In accordance with (20) the recurrent solutions of equation (1) are immediately written
as

|Ψν(r, t) >=

(
cos(ω2t/2) exp(−iẼν

1 t) − sin(ω2t/2) exp(−iẼν
2 t)

sin(ω2t/2) exp(−iẼν
1 t) cos(ω2t/2) exp(−iẼν

2 t)

)
|Φν(r) > . (30)

3 case. Let S(t) be chosen as an operator of rotation around x-axis

S1(t) = exp(−iσ̂1ω1t/2) =

(
cos(ω1t/2) −i sin(ω1t/2)

−i sin(ω1t/2) cos(ω1t/2)

)
. (31)
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Then, from (13) the time-dependent Hamiltonian H(t) is

H(r, t) =
(
−∇2

r + q(r)
)
Î (32)

+

(
V11−V22

2
cos(ω1t) V12 − ω1

2
+ iV11−V22

2
sin(ω1t)

V12 − ω1

2
− iV11−V22

2
sin(ω1t) −V11−V22

2
cos(ω1t)

)
.

The cyclic solutions of (1) with account of (20) are written as

|Ψν(r, t) =

(
cos(ω1t/2) exp(−iĒν

1 t) −i sin(ω1t/2) exp(−iĒν
2 t)

−i sin(ω1t/2) exp(−iĒν
1 t) cos(ω1t/2) exp(−iĒν

2 t)

)
|Φν(r) > . (33)

Now we show that for all the considered examples with hi(t) = ωit the expectation
values of H(t) for corresponding cyclic solutions are independent on time. Really, the
relation (22), with account of expressions for potentials and cyclic solutions (26)–(33),
gives the expectation values of H(t) as

εi
ν =< Φν(r)|H̃(r)|Φν(r) > +

ωi

2
< Φν(r)|σ̂i|Φν(r) >= Ẽν +

ωi

2
¯̂σi

ν . (34)

It means that equation (1), for obtained family of time-dependent potential matrices,
possesses solutions and properties like time-independent ones. Note, the spin-expectation
value

¯̂σi
ν =< Ψν(t, r)|σ̂i|Ψν(t, r) >=< Φν(r)|σ̂i|Φν(r) >

is none other than spin-alignment along the rotating axis and does not depend on time
in this case. For the dynamical phase δν from (34) we get

δi
ν =

T∫
0

εi
ν(t)dt = ẼνT + π ¯̂σi

ν . (35)

Removing the dynamical phase (35) from the total phase

βν = π + ẼνT. (36)

we get the geometric phase ϕi
ν

ϕi
ν = (βν − δi

ν) = π(1 − ¯̂σi
ν). (37)

One can easily see that the geometric phase is determined by the spin-expectation value
¯̂σi

ν along the rotating axis. It is evident, in all considered cases the Hamiltonian (26),
(29), (32) is T -periodic, T = 2π/ω, and the solutions (27), (30) and (33) are are 2T -
periodic and change sign after one period. As one can easily seen, if S(t) is chosen to be
T -periodic then the Hamiltonian becomes T/2-periodic, and the solutions are T -periodic.
In this case, the total phase is multiply of 2π, and the geometric phase is determined by
(25).

Thus, by means of a different choice of transformation operators Si(t), i = 1, 2, 3, three
families of time-dependent potential matrices with the corresponding cyclic solutions are
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generated in a closed form from one family of time-independent potential matrices. It is
evident that a more general transformation can be taken and can be used to change time-
independent Hamiltonian H̃ into time-dependent H(t). For example, S(t) can be taken as
a direct product of the Si(t), S(t) =

∏3
i=1 Si(t), or with a more complicated dependence of

S on time. So, whenever V (r) is an exactly soluble potential matrix for the ordinary time-
independent system of Schrödinger equations, a family of exactly soluble time-dependent
potential matrices for the system of Schrödinger equations (1) can be generated.

Let V (r) be a Bargmann potential matrix for which the system of equations (8) has
exact solutions. For example, the matrix elements of the transparent potential and the
relevant Jost solutions are [10]

Vαα′(r) = 2
d

dr

∑
νλ

exp(−κν
αr)γν

αP−1
νλ (r)γλ

α′ exp(−κλ
α′r), (38)

F±
αα′(k, r) = exp(±ikαr)δαα′ (39)

−
∑
νλ

γν
α exp(−κν

αr)P−1
νλ (r)

∫ ∞

r

γλ
α′ exp(−(κλ

α′ ± ikα′)r′)dr′,

where

Pνλ(r) = δνλ +
m∑
α′

γν
α′γλ

α′

κν
α′ + κλ

α′
exp(−(κν

α′ + κλ
α′)r).

The normalized solution for the vector function of the bound state is immediately ex-
pressed through the matrix Jost solutions taken at the energy of the bound state, k = iκν ,
(iκν)

2 = −Ẽν , kα = (Ẽ − Δα)1/2,

Φα(Ẽν , r) =
m∑
α′

Fαα′(k = iκν , r)γν
α′ , α, α′ = 1, 2. (40)

Here, the indices ν and λ correspond to the bound states characterized by the energies Ẽν

and amplitudes |γν > determine normalizing matrices |γν
α >< γν

α′ | and the channel indices
are labeled as α, α′. Substitution (38) into (26), (29), (32) and (40) into (27), (30), (33)
allows determination of three families of potential matrices and pertinent cyclic solutions
in an closed analytical form. Let us take another exactly solvable example, the potential
matrix and corresponding regular solutions within the radial Gelfand-Levitan approach,
when the spectral matrix for H̃(r) coincides with one for free Hamiltonian at E > 0, can
be written as

Vαα′(r) = 2
d

dr

∑
νλ

sinh[κν
αr]/κν

α)cν
α′P−1

νλ (r)cλ
α′(sinh[κλ

α′r]/κλ
α′ , (41)

φαα′(k, r) =
sin[kαr]

kα

δαα′ −
∑
νλ

cν
α

sinh[κν
αr]

κν
α

P−1
νλ (r)cλ

α′

∫ r

0

sinh[κλ
α′r]

κλ
α′

sin[kα′r′]
kα′

dr′, (42)
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where cν
α determine normalizing matrices Cν = |cν

α >< cν
α| and

Pνλ(r) = δνλ +
m∑
α′

cν
α′cλ

α′

∫ r

0

(sinh[κν
α′r]/κν

α′)(sinh[κλ
j′r

′]/κλ
α′)dr′.

The normalized solution for the vector function of the bound state is given as

Φα(Ẽν , r) =
m∑
α′

φαα′(k = iκν , r)cν
α′ . (43)

Substituting (41) into (26), (29), (32) and (43) into (27), (30), (33) we readily obtain
another three families potentials and corresponding periodic solutions in an explicit form.
It is worth noting that the class of exactly solvable stationary problems is very wide. Al-
gebraic Bargmann-Darboux transformations give multiple examples of problems that can
be used to generate a large class of explicit time–dependent potential matrices admitting
exact solutions of the Schrödinger equation (1). We consider 2 × 2 matrix equations as
examples. In principle, this procedure can be used for the generation of an exactly soluble
potential matrix for systems of N coupled time-dependent equations.

3 Conclusion

We have developed the method of solving a system of coupled time-dependent Schrödinger
equations in an explicit form by using unitary time-dependent transformations which
change time-independent problems into time-dependent ones. In distinction to earlier
studies, the method is based on soluble time-independent equations and a special choice of
initial functions. This approach yields a large class of previously unknown exactly solvable
nonstationary models and can be used for investigation of two- and three–dimensional
objects. The family of time-dependent soluble potential matrices, for which a system of
two-coupled Schrödinger equations has exact solutions, is generated. As an application of
the suggested method, we have presented explicit expressions of the expectation value of
H(t), the nonadiabatic geometric phase, total, and dynamical phases, which are derived in
terms of obtained cyclic solutions. Time-dependent models, for which expectation values
don’t dependent on time, are given.
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Complex dynamical systems with some degrees of freedom are analyzed on the basis
of the inverse scattering problem in the adiabatic representation. Matrix elements of an
exchange interaction determining the ”slow” subsystem are calculated and studied in terms
of exact solutions obtained within the parametric inverse problem for the ”fast” subsystem.
The main characteristics of the slow subsystem Hamiltonian depend on the statement of
the parametric inverse problem: namely, the fast subsystem is given on the semi-axis
or on the entire axis. It is shown that in the case of the radial parametric problem or
parametric problem specified on the semi-axis, matrix elements of the induced vector and
scalar potentials and eigenfunctions are singular at the degeneration points of two levels.
The opposite occurs in the case of the parametric problem specified on the entire axis, they
are regular at the degeneration points of two levels. The influence of parametric spectral
characteristics of the fast subsystem on the behavior of the slow subsystem is studied. In
particular, it is shown that the choice of normalizing functions determining the transparent
symmetric potential in fast variables leads to the zero coupling between states for two-level
systems, (even at the point of degeneration), while another choice of normalization factors
leads to nonsymmetric potentials and nonzero coupling for the same energy levels. Our
approach suggested allows the investigation of adiabatically driven quantum systems with
a prescribed dependence on parametric adiabatic variables.

1 Introduction

Consider the system evolving according to the Schrödinger equation

i�
∂|Ψ(t) >

∂t
= H(x(t))|Ψ(t) >, (1)

where the Hamiltonian H(x(t)) is given in the form

H(x(t)) = −∂2/∂x2 + h(x(t)), h(x(t)) = −∂2/∂y2 + V (x(t), y). (2)
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If ψn(x(t); y) are solutions to the equation

h(x(t))|ψn(x(t); y) >= En(x(t))|ψn(x(t); y) > (3)

and form a complete orthonormal set |ψn(x; y) >< ψn(x; y′)| = δ(y − y′), < ψn(x; y) |
ψm(x; y) >= δnm ∀x, with elements depending on x = x(t) parametrically. Then Ψ can
be expressed by the expansion

|Ψ(x(t), y) >=
∑

n

|n >< n|Ψ >=
∑

n

∫
ψn(x(t); y)Fn(x(t)) (4)

over the eigenstates of the self-adjoint parametric Hamiltonian (3). Upon substituting
the expansion (4) into the initial Schrödinger equation (1) and using the relations of
orthonormalization, we arrive at a multichannel system of gauge equations

i�
∂

∂t
F (x(t)) = [−(∇x + A(x))2 + V (x)]F (x(t)). (5)

Here A(x) and V (x) are the effective vector and scalar potentials, respectively, the matrix
elements of which are induced by the basis functions ψ(x; y) of the parametric problem
(3)

Anm(x) =< ψn(x; y)|∇x|ψm(x; y) >, (6)

Vnm(x) = < ψn(x; y)|h(x)|ψm(x; y) > −i� < ψn(x; y)|∂tψm(x; y) >

≡ En(x)δnm − i�Bnm(x). (7)

In the case of a slow and smooth evolution in time of the collective coordinates x(t), the
second derivative is neglected in (2), H(x(t)) → h(x(t)), and the solution of equation (1)
is sought in the form of an expansion (see, for instance, [1],

|Ψ(x(t), y) >=
∑

n

cn(x(t)) exp
(
− i

�

∫ t

0

En(x(t′))dt′
)
|ψn(x(t); y) > . (8)

With account of (8) and (3) in (1), we find that the system of equations for cn(t) can be
written in the form

∂tcn(t) =
∑
m

Bnm(x(t)) exp
[− i

�

∫ t

0

(En(t′) − Em(t′))dt′
]
cm(t) . (9)

The matrix elements of the exchange interaction Bnm(x(t)) are generated by the basis
functions |n > of the ”instantaneous” Hamiltonian (3)

Bnm(x(t)) =< n|ṁ >= Anm(x(t)) · ẋ(t), (10)

where the dot denotes the time derivative. Thus, the initial problem in the adiabatic
approach is reduced to the consistent solution of two problems: a parametric one (3) and
a multichannel one for the system of gauge-type equations (5) or (9). Here, we assume
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that H(x(t)) is real, limited, and continuous in x. Because, for each x, the eigenfunctions
are real valued and orthonormal then the nonadiabatic couplings Anm = −Amn in (6) are
real and antisymmetric in n and m. The matrix elements of (6) of the induced connection
A can be computed in terms of the analytic eigenfunctions of parametric equations (3)
for the given functional dependence of scattering data {S(x, k),M2(x), E(x)} on the slow
coordinate variable x(t).

In accordance with the general definition of the inverse scattering problem [2] and
[3], the parametric inverse problem [4] consist of the reconstruction of the potential and
corresponding solutions from the known scattering data {S(x, k),M2(x), E(x)} (in the
Marchenko approach) or the spectral data {ρ(x, k), N2(x), E(x)} (Gelfand-Levitan ap-
proach) parametrically depending on the coordinate variable x. This dependence reflects
the peculiarity of the nonstandard parametric inverse problem. Specifying this depen-
dence and employing the algebraic methods of the inverse scattering problem, we present
a wide class of potentials for which one can construct exactly solvable models and, conse-
quently, derive solutions in a closed analytic form. These generalized Bargmann potentials
are defined by the rational Jost functions f ≡ f+,

f(x; k) =
◦
f (k)

∏ k − iα(x)

k + iβ(x)
(11)

parametrically depending on the ”slow” dynamical variables x through the dependence of
spectral parameters on these variables. This situation is, to a certain extent, analogous
to the theory of nonlinear evolution equations. The parametric Jost function (11) has N
curves k = −iβj(x), j = 1, 2, ...N of simple poles and N curves of simple zeros k = iαj(x)
defined as functions of the parametric variable x.

For real potentials, the curves iαj(x) and −iβj(x) must be situated symmetrically with
respect to the imaginary axis in the complex k plane. In α(x), there are not only zeros on
the imaginary semi-axis corresponding to the bound states Re κj(x) = 0, Im κj(x) > 0
for each value of x, but, also, zeros in the lower k half-plane with Im νj(x) < 0 (the
number of simple pole curves of βj(x) equals the total number of κj(x) and νj(x)). In
this case, the scattering matrix and the spectral function assume the form

S(x; k) =
◦
S (k)

∏ (k + iα(x))(k + iβ(x))

(k − iβ(x))(k − iα(x))
, ρ(x; k) =

◦
ρ (k)

∏ (k − iβ(x))(k + iβ(x))

(k + iα(x))(k − iα(x))
.(12)

For such S(x; k) and ρ(x; k), the kernels of the integral equations of the parametric inverse
problem can be represented as the sums of terms with a factorized dependence on the
fast variable y: Q(x; y, y′) =

∑N
i Bi(x; y)Bi(x; y′). When the kernel Q is inserted into the

base parametric equation of the inverse problem,

K(x; y, y′) + Q(x; y, y′) +

∞(y)∫
y(0)

K(x; y, y′′)Q(x; y′′, y′)dy′ = 0, (13)

it is evident that the kernel of the generalized shift K(x; y, y′) also becomes degenerate:
K(x; y, y′) =

∑N
i Ki(x; y)Bi(x; y′). As a consequence, the system of integral equations of

the inverse problem is reduced to a system of algebraic equations. Then, the spherically
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nonsymmetric potential and solutions corresponding to it can be expressed in a closed
analytic form in terms of the known solutions and spectral characteristics by using the
generalized equations of the parametric inverse problem,

V (x, y) =
◦
V (y) ∓ 2

d

dy
K(x; y, y), (14)

φ(x; k, y) =
◦
φ (k, y) +

∞(y)∫
y(0)

K(x; y, y′)
◦
φ (k, y′)dy′. (15)

Integration limits in (13), (15), and the signs in (14) depend on the particular approach
to the inverse problem. The limits from y to ∞ and the minus sign correspond to the
Marchenko approach. Limits [0, y] and plus sign represent the Gelfand–Levitan approach.

Within the generalized Marchenko approach [5], the integral kernels Q(x; y, y′), de-
pendent on x as a parameter

Q(x; y, y′) =
1

2π

∞∫
−∞

[
◦
S (k) − S(x; k)]

◦
f (k, y)

◦
f (k, y′)dk (16)

+
m∑
n

M2
n(x)

◦
f (iκn(x), y)

◦
f (iκn(x), y′) −

◦
m∑
n

◦
M

2

n

◦
f (i

◦
κn, y)

◦
f (i

◦
κn, y

′) ,

are constructed by using two sets of the scattering data. These are the set {S(x; k),
En(x), M2

n(x)}, corresponding to equation (2) for every value of parameter x, and the

ordinary scattering data { ◦
S (k),

◦
En,

◦
M

2

n}, corresponding to (2) with V (x; y) = 0 and
◦
V (y) 
= 0. The functions

◦
f (k, y) are standard Jost solutions with the known potential

◦
V (y). Potentials (14) and Jost solutions (15) are determined from K(x; y, y′), with
respect to which, the linear integral equation (13) is solved for every fixed x.

2 Exactly solvable models within the parametric in-

verse problem on the semi-axis

For the parametric inverse problem, radial or on a semi-axis, when
◦
V (y) = 0 and,

correspondingly,
◦
S (k) = 1, the kernel of the basic integral equation (13) in the Marchenko

approach,

Q(x; (y + y′)) =
1

2π

∞∫
−∞

[1 − S(x; k)] exp[ik(y + y′)] dk (17)

+
N∑
n

M2
n(x) exp[−κn(x)(y + y′)] ,
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with the scattering matrix (12), can be rewritten as

Q(x; (y + y′)) = −i
N∑
n

Res S(k = iβn(x)) exp[−βn(x)(y + y′)] (18)

+
N∑
n

{−iRes S(k = iκn(x)) exp[−κn(x)(y + y′)] + M2
n(x) exp[−κn(x)(y + y′)]} .

Following the procedure of constructing phase–equivalent potentials suggested in [6] for
the one-dimensional problem and in [4] for the parametric problem, we shall reduce so-
lution of the inverse problem to the successive applications of two procedures. First, one
can cancel out the second summation in the right-hand side of (18) if the normalization

functions M2
n(x) =

◦
M

2

n (x) are chosen to be equal to i Res S(k) at k = iκn(x),

◦
M

2

n (x) = i Res S(k)|k=iκn(x) (19)

= −2κn(x)(κn(x) + βn(x))

(κn(x) − βn(x))

N∏
n′ 	=n

(κn(x) + βn′(x))(κn(x) + κn′(x))

(κn(x) − βn′(x))(κn(x) − κn′(x))
.

As a result, we obtain a simpler expression for the kernel Q =
◦
Q,

◦
Q (x; y, y′) =

N∑
n

An(x) exp[−βn(x)(y + y′)], (20)

where

An(x) =
2βn(x)(βn(x) + κn(x))

(βn(x) − κn(x))

N∏
n′ 	=n

(βn(x) + κn′(x))(βn(x) + βn′(x))

(βn(x) − βn′(x))(βn(x) − κn′(x))
. (21)

Inserting the kernel
◦
Q (x; y, y′) (20) into the parametric Marchenko equation (13), we

obtain

◦
K (x; y, y′) +

N∑
n

An(x)
{

e−βn(x)y +

∞∫
y

◦
K (x; y, y′′)e−βn(x)y′′

dy′′
}

e−βn(x)y′
= 0,

where the expression in braces is the Jost solution
◦
f (k = iβn(x), y) for the sought

potential
◦
V (x; y). Such that

◦
K (x; y, y′) has a form similar to that of

◦
Q (x; y, y′) from

(20) with a separabilized dependence on y and y′ and with a parametric dependence on
x,

◦
K (x; y, y′) = −

N∑
n

An(x)
◦
f (iβn(x), y) exp[−βn(x)y′]. (22)
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Substituting this kernel of the generalized shift from the free wave to the Jost solution
into the triangular integral equation

◦
f (x; k, y) = exp(iky) +

∞∫
y

◦
K (x; y, y′) exp(iky′)dy′ (23)

we get, at k = iβn(x), a set of equations for
◦
f (iβn(x), y),

◦
f (iβn(x), y) =

N∑
n′

exp[−(βn′(x)y]P−1
n′n(x; y),

where Pnn′(x; y) is defined as follows:

Pnn′(x; y) = δnn′ + An(x)
exp[−(βn(x) + βn′(x))y]

βn(x) + βn′(x)
.

Then, by substituting (22) into the parametric equations of the inverse problem (13) –
(15), we obtain

◦
V (x; y) = −2

d2

dy2
ln det ||P (x; y)||, (24)

◦
f± (x; k, y) = exp(±iky) +

N∑
nn′

An(x)P−1
nn′(x; y)

exp[−(βn(x) + βn′(x) ∓ ik)y]

(βn(x) ∓ ik)
. (25)

A similar situation is obtained in the Gelfand–Levitan approach, only, there, the
normalizing functions N2

n(x) are expressed through Res [f+(x; k)f−(x; k)]−1 at the points
k = iκn(x):

N2
n(x) = 4iκ2

n(x)[(df+(x; k)/dk)|k=iκn(x)f−(iκn(x))]−1.

The corresponding algebraic formulae for the one-dimensional Bargmann potentials and
their solutions [6] can be obtained directly if we set κn(x) ≡ κn and βn(x) ≡ βn.

At the second stage, by using the corresponding
◦
f (x; k, y) as the initial solutions,

we obtain a family of potentials and solutions for arbitrary normalizing functions M2
n(x)

that do not obey the condition (19):
◦

M
2

n (x) < M2
n(x). Since the scattering S(x; k)–

function is independent of the choice of the normalization functions M2
n(x), we have

S(x; k) =
◦
S (x; k). As a result, the integral term in a generalized expression such as (16)

for Q(x; y, y′) vanishes. Since, on the other hand, both V (x; y) and
◦
V (x; y) possess the

same potential curves (curves of bound states) En(x) =
◦
En (x) but different normalization

factors M2
n(x) and

◦
M

2

n (x), respectively, we find that

Q(x; y, y′) =
N∑
n

(M2
n(x)− ◦

M
2

n (x))
◦
f (iκn(x), y)

◦
f (iκn(x), y′). (26)
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And similarly, the kernel of the generalized shift K(x; y, y′) is written as

K(x; y, y′) = −
N∑
n

(M2
n(x)− ◦

M
2

n (x))f(iκn(x), y)
◦
f (iκn(x), y′). (27)

Inserting K(x; y, y′) and Q(x; y, y′) into the basic parametric Marchenko equations (13)–
(15), we derive the following relations for the potential and Jost solutions:

V (x; y) =
◦
V (x; y) + 2

d2

dy2
ln det ||P (x; y)|| , (28)

f±(x; k, y) =
◦
f± (x; k, y)−

−
N∑
nm

(M2
n(x)− ◦

M
2

n (x))
◦
f (iκn(x), y)P−1

nm(x; y)

∫ ∞

y

◦
f (iκm(x), y′)

◦
f± (k, y′)dy′.

The explicit dependence on the fast variables is defined by the Jost solutions (25) deter-
mined at k = iκn(x), i.e., on the level-energy curves depending on the parametric variable
x. Here we employed the notation

Pnm(x; y) = δnm + (M2
n(x)− ◦

M
2

n (x))

∫ ∞

y

◦
f (iκn(x), y′)

◦
f (iκm(x), y′)dy′.

Since S(x; k), corresponding to the two-dimensional potentials V (x; y) (28), is inde-

pendent of the normalizations M2
n(x), S(x; k) =

◦
S (x; k), the formula (28) represents a

parametric family of potentials depending on N parametric functions M2
n(x). A change

of the normalization functions M2
n(x) of the parametric eigenstates leads to a change in

the potentials, the Jost, regular, and basis solutions of the parametric Hamiltonian, and
the matrix elements of the exchange interaction, and, therefore, strongly influences the
behavior of the dynamical quantum systems.

2.1 Bargmann potentials with two potential curves

Let us now present the case with two potential curves in the problem on the semi-axis.
The Jost function (11) can be written in the form

f(x; k) =
(k − iκ1(x))(k − iκ2(x))

(k + iβ1(x))(k + iβ2(x))
; Im {κj(x)} = Im {βj(x)} = 0, j = 1, 2 (29)

and

S(x; k) =
(k + iκ1(x))(k + iβ1(x))

(k − iβ1(x))(k − iκ1(x))

(k + iκ2(x))(k + iβ2(x))

(k − iβ2(x))(k − iκ2(x))
. (30)

Two pole curves correspond to the zero curves k = iκj(x) of the parametric Jost function
f+(x; k)), the other pole curves correspond to the pole trajectories k = iβj(x) of the
parametric Jost function f−(x; k).
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We have, necessarily, βj(x) > 0 (for the Jost function f+(x; k) to be analytic in the
upper half-plane k for all x). When κj(x) > 0, we have the bound state curves (the
potential curves of bound states Ej(x) = −κ2

j(x)); when κj(x) < 0, we do not have any
bound states. In principle, the functions α(x) in (11), (12) can change from negative
values α(x) = −ν(x) (antibound state trajectory) to positive values α(x) = κ(x). If
αj(x) = −νj(x) < 0 ∀x, the potential is not deep and wide enough to produce bound
states and the potential corresponds to S(x, k) with pole curves at k = iβj(x). Here
we assume that κj(x) > 0, to provide for the existence of two bound state curves. The
ordering of the potential curves Ei < Ei+1 is assumed. To simplify the investigation of the
problem, we take the normalizations of the bound state wave functions in the form (19)

◦
M

2

1 (x) = −2κ1(x)(κ1(x) + β1(x))

(κ1(x) − β1(x))

(κ1(x) + β2(x))(κ1(x) + κ2(x))

(κ1(x) − β2(x))(κ1(x) − κ2(x))
,

◦
M

2

2 (x) = −2κ2(x)(κ2(x) + β2(x))

(κ2(x) − β2(x))

(κ2(x) + β1(x))(κ2(x) + κ1(x))

(κ2(x) − β1(x))(κ2(x) − κ1(x))
. (31)

Thus, the potential V (x, y) is determined only by the spectral data κj(x) and βj(x), j =
1, 2, and corresponds to one of the family of potentials characterized by the same en-
ergy levels Ej(x) and the same parametric S(x; k) (30) with four pole curves. From the
relations (24), (25), we obtain the two–dimensional potential V (x, y) and the correspond-

ing normalized wave functions ψj(x, y) =
◦

M j (x)
◦
f (iκj(x), y), j = 1, 2 (Fig.1b,c) of the

self-energy curves E1,2(x). The matrix element A12(x) =
∫

ψ1(x; y)∂xψ2(x; y)dy of the
nonadiabatic connection (6) is computed in terms of the analytic functions ψ1,2(x; y).

From the normalizations M2
j (x) being positive definite, the conditions β2(x) ≥ κ2(x)

and β1(x) ≥ κ1(x) ≥ β2(x) follow. This means that E2(x) ≥ β2
2(x) ≥ E1(x). If the levels

E1(x) and E2(x) move towards each other, one or both of them would be equal to β2
2(x) at

any point of x = x′. It can be easily seen from the relations (31) that the corresponding
normalizing function M2

1 (x) or M2
2 (x) becomes singular when κ1(x

′) = β2(x
′) or κ2(x

′) =
β2(x

′). If κ1(x
′) = β2(x

′) = κ2(x
′), both normalization functions M2

1 (x) and M2
2 (x) have

double poles at the point of the degeneracy x = x′. It can be seen from the relations (21)
and (24) that the potential V (x; y) with the pertinent normalized functions ψ1,2(x, y)
has a double pole at this point x = x′ somewhere on the positive y-axis, but it has no
physical meaning from the point of standard scattering theory. One can see from (19)
that the same investigations with singular behaviors of normalizing functions are valid
for potentials with an arbitrary number of levels when two levels move closer together.
Remind of the investigations of normalizations in [7] at avoided level crossings.

3 Transparent Potentials

The one-dimensional inverse problem on the entire axis −∞ < y < ∞ with the zero-th
reflection coefficient, Sref (k) = 0, describes transparent (reflectionless) potentials along
the variable y. If the reflection function Sref (x; k) is chosen to be equal to zero at all
energies and at all values of the parametric variable x, then the integral in the relation for
Q(x; y, y′) vanishes and only the sum over the bound states remains. The transmission

308



coefficient Str, with an absolute value equal to unity, is a rational function,

Str(x; k) =
∏ k + iκ(x)

k − iκ(x)
, (32)

depending on the dynamical parametric variable x = x(t).
The relations for the potentials and solutions can be expressed in terms of normalized

eigenfunctions and represented in a most symmetric and convenient form. Following [8],
introduce the function

λn(x; y) = γn(x) exp(−κn(x)y).

Then the formula for K(x; y, y′) can be written as

K(x; y, y′) = −
N∑
n

γn(x)ψn(x; y) exp(−κn(x)y′) = −
N∑
n

ψn(x; y)λn(x; y′). (33)

For the normalized eigenfunctions ψn(x; y) from (15), we obtain

ψn(x; y) =
N∑
j

λj(x; y)A−1
jn (x; y), (34)

with the matrix Ajn(x; y) given by

Ajn(x; y) = δjn +
λj(x; y)λn(x; y)

κn(x) + κj(x)
. (35)

Finally, the kernel K(x; y, y′) and the potential can be represented as

K(x; y, y′) = −
N∑
n

N∑
j

λj(x; y)A−1
jn (x; y)λn(x; y′),

V (x; y) = −4
m∑
n

κn(x)ψ2
n(x; y). (36)

Recall that these relations are obtained for the specific case of the zero reflection function
Sref (x; k) = 0 ∀x.

Exactly solvable models with time-dependent symmetric in y potentials.
Note that the symmetric transparent potentials for each fixed value of x and the perti-
nent wave functions are completely defined by the energy levels, since in this case the
normalizations of the bound state functions are expressed as

γ2
n(x) = 2κn(x)

∏
m	=n

∣∣∣κm(x) + κn(x)

κm(x) − κn(x)

∣∣∣ . (37)

Consider the simple example of two-dimensional exactly solvable models for two-level
systems with symmetric in y potentials. Taking the equation (34) for the normalized
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eigenfunctions ψ1(x; y) and ψ2(x; y) and carrying out some simplifications, we obtain

ψ1(x; y) =

√
2κ1(x)b(x) cosh(κ1(x)y)

cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x) − κ2(x))y]
,

ψ2(x; y) =

√
2κ2(x)b(x) sinh(κ2(x)y)

cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x) − κ2(x))y]
(38)

with b(x) = |(κ1(x) + κ2(x))/(κ1(x) − κ2(x))|. Taking an account of (38) for V (x; y) in
(36), we get the potential in an explicit form convenient for analysis:

V (x; y) == −8b(x)
κ2

1(x) cosh2(κ1(x)y) + κ2
2(x) sinh2(κ2(x)y)

{cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x) − κ2(x))y]}2
. (39)

Obviously, the potential V (x; y) is symmetric in y for each value of the parametric variable
x. It is also easily seen from (38) that the eigenfunction of the ground state ψ1(x; y) is
symmetric and ψ2(x; y) is antisymmetric in y for each fixed value of x, as it is required
for the problem on the entire axis −∞ < y < ∞ with a potential V (x; y) symmetric in y
for each fixed x.

As a limiting case, we can consider κ2(x) → κ1(x). It can be seen from (39) and (38)
that if κ2(x) = κ1(x) at any point of x = x′, the limiting values of the potential and the
wave functions are equal to zero, V (x′; y) = ψ1(x

′; y) = ψ2(x
′; y) = 0 ∀y, while in the

above considered problem on the half axis 0 ≤ y < ∞, the potential, together with its
eigenfunctions, are singular at x = x′.

Matrix elements of the exchange interaction A12(x), induced by basis functions of the
parametric instantaneous Hamiltonian, can be written in the form

A12(x) = 2b(x)
√

κ1(x)κ2(x)
[∫ ∞

−∞

y(∂κ2(x)/∂x) cosh(κ1(x)y) cosh(κ2(x)y)

G2(x; y)
,

− cosh(κ1(x)y) sinh(κ2(x)y)(∂G(x; y)/∂x)

G3(x; y)
dy
]

(40)

with G(x; y) = cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x) − κ2(x))y]. Since G(x; y) and
∂xG(x; y) are even functions in y, it can be easily shown that this integral vanishes, since
both integrands are odd functions of y, i.e., A12(x) = 0 ∀x. This means that there
is no coupling between the eigenstates ψ1(x; y) and ψ2(x; y) for any moment t and any
point of the adiabatic variable x for transparent symmetric in y potentials. The transition
amplitude between the bound state functions ψ1(x; y) and ψ2(x; y) is equal to zero because
it is defined by the zero matrix elements A12(x) = 0 ∀x.

The choice of normalizing functions γ2
n(x) of the energy-level states, which do not obey

the condition (37), leads to loss of symmetry in y of potentials, and to another behavior
of the parametric basis functions. As a result, the matrix elements of the exchange
interaction A12(x) 
= 0, that is the coupling between neighboring states takes place,
A1,2(x) 
= 0, and the transitions take place, as well.

As a consequence of our analysis, we can conclude that the choice of normalization
functions of the parametric Hamiltonian eigenstates strongly influences the behavior of
the dynamical quantum systems.
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4 Conclusions

The method presented permits one to construct a wide class of potentials and correspon-
ding solutions of the parametric equation (3) in a closed analytical form and, after that,
to calculate the matrix elements of the exchange interaction. The first procedure is an
algebraic one, but the second step is, in general, numerical. Therefore, the method is
semi-analytical. This approach allows one to investigate the influence of the parametric
spectral data on the behavior of the potentials, of the basis functions of the parametric
Hamiltonian, and of the matrix elements of the exchange interaction. It was shown that
the main features of the exchange interaction determining the slow subsystem Hamiltonian
essentially depend on the character of the parametric (fast) Hamiltonian: namely, the
fast subsystem Hamiltonian is given on the semi–axis 0 ≤ y < ∞ or on the entire axis
−∞ < y < ∞. As a consequence, the problems of level crossing are different in both
cases. The matrix elements Anm(x) have no singularities at the degeneracy points of
two-levels if the consideration is made within the parametric problem on the entire line
and Anm(x) are singular at the degeneracy points if the consideration is made within the
parametric problem on the half-axis. It was shown that in the case of the parametric
problem on the entire axis the potentials, the basis functions and the matrix elements
of the coupling are not singular at the degeneracy points of the two states, while in the
parametric problem on the half-axis, the potential, together with its eigenfunctions and
matrix elements of the exchange interaction, are singular at these points. We studied the
effect of the normalizing functions on the properties of dynamical systems. In particular,
we have found that in the parametric problem on the entire axis for a special choice of
the normalization functions (37), the exchange interaction between the bound states for
two-level systems are equal to zero for all values of the adiabatic variables, even at the
point of the degeneracy. In fact, we can trace the behavior of the matrix elements of the
exchange interaction (6) at any moment of time. We can recommend our approach for
the investigation of the Landau–Zener transitions and level crossing problems.
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In this paper we consider the application of the noncommutative Gröbner bases method
for proving theorems in algebraic geometry. Geometrical statements of constructive type
should be given in the coordinate-free form.

1 Coordinate-free representation of points and state-

ments

We consider theorems of elementary geometry (two-dimensional and three-dimensional).
Let A1, A2, A3, . . . , An be points in a finite-dimensional space. We treat these points as
vectors drawn from the origin 0. Then, geometrically, the outer product of two vectors A
and B is a bivector corresponding to the parallelogram obtained by sweeping the vector
A along the vector B. The parallelogram obtained by sweeping B along A differs from
the parallelogram obtained by sweeping A along B only in the orientation.

Consider the Grassman algebra generated by points A1, A2, A3, . . . , An, i.e., the free
algebra with an external product A∧B, which is associative and anticommutative: A∧B =
−B ∧ A.

Consider a finite-dimensional space and task-space embedded in this space. For ex-
ample, in the case of a two-dimensional task we consider a plane in the enveloping space.

2 Grassman algebra

It is known that the Grassman algebra is an associative free algebra with a finite set of
relations corresponding to the anticommutativity of multiplication on the generators:

Gr = 〈A1, . . . , An‖Ai ∧ Aj = −Aj ∧ Ai∀i, j ∈ {1, . . . , n}〉 .

The conditions of anticommutativity Ai ∧ Aj = −Aj ∧ Ai∀i, j ∈ {1 . . . n} on the
generators allow us to permute the neighboring factors in any product Ai1 ∧ · · · ∧Aik . As
a result, the product changes the sign.
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So, any of these products in the Grassman algebra is equal up to the sign either to zero
or to a product of generators with strictly increasing indices. It follows that any element
of the Grassman algebra can be represented as a linear combination of such products

X =
∑

(i1,...,ik), i1<i2<···<ik

α(i1,...,ik)Ai1 ∧ · · · ∧ Aik .

Then, the dimension of the Grassman algebra is equal to 2n, where n is the number
of the generators. Thus, all ideals of this algebra are finite dimensional and have finite
Gröbner bases.

3 Statements of the constructive type

In Chou’s collection of examples [2] of two-dimensional geometrical tasks, there are a
number of statements of the constructive type, which can be written in the coordinate-
free form.

The following assertions can be written as some relations in the Grassman algebra:

1) three points A1, A2, A3 are collinear iff (A1 − A2) ∧ (A1 − A3) = 0;

2) the lines A1A2 and A3A4 are parallel iff (A1 − A2) ∧ (A3 − A4) = 0;

3) a point A3 divides an interval [A1; A2] in the ratio n : m iff m(A3 − A1) = n(A2 −
A3) = 0.

Moreover, some additional relations can be added to this list.

1) two points A1 and A2 are equal iff A1 − A2 = 0;

2) two bivectors A1 ∧ A2 and B1 ∧ B2 are collinear iff αA1 ∧ A2 = βB1 ∧ B2;

3) a point P lies on a plane {A1, A2, A3} iff (A1 − P ) ∧ (A2 − P ) ∧ (A3 − P ) = 0,

etc.

4 Noncommutative Gröbner bases

Let us consider an associative noncommutative free algebra with unit 1 over the field F
with generators a1, . . . , ak. Each element of this algebra can be represented in the form∑

(j1,...,jl)
k(j1,...,jl)aj1 . . . ajl

. Introducing an order on the generators and an admissible

order on the monomials, we can define the leading monomials lm(u) = k
(j1,...,jlu )
u aj1 . . . ajlu

and lm(v) = k
(i1,...,ilv )
v ai1 . . . ailv

for any polynomials u =
∑

(j1,...,jlu ) k
(j1,...,jlu )
u aj1 . . . ajlu

and

v =
∑

(i1,...,ilv ) k
(i1,...,ilv )
v ai1 . . . ailv

.
Since we consider a free algebra over a field, we can normalize these polynomials so

that the leading coefficients become equal to unit. So, we assume that lm(u) = aj1 . . . ajlu

and lm(v) = ai1 . . . ailv
.
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Now, we can consider all compositions of two monomials lm(u) and lm(v).
Two monomials have a composition f(u, v), iff the end of the first monomial is equal

to the beginning of the second one, namely, in our case there exists an integer m > 0
and a set of indices p1, . . . , pm such that lm(u) = aj1 . . . ajlu−m

ap1 . . . apm and lm(v) =
ap1 . . . apmaim+1 . . . ailv

.
Then, the composition is equal to

f(u, v) = aj1 . . . ajlu−m
ap1 . . . apmaim+1 . . . ailv

= lm(u)v1 = u1 lm(v),

where v1 = aim+1 . . . ailv
and u1 = aj1 . . . ajlu−m

.
Since any monomial can be represented as a finite noncommutative product of the

generators, there exist at most a finite set of compositions for each pair of monomials.
Having obtained all compositions of leading monomials of two polynomials, one can write
a finite number of noncommutative S -polynomials, which can be constructed as S(u, v) =
u1v − uv1.

A monomial x = as1 . . . asn is divisible by a monomial y = at1 . . . atm iff the monomial
y is the substring of the monomial x so that x = yleftyyright.

A polynomial p1 with the unit leading coefficient is reducible with respect to a polyno-
mial p2 with the unit leading coefficient iff the leading monomial lm(p1) is divided by the
leading monomial lm(p2) so that lm(p1) = α lm(p2)β, where α and β are some monomials.
The result of reduction is the polynomial p′1 = p1 − αp2β.

Noncommutative Gröbner bases of an ideal I are determined by analogy with the
commutative case, as a complete system of relations, which generate this ideal.

The Buchberger algorithm is the same, however, the definitions of division, reduction
and S -polynomial are changed.

5 Example of a theorem

Example 1. (Gauss’ line).
Let A1, A2, B1, B2 be arbitrary points. Construct the complete quadrilateral A1A2B1B2

and diagonals A1A2, B1B2, A1B2 and B1A2. Let A1A2 intersect B1B2 at A3, A1B2

intersect B1A2 at B3. Let M1 be the midpoint of A1B1, M2 be the midpoint of A2B2 and
M3 be the midpoint of A3B3. Then, the points M1, M2 and M3 lie on one straight line.

Now, we can formulate the following statements of the constructive type for this
theorem:

1) col(A1, A2, A3): (A1 − A2) ∧ (A1 − A3) = 0

2) col(B1, B2, A3): (B1 − B2) ∧ (B1 − A3) = 0

3) col(B1, A2, B3): (B1 − A2) ∧ (B1 − B3) = 0

4) col(A1, B2, B3): (A1 − B2) ∧ (A1 − B3) = 0

5) midp(A1, B1,M1): (M1 − A1) = (B1 − M1) = 0

6) midp(A2, B2,M2): (M2 − A2) = (B2 − M2) = 0
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7) midp(A1, B1,M1): (M3 − A3) = (B3 − M3) = 0

The conclusion is the following: col(M1,M2,M3): (M1 − M2) ∧ (M1 − M3) = 0.

6 Description of Gröbner Bases method for the proof

of the theorems which are true universally (com-

mutative and anticommutative case)

Some geometrical theorems can be formulated in these terms. To prove these theorems,
the theory of noncommutative Gröbner bases can be applied. The system of polynomials
corresponding to the hypotheses of the theorem and anticommutativity relations for the
generators of the Grassman algebra are considered as generators of an ideal in a free
associative algebra. The assertion of the theorem (written as a polynomial in this algebra)
is valid if it belongs to this ideal. This is equivalent to zero reducibility of this polynomial.

Implementation of the algorithm for obtaining noncommutative Gröbner bases in the
ring of noncommutative polynomials with integer coefficients are being developed.

In the commutative case, we have the same idea, but for the description of hypotheses
and conclusions we use the equations for the coordinates of the points.

7 Calculation of Gröbner Bases on a systems with

identities. Equivalence of identities on a whole set

and relations on bases elements

In the general case, a polynomial identity is not equivalent to a system of equation on
generators. However, in our case, the anticommutativity of homogeneous linear polyno-
mials is equivalent to anticommutativity relations on the generators. There is a finite
number of such relations.

For example, the property A ∧ B = −B ∧ A for all homogeneous linear polynomials
A,B ∈ Gr is equivalent to the finite set of relations on the generators Ai ∧ Aj = −Aj ∧
Ai∀i, j ∈ {1, . . . , n}.

The conditions of anticommutativity can also be written as A∧A = 0 for all homoge-
neous linear polynomials A from the Grassman algebra. However, in this case the finite
system of relations on the generators Ai ∧ Ai = 0, i ∈ {1, . . . , n} is not equivalent to
the previous statement.

8 Description of the implemented algorithm

The algorithm for computing the anticommutative Gröbner bases with integer coefficients
has been implemented.

The main algorithm in the program is the following:

1) Input the number of the variables and hypotheses.
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2) Input the name of the variables in the increasing order.

3) Input the hypotheses and the conclusion.

4) Convert all the statements into the internal format.

5) Add the conditions of anticommutativity to the system.

6) Calculate the noncommutative Gröbner basis of the system.

7) Calculate the normal form of the conclusion of the theorem with respect to the
Gröbner basis.

8) If the result is equal to zero, then the theorem is true universally, otherwise the
theorem is not true universally.

The kernel of the program processes the general case of noncommutative Gröbner
bases; however, the current interface is oriented to proving a specific class of geometrical
theorems which can be formulated in terms of statements (1)–(3) in the Grassman algebra.

In CAS Maple V, functions which are able to make similar calculations are not revealed.
The program is written in Php 4.0 and uses possibilities of the web interface. Php

4.0 is a platform-free programming language. On the one hand, there is a possibility to
include HTML-code into the texts of the programs for simple testing; on the other hand,
this language enables us to use its resources as an object-oriented language.

9 An example of calculation of anticommutative

Gröbner bases by the program

As an example, consider the operation of the program on the theorem on the Gauss line
formulated above.

Determine the noncommutative Gröbner basis and the normal form of the conclusion
of the theorem for the reverse lexicographical order on the monomials under the condition
A1 < A2 < A3 < B1 < B2 < B3 < M1 < M2 < M3.

The hypotheses of the theorem are

P [0] : 1 ∗ A2 ∧ A3 − 1 ∗ A1 ∧ A3 − 1 ∗ A2 ∧ A1 + 1 ∗ A1 ∧ A1

P [1] : 1 ∗ B2 ∧ B1 − 1 ∗ B1 ∧ B1 − 1 ∗ B2 ∧ A3 + 1 ∗ B1 ∧ A3

P [2] : 1 ∗ B2 ∧ B3 − 1 ∗ A1 ∧ B3 − 1 ∗ B2 ∧ A1 + 1 ∗ A1 ∧ A3

P [3] : 1 ∗ B1 ∧ B3 − 1 ∗ A2 ∧ B3 − 1 ∗ B1 ∧ B1 + 1 ∗ A2 ∧ B1

P [4] : 2 ∗ M1 − 1 ∗ B1 − 1 ∗ A1

P [5] : 2 ∗ M2 − 1 ∗ B2 − 1 ∗ A2

P [6] : 2 ∗ M3 − 1 ∗ B3 − 1 ∗ A3

The conclusion of the theorem is

1 ∗ M1 ∧ M1 − 1 ∗ M1 ∧ M3 − 1 ∗ M2 ∧ M1 + 1 ∗ M2 ∧ M3
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After adding the relations of anticommutativity on the generators of the Grassman algebra
to the hypotheses of the theorem, the system of polynomials becomes

P [0] : 1 ∗ A2 ∧ A3 − 1 ∗ A1 ∧ A3 − 1 ∗ A2 ∧ A1 + 1 ∗ A1 ∧ A1

P [1] : 1 ∗ B2 ∧ B1 − 1 ∗ B1 ∧ B1 − 1 ∗ B2 ∧ A3 + 1 ∗ B1 ∧ A3

P [2] : 1 ∗ B2 ∧ B3 − 1 ∗ A1 ∧ B3 − 1 ∗ B2 ∧ A1 + 1 ∗ A1 ∧ A3

P [3] : 1 ∗ B1 ∧ B3 − 1 ∗ A2 ∧ B3 − 1 ∗ B1 ∧ B1 + 1 ∗ A2 ∧ B1

P [4] : 2 ∗ M1 − 1 ∗ B1 − 1 ∗ A1

P [5] : 2 ∗ M2 − 1 ∗ B2 − 1 ∗ A2

P [6] : 2 ∗ M3 − 1 ∗ B3 − 1 ∗ A3

P [7] : 1 ∗ A1 ∧ A1

P [8] : 1 ∗ A1 ∧ A2 + 1 ∗ A2 ∧ A1

P [9] : 1 ∗ A1 ∧ A3 + 1 ∗ A3 ∧ A1

P [10] : 1 ∗ A1 ∧ B1 + 1 ∗ B1 ∧ A1

P [11] : 1 ∗ A1 ∧ B2 + 1 ∗ B2 ∧ A1

P [12] : 1 ∗ A1 ∧ B3 + 1 ∗ B3 ∧ A1

P [13] : 1 ∗ A1 ∧ M1 + 1 ∗ M1 ∧ A1

P [14] : 1 ∗ A1 ∧ M2 + 1 ∗ M2 ∧ A1

P [15] : 1 ∗ A1 ∧ M3 + 1 ∗ M3 ∧ A1

P [16] : 1 ∗ A2 ∧ A2

P [17] : 1 ∗ A2 ∧ A3 + 1 ∗ A3 ∧ A2

P [18] : 1 ∗ A2 ∧ B1 + 1 ∗ B1 ∧ A2

P [19] : 1 ∗ A2 ∧ B2 + 1 ∗ B2 ∧ A2

P [20] : 1 ∗ A2 ∧ B3 + 1 ∗ B3 ∧ A2

P [21] : 1 ∗ A2 ∧ M1 + 1 ∗ M1 ∧ A2

P [22] : 1 ∗ A2 ∧ M2 + 1 ∗ M2 ∧ A2

P [23] : 1 ∗ A2 ∧ M3 + 1 ∗ M3 ∧ A2

P [24] : 1 ∗ A3 ∧ A3

P [25] : 1 ∗ A3 ∧ B1 + 1 ∗ B1 ∧ A3

P [26] : 1 ∗ A3 ∧ B2 + 1 ∗ B2 ∧ A3

P [27] : 1 ∗ A3 ∧ B3 + 1 ∗ B3 ∧ A3

P [28] : 1 ∗ A3 ∧ M1 + 1 ∗ M1 ∧ A3

P [29] : 1 ∗ A3 ∧ M2 + 1 ∗ M2 ∧ A3

P [30] : 1 ∗ A3 ∧ M3 + 1 ∗ M3 ∧ A3

P [31] : 1 ∗ B1 ∧ B1

P [32] : 1 ∗ B1 ∧ B2 + 1 ∗ B2 ∧ B1

P [33] : 1 ∗ B1 ∧ B3 + 1 ∗ B3 ∧ B1
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P [34] : 1 ∗ B1 ∧ M1 + 1 ∗ M1 ∧ B1

P [35] : 1 ∗ B1 ∧ M2 + 1 ∗ M2 ∧ B1

P [36] : 1 ∗ B1 ∧ M3 + 1 ∗ M3 ∧ B1

P [37] : 1 ∗ B2 ∧ B2

P [38] : 1 ∗ B2 ∧ B3 + 1 ∗ B3 ∧ B2

P [39] : 1 ∗ B2 ∧ M1 + 1 ∗ M1 ∧ B2

P [40] : 1 ∗ B2 ∧ M2 + 1 ∗ M2 ∧ B2

P [41] : 1 ∗ B2 ∧ M3 + 1 ∗ M3 ∧ B2

P [42] : 1 ∗ B3 ∧ B3

P [43] : 1 ∗ B3 ∧ M1 + 1 ∗ M1 ∧ B3

P [44] : 1 ∗ B3 ∧ M2 + 1 ∗ M2 ∧ B3

P [45] : 1 ∗ B3 ∧ M3 + 1 ∗ M3 ∧ B3

P [46] : 1 ∗ M1 ∧ M1

P [47] : 1 ∗ M1 ∧ M2 + 1 ∗ M2 ∧ M1

P [48] : 1 ∗ M1 ∧ M3 + 1 ∗ M3 ∧ M1

P [49] : 1 ∗ M2 ∧ M2

P [50] : 1 ∗ M2 ∧ M3 + 1 ∗ M3 ∧ M2

P [51] : 1 ∗ M3 ∧ M3

The noncommutative Gröbner basis of the ideal generated by relations P [0]−P [51] is

P [0] : 1 ∗ A3 ∧ A2 − 1 ∗ A3 ∧ A1 + 1 ∗ A2 ∧ A1

P [1] : 1 ∗ B2 ∧ B1 − 1 ∗ B2 ∧ A3 + 1 ∗ B1 ∧ A3

P [2] : 1 ∗ B3 ∧ B2 − 1 ∗ B3 ∧ A1 + 1 ∗ B2 ∧ A1

P [3] : 1 ∗ B3 ∧ B1 − 1 ∗ B3 ∧ A2 − 1 ∗ B1 ∧ A2

P [4] : 2 ∗ M1 − 1 ∗ B1 − 1 ∗ A1

P [5] : 2 ∗ M2 − 1 ∗ B2 − 1 ∗ A2

P [6] : 2 ∗ M3 − 1 ∗ B3 − 1 ∗ A3

P [7] : 1 ∗ A1 ∧ A1

P [8] : 1 ∗ A1 ∧ A2 + 1 ∗ A2 ∧ A1

P [9] : 1 ∗ A1 ∧ A3 + 1 ∗ A3 ∧ A1

P [10] : 1 ∗ A1 ∧ B1 + 1 ∗ B1 ∧ A1

P [11] : 1 ∗ A1 ∧ B2 + 1 ∗ B2 ∧ A1

P [12] : 1 ∗ A1 ∧ B3 + 1 ∗ B3 ∧ A1

P [13] : 1 ∗ A2 ∧ A2

P [14] : 1 ∗ A2 ∧ A3 + 1 ∗ A3 ∧ A2

P [15] : 1 ∗ A2 ∧ B1 + 1 ∗ B1 ∧ A2
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P [16] : 1 ∗ A2 ∧ B2 + 1 ∗ B2 ∧ A2

P [17] : 1 ∗ A2 ∧ B3 + 1 ∗ B3 ∧ A2

P [18] : 1 ∗ A3 ∧ A3

P [19] : 1 ∗ A3 ∧ B1 + 1 ∗ B1 ∧ A3

P [20] : 1 ∗ A3 ∧ B2 + 1 ∗ B2 ∧ A3

P [21] : 1 ∗ A3 ∧ B3 + 1 ∗ B3 ∧ A3

P [22] : 1 ∗ B1 ∧ B1

P [23] : 1 ∗ B1 ∧ B2 + 1 ∗ B2 ∧ B1

P [24] : 1 ∗ B1 ∧ B3 + 1 ∗ B3 ∧ B1

P [25] : 1 ∗ B2 ∧ B2

P [26] : 1 ∗ B2 ∧ B3 + 1 ∗ B3 ∧ B2

P [27] : 1 ∗ B3 ∧ B3

The normal form of the conclusion of the theorem with respect to the Gröbner basis
is equal to zero.

Thus, the theorem is true universally.
In the paper [1] Wang considers the same theorem as an example of the use of the

coordinate-free technique for automatic proving of theorems. Considering the same order
on the variables and monomials as a hypotheses of the theorem, he takes the same relations
P [0]−P [6] of the first system, but from his paper it is not clear which system of relations
he considers as relations responsible for the anticommutativity of multiplication.

10 Equations describing the dimension of the task

space

It seems that we have to add equations describing the dimension of the task (whether the
points are on the same line in the one-dimensional case, or whether the points are on the
same plane in the two-dimensional case, etc) to our systems. It is related to the fact that
we consider the enveloping space of the task.

Consider the condition that all points of the task lie on the same plane.
If the number n of points is equal to 1, 2 or 3, then all these points are on the same

plane, and we need no additional relations.
If the number of points is equal to n ≥ 4, then the condition that the points belong to

the same plane is equivalent to the condition that any four points are on the same plane.
The relation (A1 − A0) ∧ (A2 − A0) ∧ (A3 − A0) = 0 formally means that the vectors

(A3−A0), (A2−A0) and (A1−A0) are linearly dependent. This condition can be expressed
by the formula 0 = (A1 − A0) ∧ (A2 − A0) ∧ (A3 − A0) = A1 ∧ A2 ∧ A3 − A0 ∧ A2 ∧ A3 +
A0 ∧A1 ∧A3 −A0 ∧A1 ∧A2. Here we take A0 as a marked point. Actually, as the marked
point, we can take any one of these four points.

So, if the number of points n ≥ 4, the condition all these points belong to one and the
same plane if and only if the system of C4

n relations (Ai1−Ai0)∧(Ai2−Ai0)∧(Ai3−Ai0) = 0
hold, where i0, i1, i2, i3 ∈ {1, . . . , n} are any distinct four points.
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For example, in the theorem about the Gauss line, we can add the condition that
all nine points are on the same plane to the first system. The numbers of the addi-
tional relations such as (X1 − X0) ∧ (X2 − X0) ∧ (X3 − X0) = 0, where X0, X1, X2, X3 ∈
{A1, A2, A3, B1, B2, B3,M1,M2,M3} is equal to C4

9 = 9!
4!5!

= 126. All these relations can
be reduced to zero with respect to the Gröbner basis. This means that these polynomi-
als lie in the ideal, generated by hypotheses of the theorem and the anticommutativity
relations. Thus, this condition follows from the hypotheses of the theorem and the anti-
commutativity relations. Using our program, we can verify this fact automatically.

If the polynomials, describing the dimension of the task are not reducible to zero, but
the conclusion of the theorem is reducible to zero, then our task is a particular case of
another task of a higher dimension.

In the general case, we should consider the condition that all points of the task belong
to an m -dimensional space embedded in the enveloping space of a higher dimension. So,
we have to consider C

(m+2)
n polynomials such as (Ai1 − Ai0) ∧ · · · ∧ (Aim+1 − Ai0) = 0,

where Ai0 is one of generators of the Grassman algebra and i0, i1, . . . , im+1 ∈ {1, . . . , n}
is an arbitrary set of m + 2 distinct indices.

11 Advantages of the coordinate-free method

a) If the dimension of the task is m, then max degree of all hypotheses and conclusions
will be less than or equal to m

b) if the conditions of the task are satisfied, then an equation, whose degree is higher
than m, cannot be presented in the Gröbner basis (but this is possible in the coor-
dinate case).
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Program Package
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to Computer Algebra Resources

S.I. Tertychniy
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General structure and major features of the package GRGnetwork intended for remote
access to software based on the universal computer algebra system Reduce making use of
Internet communication media are discussed.

Introduction

Objectives

The work discussed below constitutes a part of the long-term programme intended for
the developing of program computational tools incorporating the methods of Computer
Algebra (CA) and the modern communication technologies based on the Internet infras-
tructure. In the most general setting, the corresponding software is intended to render
assistance in the solving of certain classes of problems in theoretical physics — first of all,
the theory of gravity — with the help of modern computational tools. It is designed to
provide Internet-based access to the consolidated computational resources of Computer
Algebra Systems (CAS), universal or/and specialized, in conjunction with a number of
additional services enhancing the efficiency and convenience of this form of their usage.

Assuming more narrow frameworks, we outline here the basic points and main features
of the package GRGnetwork, constituting one of the components of the software intended
to address the problem declared above but being also of a notable interest in its own right.

Before the discussing the very content of the work an outline of its starting points has
to be given.

Approach

The approach implemented on GRGnetwork is based on the client-server method and
makes use of the object-oriented (OO) programming technique. The latter point implies
the wide application of the platform independent OO Java technology, playing here the
role of the universal environment and basic programming tool.

322



Advantages versus shortcomings

The choice indicated above is a priori distinguished by some potential advantages appar-
ently enabling one to efficiently settle a number of subsidiary problems which constitute
in fact the core of the problem to be solved. These include in particular the following
noteworthy points:

• Inheriting specific feature of the Java technology, the software developed on its base
automatically possesses the important property of independence on the computer
platform (often called portability property).

• The incorporation of a Java Virtual Machine (JVM) in majority of the most popular
and widely used www-browsers releases a potential user of Java-based software
of concern about the providing and installing any specific background software.
This circumstance makes access to Java-based software fairly straightforward for
everybody interested in its capabilities. In particular, this concerns non-experienced
beginners as well, that is evidently the point of significant importance.

• The constituent of Java environment called Abstract Window Toolkit (AWT) enables
one to realize a portable graphical multi-window user/system interface (GUI) on a
uniform, platform independent base.

• The facility of Java applets enables one to achieve a properly secure implementation
of the remote access to common integrated computational resources through the
Internet communication media.

This list of attractive features of Java-based technique of program development should
seem sufficient for some substantiating of the choice adopted. However, at the same time,
it might be perhaps argued that all the matter above looks rather as a fine theory and
cannot really play role of practical guidelines.

Indeed, dealing closer with the issue of a brute reality, the approach outlined turns out
be also associated, simultaneously with evident advantages, with a number of drawbacks,
many of the latter being, in a sense, close companions of the former, though. Pursuing to
maintain a reasonable balance of pluses and minuses in these speculations, the following
remarks somewhat contravening with the ones just made are now in order:

• The existing realizations of Java environment and their implementations into www-
browsers prove not be free of some apparently buggy behavior or specific improper
peculiarities. This is currently true, to a great extent, for all the widely practiced
software of this class, essentially. Additionally, there are still no corresponding suffi-
ciently detailed documented or, say, practical standards which one could refer to in
the developing of Java-based software on a stable ground. Most of the ‘pathologies’
specific Java realizations reveal, either apparent or actual, can only be captured by
means of laborious testing, making use of the notorious ‘trial and error method’.
Moreover, in these studies, some vague deviations from the available standards are
observed, unfortunately. Such violations of a standard usually prove computer plat-
form and Java version dependent. Hence they claim in each concrete case a specific
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treatment, sometimes fairly laborious, that does not promote the final software qual-
ity. Sometimes, in spite of all the efforts of a programmer, Java-based software may
not manifest all the capabilities promised by the relevant Java specifications.

• The realization of graphical interface tools in Java’ graphical engine AWT is cur-
rently difficult to qualify advantageous in many respects. In particular, it does
not support some graphical facilities which are, in principle, ensured by graphics
engines of the operating systems (OS) of interest. Additionally, in practice, the
execution of some dynamical operations seems to be realized in a way which is far
of perfectness and manifests some apparently improper visual effects. As a result,
in certain cases, it turns out problematic for AWT-based interfaces to compete with
the system-dependent GUI realizations.

It may be supposed that such sort shortcomings are partially connected with the
portability property lying in the base of the Java technology.

Nevertheless, the above does not mean, of course, that Java-based software cannot
turn out an efficient and useful tool. Besides, fortunately, it can be noted that some ob-
servations give evidence that the general situation concerning the shortcomings mentioned
above tends to gradually improve.

Basic ingredients of the package background

Let us now characterize the basic ingredients of the software complex GRGnetwork is
based upon. These include in particular the following elements:

Graphical interface tools

The source of constructive elements used for the development of GRGnetwork
involves the collection of platform independent graphical interface tools im-
plemented in the form of Java’s Abstract Window Toolkit (AWT). It provides
a variety of graphical primitives allowing to construct a platform-independent
friendly graphical user interface (GUI).

Basic networking tools

A substantial advantage of the Java concept is the integrating into Java en-
vironment all the necessary network communication capabilities. Making use
of this feature, the communication between the ‘client’ and ‘server’ compo-
nents of GRGnetwork is realized on the base of TCP/IP protocol and employs
Internet communication channels, the local networking based on TCP/IP (in-
tranets) being supported on the identical ground. The two sub-components
of the ‘server’ component of the package (called GRGmediator and GRGslave,
see below) also communicate making use of TCP/IP protocol, the specific
realization of this data transport bus being irrelevant.
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Computer algebra server

The next point of significant importance is the implementation of Computer
Algebra (CA) facilities in GRGnetwork. Introducing no own low level CA
primitives and algorithms, GRGnetwork leans on the general purposes CA
system Reduce [1]. The latter is regarded here as the primary tool for the
performing manipulations with symbolic mathematical data of a general kind.
The routines realizing the processing of the specifically structured mathemat-
ical data (the subject going beyond the scope of the present notes) are also
based on the Reduce capabilities, mostly those intended for the handling of
low level symbolic data.

It is worth noting the following features of Reduce which are crucial for the
selection of this system as CA server in GRGnetwork:

• Reduce is an open system allowing easy and efficiently realized extensions
and/or modifications on the both ‘top level’ (handling of mathematical
structured data) and ‘bottom level’ (handling of symbolic data primitives
of a general kind).

• Reduce performs calculations in a maximally automatic way, assuming
minimum of intervenience of a user at intermediate stages of a calculation.

• Reduce is a portable system which has been implemented in all computer
platforms of practical interest, essentially.

• Reduce system includes the portable compiler allowing to build fairly
compact efficient executable codes of high performance.

Although CAS Reduce is not free of some own (fairly essential) shortcomings,
currently one sees no satisfactory alternative to it among the other universal
CASs (Mathematica, Maple, Macsima, Maxima, muPad), at least, as far as the
class of problems considered in the present work is concerned.

Security managing

The next point of high importance, the security issue, is one of the most
substantial problems concerning any software making use of the contemporary
Internet communication media. Considering its relation to GRGnetwork, a
system based on the ‘client-server’ method, it has to be noted that there are
obviously two its branches. Namely, these are the problem of secure run of the
client component on the user’ computer and the security of the functioning of
the server component.

Concerning the latter side of the security problem, the important element of its
solution in GRGnetwork is the assignment of all the communication functions
to a special server component called GRGmediator. One of its main functions
is the filtering out any possible detrimental intervention outwards.
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Further, the loading/startup of client components of GRGnetwork and further
their communication with network server (i.e., ‘physically’, with GRGmedia-
tor) is realized making use of the Java applet facility. The latter is known as
basically safe way of the data exchange and the handling of the codes trans-
ported through the Internet communication media. The point is that the
code of a Java applet is not immediately executed by computer hardware but
is interpreted by the so called Java Virtual Machine (JVM) integrated with
(or ‘plugged in’) the web-browser which runs on the user’ computer. Various
measures ensuring safe execution of downloaded applet codes are implemented
in JVM. Hence, a necessary security level is automatically ensured as long as
the appropriate integrity and authenticity of web-browser itself is being kept.
This strategy constitutes the main ingredient of the service responsible for the
secure functioning of the client component of GRGnetwork.

Finally, the communication of a user with the CA package Reduce, playing role
of CA server, is managed by the so called PSL Security Guard (PSLguard).
The point is that PSL (Portable Standard Lisp), the lower layer Reduce is
based upon, takes no care about the issue of a secure functioning in an open
network environment. PSLguard is intended to compensate for this shortcom-
ing, shielding the server against possible hostile attacks through the security
holes lurked in the CAS background.

Issue of a practical realization

The concretizing and practical realization of the approaches sketched above prove to
require simultaneous solution of a variety of interrelated problems of quite different kinds.
This, in turn, requires fulfillment of a number of conditions which are outlined below.

Run-time environment

The solution implemented in GRGnetwork is based on the following decisions.

• The server part of GRGnetwork, i.e. the sub-components named GRGmediator
and GRGslave, are realized as Java applications which run on sufficiently pow-
erful (preferable distinct) computers within Java Run-time Environment (JRE) (or
in framework of more recent equivalent packages abbreviated by their developers as
JDK and J2SKD which contain JRE as their subsets).

• The computers where GRGmediator and GRGslave reside at have to be connected
by a fast IP channel of a sufficient carrying capacity.

• GRGslave has to be able to run the processes of CA Reduce (the more ones simul-
taneously, the better).

• The client component startup procedure implies the making use of http server.

• The realization of the functioning of the client component of the package assumes
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– the making use of www-browser with graphical interface and Java support.

Currently, such browsers are available for all the computer platforms, essentially. Their
incomplete list includes various releases of Netscape Communicator/Navigator and Mi-
crosoft Internet Explorer (excluding the latest ones), Opera, Mozilla, Konqueror , etc.
Some of them consume comparatively moderate computer resources to be able to run on
personal computers of fairly moderate capabilities and performance rate.

– The access to Internet is the second (and last) condition necessary for the
functioning of the client component; the making use of a local network instead
is also feasible.

The existence and availability of the software mentioned above is a crucial point mak-
ing the goal of the project potentially achievable.

Developer workplace

Another point of crucial importance is the structure and, accordingly, feasibility of re-
alization of the hard/software complex which is natural to name a developer workplace.
Essentially, the capabilities and efficiency of this necessary tool affects all the route of the
subsequent work and, essentially, determines the total feasibility of the project.

It has to be emphasized that the problem to be solved implies the development of a
real time multi-thread assemblage of ‘spatially distributed’ asynchronously run programs
communicated via TCP/IP Internet channels , the latter maying reveal variable carrying
capability (including low one) and limited overall reliability. It is also worth also noting
that the work on the project was being carried out under rather unfavorable conditions
with minimal support in the country with crisis economy. In reality, the last circumstance
proved the next point strictly conditioned the way of the realization of the project. The
latter can be summarized as follows:

Hardware: The work of the ‘spatially distributed’ multi-component package communi-
cating with the help of TCP/IP protocol mentioned above is emulated on a single personal
(‘IBM PC-compatible’) computer.

Operating system: The most important ‘constructive element’ consolidating all the
software utilized is OS Linux. A number of releases of Slackware, RedHat, Mandrake
(currently ALTLinux) distributions were tested and utilized.

This choice of OS immediately implies a number of advantages. The most important
ones are the following:

TCP/IP support: This function is incorporated in the OS kernel. The corresponding
utilities necessary for the maintaining TCP/IP connections are ensured as OS constituents
as well.

Network emulation: Inter-computer TCP/IP communication is emulated on a single
computer by OS facilities available defaults.
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Java developer tools: Java programs are coded, tested, and run making use of Java
Development Kit (JDK, further transformed to J2SKD package) of several subsequent
releases supported by Sun Microsystems; another clone of similar software of comparable
capabilities utilized was developed and distributed by IBM Corporation.

Http server: The well known http-server Apache (included in all the recent Linux
distributions) is used for the emulating of the startup procedure of the client component of
GRGnetwork. The help subsystem and support of online documenting are also maintained
with its assistance.

www-browsers: Several www-browsers with graphical interface and Java support are
used as hosts for the client component, most notable packages are Netscape Communicator
clone (currently developed under the name Mozilla Communicator) and Microsoft Internet
Explorer (in the case of client component running over OS Windows).

Algebraic processor: General purpose CA Reduce system of releases 3.6 and 3.7 run-
ning upon PSL package is used as the algebraic processor.

etc. . . A lot of auxiliary software some of which is, essentially, indispensable for the
package development (various editors, documenting tools, graphics handling tools, etc.)
are utilized.

Remark: A crucial circumstance allowing the practical development of GRGnetwork is
the existence, availability, and ability to be consistently integrated of all the functional
components of developer workplace listed above within the common shell running on a
single computer of a moderate performance rate assembled from standard components.

After the formal characteristic of the package given above, more informative descrip-
tion of its very structure and the functioning is now in order.

GRGnetwork structure

In active state, GRGnetwork consists of a single server component and some (one or
more) client components functioning asynchronously and running, generally speaking, on
different computers. It is assumed that each client component lives on an own computer
(in most typical case, on a personal user’ computer) connected by TCP/IP channel with
Internet. Through the latter, the client component can (and does) communicate with
server computer of GRGnetwork.

Concerning the server component of GRGnetwork software, it has to be reminded that
it actually consists of the two relatively independent sub-components called GRGmediator
and GRGslave. This is GRGmediator which runs on the ‘server computer’ mentioned
above and plays the role of a common interface communicating via Internet with client
components, if there are active any.
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The second server component, GRGslave, runs, preferably, on a computer distinct
from the one where GRGmediator resides at (for the sake of performance decoupling).
It is assumed that GRGslave is also connected with GRGmediator by TCP/IP channel,
being at the same time, as far as one concerns the functioning of GRGnetwork, isolated
of the other connections. This channel is assumed to be a sufficiently fast and ‘absolutely
reliable’ because no special provisions is made for the data losses or significant transmitting
delays in it. Note that no such limitations on the channels connecting GRGmediator and
GRGclients are assumed.

Therefore, the graph of TCP/IP ‘links’ connecting the components of GRGnetwork
constitute a star-like figure with GRGmediator situated in its vertex.

More about GRGnetwork components

Let us consider the functions of GRGnetwork components in more details.

GRGmediator: communication center

The main function of GRGmediator is the maintaining TCP/IP connection with
GRGclient and GRGslave, receiving and dispatching the data and command streams,
simple specific top-layer protocols being implemented for such a purpose. GRGmediator
occupies a separate port and effectively filters outward calls coming in through it. The
latter point is substantial for the ensuring the secure functioning of the server component.

GRGslave: application server

In a sense, GRGslave is the ‘genuine’ server in GRGnetwork. In particular, it manages
the logical connections with client components, carries out the registration of new clients,
starts and controls the CA server (CAS Reduce), maintains the remote file systems of
clients (which point will be discussed below), performing all the operations over them
‘on the physical level’, etc. GRGslave also handles the necessary information concerning
the registered clients, updates and stores the statistics characterizing their activity and
consumption of the shared resources etc.

GRGclient: user interface

First of all, GRGclient plays the role of a friendly interface with a ‘final user’. It also
performs some useful service tricks specific for the work with CA systems. Hence, as far
as one concerns the apparent convenience of the package use, this it is perhaps the most
important component. GRGclient is realized in the graphical multi-window format and
makes use of the major active control facilities typical for window-based GUI (buttons,
various menus, etc.).

Another function of GRGclient, less apparent but definitely not less important, is the
maintaining stable connection with the server component (‘physically’, with GRGmedi-
ator) in accordance with the corresponding protocol. The latter includes some facilities
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allowing to restore the exchange by the commands and data in case of faults due to time-
outs (comparatively large delays in data transfer) and even, up to some extent, a lost of
data in communication channels (which may arise, e.g., due to some technical problems).

GRGnetwork skeleton

Now let us consider the functioning of GRGnetwork from a more practical point of view.
Its skeleton is schematically depicted in Fig. 1 where, in particular, the most important
links including data and command streams, are schematically displayed.

What is necessary for the resorting to GRGnetwork service

To resort to the service of GRGnetwork, a user needs a ‘computing unit’ (e.g. a personal
computer, access to a workstation, etc.) connected to Internet (or incorporated in the local
network, provided the local installation of GRGnetwork server within the latter is used).
It has to be able to run www-browser with graphical interface and Java support (for
example, Netscape Communicator or Microsoft Internet Explorer). Generally speaking,
no additional software (apart from a browser) need be installed.
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Work session: start up and run

Having the above things at his/her disposal, a user begins the work with GRGnetwork
with the opening the homepage of GRGnetwork (see [2]), that implicitly assumes the
contact with the corresponding http-server.

This page contains, apart from some appropriate introductory elucidations and the
references (links) to the auxiliary documenting matter etc., the link leading to startup
page containing the ‘button’ which enables one to issue the command to start the Java
applet executing GRGclient code.

It has to be mentioned that in response to the command above, the code of GRGclient
is automatically transferred from the same website by the browser. Hence, as it has been
noted, no specific actions by user or, say, preliminary installation of additional software
(apart from the browser itself) are required.

Having been started, after the initialization, GRGclient opens the window of the so
called ControlPanel. Making use of the latter, the user may adjust some working pa-
rameters (in particular, to specify the ‘name’ under which he or she will be registered
in GRGnetwork, provided the ‘personalized’ access is implied), to consult with the help
notes, etc. However, at this stage, the main action ControlPanel enables one to carry out,
is the establishing connection with GRGmediator.

It is also worth noting here that before the establishing connection with GRGmediator
(which is carried out by means of a special procedure whose details are unseen for the
user), GRGclient lives quite autonomously ‘in the user’s computer’ (‘inside the browser’)
and, essentially, is of no relation to GRGnetwork. Only after the establishing connection
with GRGmediator, GRGclient turns out incorporated in GRGnetwork. Note also that the
connection between GRGclient and GRGmediator is independent on the one established
by the browser during the loading the content of GRGnetwork homepage. In particular, it
is not serviced by the http-server (transferring the content of homepage to the browser).
GRGmediator plays here the role of a communication server itself.

GRGmediator runs on the GRGnetwork server computer and maintains, apart from
temporary connections with one or more GRGclients, the permanent connection with
GRGslave which performs the major part of actual ‘service work’ in GRGnetwork. These
actions are usually explicitly requested by client components. Making use of the graph-
ical interface (GUI) ensured by GRGclient, the user directs appropriate commands to
GRGmediator which dispatches them to GRGslave for subsequent execution. In response
to these commands, GRGslave performs the actions requested. In particular, it starts
(or stops, or restarts) CA Reduce processes, catching and linking (again resorting to the
assistance of GRGmediator) the output data stream to the corresponding client, trans-
ports the Reduce input commands (constituting the program code written in the Reduce
input language) to Reduce process, performs the file handling operations. The output
of the application processes (e.g. CA Reduce), other information and control commands
are received by the GRGclient applet through the reverse data transport bus ensured by
GRGmediator. Finally, having get data generated by application, GRGclient usually put
them into the corresponding window displayed on the computer monitor, making available
for the user.
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Some noteworthy features

Now we would like to outline some selected features of GRGnetwork. This matter should
make the subject of our discussion more clear and definite.

Balancing rates of data generating and data use

It has to be noted that there is a substantial distinction in the remote interactive run
of applied programs (including CAS) from the same work carried out with the help of
a ‘local’ computer. This is the issue of the balancing of the rates of the ‘generating’ of
output data by applied program (running on the remote server, in our case by GRGslave)
and the ‘consumption’ of these data by the client component — finally, their utilizing, in
one way or another, by the user.

A priori, the rates of these two processes may be very different. Especially often
one encounters a situation where the data stream produced by a ‘loose’ applied program
is, during some period of time, much more intensive than the maximal rate of the data
processing the agent situated on the opposite side of the communication channel is able to
ensure. In practice, the amount of data generated by an application can prove enormous
in quite innocent working situations. For example, this can occur in the case of a logical
mistake in the applied program leading to interminable data generating loop. One easily
imagines also circumstances when the rate of the ‘utilizing’ of data by the network client
practically vanishes becoming incompatible with fairly moderate rate of their generating.

A natural claim to any tool of remote application control including GRGnetwork is
the ability to stably handle such situations. The essence of the problem is obvious: it is
necessary to do something with data of volume permanently enhancing with time which
had been produced by application but, in view of some reasons, still cannot be ‘taken
away’ by the client component.

The method of the settling the problem indicated above which is adopted in GRGnet-
work makes use of the ‘quantization’ of the both output (concerning the server component)
and input (concerning the client component, respectively) data streams. Its idea is quite
straightforward. Specifically, when the output data quantum (e.g. certain amount of text
lines) received from application process by GRGslave is exceeded, it stops (‘freezes’) the
application (provided the latter is generating further output data). Simultaneously, the
client component is notified on such an event. Another reason of the ‘freezing’ of ap-
plication may be the corresponding explicit command issued by the client component.
It is generated, for example, if the user needs to suspend the reception of new output.
Application run is continued (application output ‘is melted’) in response to the ‘opposite’
command of the client component (which can be either automatic or initiated by the
user).

It turn, the client component stops to fill in the screen (i.e. some TextArea in the
window of ApplicationControlPanel) with the new data either in the case of the filling up
of the input buffer of certain volume or in response to the explicit user command (when the
‘freeze’ item in the appropriate menu is clicked). Then GRGclient directs to the GRGslave
the directive to also ‘freeze’. Since this action needs some time to be performed, client
component is further collecting the messages such as those which have already been issued

332



and are being transported through the network, if any, without displaying them on the
screen. This ‘frozen’ state of GRGclient continues until the user allows GRGclient to run
further (i.e. to proceed to display the new data on the screen, removing the ‘oldest’ ones)
by means of the corresponding command.

It is worth noting that the user may also disable this ‘freezing/melting’ mechanism.
Then there will be no apparent pauses initiated by the client and the new data auto-
matically ousts the ‘most early’ portions of data from the screen. At the same time,
the quantization of the application output by GRGslave is still carried out, enabling the
server to synchronize the the process of data transfer between GRGnetwork components.

The user is therefore provided with necessary tools (controlled with the help of GUI
of the client component) enabling him or her to efficiently control the intensity of the
stream of output data produced by application and its displaying on the monitor screen.

Remote libraries

A useful service worth noting here which is provided by GRGnetwork is an easy access to
some ‘standard’ data libraries situated on the server. Currently, the library of the standard
tests (samples of usage in fact) of numerous Reduce applied packages is supported.

On the screen, the structure of data libraries is represented in the form of tree-like
collection of specifically linked menus. Having chosen some ‘leave’ (representing a con-
crete file), a user can either elicit its content, putting it ‘to the screen’, or submit to CAS
Reduce as the input code for the processing. In the latter case the output generated by
Reduce is returned to the screen. The interactive programs, such as Reduce Lessons by
D.R. Stoutemyer, for example, are executed in a usual way, just like on a ‘local’ com-
puter (if one ignores the facility of the freezing/melting the output data stream discussed
above). Additionally, the system inspects the library of compiled codes of the standard
packages (another ‘standard library’ with a distinct form of access) searching for the one
corresponding to the test file (i.e. the package) chosen and, if there is any, enables the
user to load this package by means of a ‘single mouse click’.

Anonymous and personalized access

Generally speaking, the main service of GRGnetwork is the ensuring of the remote access
from an ‘arbitrary computer’ to the capabilities of CA system which is, currently, the
CAS Reduce; the interfaces to some specialized packages running over Reduce (see, in
particular, [3],[4]) are planned to be implemented.

It has to be noted that there are two modes of such an access. It is convenient to
call them anonymous and personalized, respectively. Formally, these modes are distinct
by the necessity, in the case of personalized access, to submit to GRGnetwork server the
‘personal’ name of the user and the associated password. The procedure of the establishing
‘personalized’ connection claims these data from the user (while connecting as anonymous
client, a user introduces no identifying – or any other – information).

Commenting this point, it has to be noted that, technically, in the case of personalized
access, there appears feasibility for the server to properly attribute subsequent sessions of
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the same user. This ability enables it to ensure such ‘named’ users with some ‘long-term’
(multi-session) resources.

On the contrary, various ‘anonymous’ work sessions of the same user cannot be at-
tributed to their actual ‘author’. All the anonymous users (there may be many of them
simultaneously connected to GRGnetwork at each moment of time while the named user
may simultaneously lead the only session alone) are treated on the equal ground being
considered, on the one hand, as unrelated ones, while, on the other hand, they are pro-
vided with the common long-term resources alone. This distinction is substantial in the
handling of the file systems which are supplied by GRGnetwork to any registered user,
both named and anonymous, which point will be outlined below.

Remote file systems

GRGnetwork supplies users with remote file systems constituted of directories (folders)
and data files. These are realized in the standard way as multiple-branching trees with
nodes-folders and leaves-files which are created in response to user commands. All these
data ‘physically’ reside on GRGnetwork server and are maintained by GRGslave.

All the anonymous clients are endowed with the common file system and possess
identical rights on all its resources. In this case, in view of impossibility of the ‘personal’
attributing of concrete data sets to any ‘specific anonymous user’, the natural restrictions
on the set of allowable file operations over the data files and folders are imposed. In
particular, any operation which potentially could deteriorate for anybody the access to
some data (for example, the altering in some way the path to it) is not allowed. These
restrictions include in particular any removing or renaming files or directories, etc.

On the contrary, every named client (i.e. the one making use of personalized access
mode) is supplied with own, ‘individual’, file system. The access to this system is protected
by a password. In such a case, the full set of operations with the files and directories
is allowed (and the corresponding executive tools are provided). The only substantial
limitation worth mentioning is the restriction imposed on the overall data volume. The
quota-based rule (regulated by system administrator) to the providing of the data storage
resources to named users is followed.

The file operations with remote personal file systems provided to named users allows
the following:

• to store textual data get from Input TextArea of ApplicationControlPanel to a named
file;

• to reproduce the content of the file in the Output TextArea of the same window;

• to create named folders;

• to copy, to remove, to rename, and to move separate files and folders with all their
content;

• to process the content of files by CAS Reduce, sending output to the monitor screen
(to Output TextArea);
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• to search for files and folders in the filesystem tree by their names;

• and more. . .

Conclusion

The outcome of the work reported is currently (June 2001) the software package consisting
of the three main components called GRGclient, GRGmediator, GRGslave with associated
documentation (currently not accomplished, will be enhanced). GRGclient component
with the corresponding startup facilities and the draft of User’ guide are available (in the
demonstrative mode) on URL [2].

It has to be noted that this software should not be considered as a finalized product.
The further enhancing of its capabilities is planned, some additional debugging still retains
to be performed. Nevertheless in its recent state of development GRGnetwork already
becomes an efficient tool able to provide valuable assistance in solution of problems by
the methods of Computer Algebra.
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Geometry of Pairs of Keplerian
Elliptic Orbits

N.N. Vassiliev, K.V. Kholshevnikov

Steklov Mathematical Institute,
St.Petersburg State University

We study using computer algebra methods a class of problems connected with mutual
configaration of two Keplerian elliptic orbits. The first one is the problem of finding
critical points of the distance function between two keplerian elliptic orbits. We reduce
it to determination of all real roots of a trigonometric polynomial of degree eight. The
coefficients of the polynomial are rational functions of orbital parameters. Using Groebner
bases technigue we show that a polynomial of smaller degree with such properties does
not exist. This fact shows that our result cannot be improved and allows us to construct
an optimal algorithm to find the minimal distance between two keplerian orbits. We
define also a function on the set of pairs of Keplerian ellipses so that sign of the function
would be a topological invariant of their configuration. The sign is negative if and only
if the related ellipses are linked. Explicit formulae representing the linking coefficients
as functions of orbital elements are deduced. We suggest different ways to use these
coefficients for determining exact intersections of pairs of osculating Keplerian orbits.
Also we study different metrizations for the space of pairs of Keplerian elliptic orbits.
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Exact and Asymptotic Solutions for
the General Hénon–Heiles System

S.Yu. Vernov
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Vorobievy Gory, Moscow, 119899, Russia;
e-mail: svernov@theory.sinp.msu.ru

1 The Hénon–Heiles system

Let us consider a three-dimensional galaxy with an axial symmetric and time-independent
potential function. The equations of galactic motion admit of two well-known integrals:
energy and angular momentum. If we know also the third integral of motion then we can
solve the motion equations by the method of quadratures. However, the third integral as
polynomial function does not exist in general case.

In the 1960s, numerical [1] and asymptotic methods [2, 3] have been developed to show
existence or absence of the third integral for some polynomial potentials.

In [1] (1964) Hénon and Heiles wrote: ”In order to have more freedom of experi-
mentation, we forgot momentarily the astronomical origin of the problem and consider
its general form: does an axisymmetrical potential admit a third isolating integral of
motion ?”. They chose Hamiltonian

H =
1

2

(
x2

t + y2
t + x2 + y2

)
+ x2y − 1

3
y3,

because: (a) it is analytically simple; this makes the numerical computations of
trajectories easy; (b) at the same time, it is sufficiently complicated to give trajectories
which are far from trivial. Indeed, Hénon and Heiles found that for low energies this
system appeared to be integrable, in so much as trajectories (numerically integrated)
always lay on well defined two-dimensional surfaces. On the other hand, they also obtained
that for high energies many of these integral surfaces were destroyed and that phase space
acquired large ergodic regions. The Hénon–Heiles system became a paradigm of chaotic
Hamiltonian dynamics.

Let us consider the Hénon–Heiles Hamiltonian in the general form:

H =
1

2

(
x2

t + y2
t + λx2 + y2

)
+ x2y − C

3
y3, (1)

where C and λ are numerical parameters.
Investigations of the general Hénon–Heiles system:{

xtt = −λx − 2xy,

ytt = −y − x2 + Cy2,
(2)
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can be separated on the following ways:
1. The solutions of (2) have been investigated in the complex time plane using

numerical integration techniques [4, 5]. Numerical investigations of the Hénon–Heiles
system are continued up to now [6, 7].

2. The second integral as formal power series in phase variables x, xt, y and
yt (Gustavson integral) has been constructed for the Hénon–Heiles system both in the
original (λ = 1, C = 1) [3] (see also [8]) and in the general forms [9]. To obtain the second
integral Gustavson has constructed the normal form of Hamiltonian (1). Using the Bruno
algorithm [10] V.F. Edneral has constructed the Poincaré–Dulac normal form and found
(provided the energy is small) local families of periodic solutions of Hénon–Heiles system
both in the original [11] and in the general [12] forms.

3. The singularities at the fixed points in phase space are locally analyzed via
normal form theory, whereas the singularities in the complex (time) plane are studied by
the Painlevé analysis. Using this analysis three integrable cases of the general Hénon–
Heiles system have been found:

(i) C = −1, λ = 1,
(ii) C = −6, λ is an arbitrary number,
(iii) C = −16, λ = 1

16
.

The nontrivial cases are (ii) and (iii), case (i) is separable. In the nontrivial integrable cases
four parameter solutions [13] and the second integrals [14–17] have been found1. Further
development in the Painlevé approach has led to finding of Bäcklund transformation [13]
and Lax pairs [19] for the case (ii). The three integrable cases of the Hénon–Heiles system
correspond precisely to the stationary flows of the only three integrable cases of fifth-
order polynomial nonlinear evolution equations of scale weight 7 (respectively the Sawada–
Kotega, the fifth-order Korteweg–de Vries and the Kaup–Kupershmidt equations) [20].

4. It is known that the variable y as a solution of the Hénon–Heiles system has to
satisfy the following fourth-order equation:

ytttt = (2C − 8)ytty − (4λ + 1)ytt + 2(C + 1)y2
t +

20C

3
y3 + (4Cλ − 6)y2 − λy − 4H. (3)

To find a partial solution of this equation one can assume that y satisfies some more
simple equation. For example, it is well-known that the Hénon–Heiles system and, hence,
equation (3) have solutions in terms of Weierstrass elliptic functions satisfying the first-
order differential equation:

y2
t = Ay3 + By2 + Cy + D, (4)

where A, B, C and D are some constants.
E.I. Timoshkova [21] considered the following equation:

y2
t = Ãy3 + B̃y2 + C̃y + D̃ + G̃y5/2 + Ẽy3/2 (5)

1An geometrical interpretation of the second integral in the case (ii) is presented in [18]
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instead of equation (4) and found new one parameter sets of solutions of the Hénon–Heiles
system in nonintegrable cases (C = −4

3
or C = −16

5
, λ is arbitrary number).

In present paper I use the Painlevé method to find an asymptotic solutions of Hénon–
Heiles system in the case C = −16

5
.

2 The Painlevé property

The Painlevé property for ordinary differential equations (ODE’s) is defined as follows.
The solutions of a system of ODE’s are regarded as analytic functions of a complex (time)
variable [22, 23]. The movable singularity of the solution is the singularity, location
of which depends on initial conditions.

Definition. A system of ODE’s is said to have the Painlevé property if all movable
singularities of its general solution are single-valued (simple poles) [24].

All solutions of such systems (systems of P-type) are expressible as simple Laurent
series. As known a Hamiltonian system in a 2s–dimensional phase space is called com-
pletely integrable if it possesses s independent integrals which commute with respect to
the associated Poisson bracket. When this is the case, the equations of motion are (in
principal at least) separable and solutions can be obtained by the method of quadratures.
Since the work of S.V. Kovalevskaya [25] (see also [26]) on the motion of a rigid body
about fixed point, the Painlevé property has been proposed as a criterion for complete in-
tegrability [27, 28]. If the system misses the Painlevé property (has complex or irrational
”resonances”), then the system cannot be ”algebraically integrable” [29] (see also [30] and
references there in). N. Ercolani and E.D. Siggia [31, 32] advance arguments as to why the
Painlevé test works, i.e. they showed how to exploit the singular analysis to yield the in-
tegrals. They proved a theorem which demonstrates that the singularity analysis provides
bounds on the degrees of polynomial integrals for a large class of separable systems.

3 The Painlevé test

3.1 Various algorithms of the Painlevé test

The Painlevé test is any algorithm designed to determine necessary conditions for a dif-
ferential equation to have the Painlevé property. The original algorithm developed by
Painlevé [24] is known as the α-method. The method of S.V. Kovalevskaya [25] is not as
general as the α-method but is more simple than it is. In 1980, motivated by the work of
S.V. Kovalevskaya, M.J. Ablowitz, A. Ramani and H. Segur [33] developed a new algo-
rithm of the Painlevé test for ODE’s2. Using this algorithm one can determine whether

2In [33] Ablowitz et al. have proven that if a partial differential equation (PDE) is solvable by the
inverse scattering transform then a system of ODE’s is obtained from this PDE by the exact similarity
reduction the solutions (of this system of ODE’s) associated with Gel’fand–Levitan–Marchenko equation
will possess the Painlevé property. Furthermore, they conjecture that, when all the ODE’s obtained
by exact similarity transforms from a given PDE have the Painlevé property, perhaps after a change of
variables, then PDE will be ”integrable”. A powerful generalization of the Painlevé test for both nonlinear
ordinary and partial differential equations was developed by J.Weiss, M.Tabor and G.Carnevale [34, 35]
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a system of ODE’s admits movable branch points, either algebraic or logarithmic. This
algorithm can be used not only to isolate values of parameters of integrable cases, but
also to find asymptotic partial solutions in nonintegrable cases. The test consists of three
levels, if the system passes some level then it means that the system may be a system of
P-type and we have to check the system on the following level.

3.2 The first level: find the dominant behavior

We assume that the dominant behavior of solutions in a sufficiently small neighborhood
of the singularity is algebraic. To find the dominant behavior we look for solutions in the
form

x = d1(t − t0)
α and y = d2(t − t0)

β, (6)

where t0 is arbitrary. Substitution (6) into (2) shows that for certain values of α and β,
two or more terms in the equations of (2) may balance (these terms have the same powers),
and the rest can be ignored as t −→ t0. For each choice of α and β the terms which can
balance are called the leading terms. For the Hénon–Heiles system in the general form
there exist two possible dominant behaviors [5, 37]:

Case 1: Case 2: (β < +e(α) < 0)

α = −2, β = −2 α =
1±
√

1−48/C

2
, β = −2

d1 = ±3
√

2 + C, d2 = −3 d1 = arbitrary, d2 = − 6
C

It is possible that an original system is not of P-type, but after change of variables
the obtained system is of P-type3. For C = − 16

5
in Case 2 we obtain α = − 3

2
and to

continue the Painlevé test we have to introduce new variables z = x2 and to consider the
following system instead of system (2):{

zttz = 1
2
z2

t − 2λz2 − 4z2y,

ytt = −y − z − 16
5
y2.

(7)

3.3 The second level: find the resonances

For each obtained pair of values of α̃ ≡ 2α and β we construct the simplified system that
retains only the leadings terms of equations of the original system (7).

For α̃ = −4, β = −2 the simplified system is{
zttz = 1

2
z2

t − 4z2y,

ytt = −z − 16
5
y2.

(8.1)

Substituting

z = − 54

5
(t − t0)

−4 + b1(t − t0)
−4+r and y = −3(t − t0)

−2 + b2(t − t0)
−2+r

(see also [19, 36, 37]). The Painlevé test for both ODE’s and PDE’s which is based on perturbation
theory is presented in [38].

3In this case the original system is said to have the weak Painlevé property. For example, in the
integrable case (iii) system (2) has the weak Painlevé property.
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in system (8.1), we obtain that to leading order in (t−t0) {(t−t0)
2r−8 for the first equation

and (t − t0)
r−4 for the second equation} this system reduces to a system of two linear

algebraic equations:
Q̂(r)b̄ = 0, (9)

where Q̂(r) is 2×2 matrix, which elements depend on r, and b̄ ≡ (b1, b2). Determinant
det(Q̂(r)) is a polynomial of order 4. Equation (9) has nonzero solution only if

det(Q̂(r)) = 0. (10)

The roots of equation (10):

r1 = −1, r2 = 6, r3 =
5 +

√
53.8

2
, r4 =

5 −√
53.8

2

determine resonances (one root is always (−1), it represents the arbitrariness of t0). Some
roots of (10) are not integer. This result means, that the Hénon–Heiles system with
C = −16

5
is a nonintegrable system. There is no algorithm to find the general solution for

a nonintegrable system.
To find a partial asymptotic solutions let us consider the dominant behavior in the

case of α̃ = −3 and β = −2. The simplified system is4{
zttz = 1

2
z2

t − 4z2y,

ytt = − 16
5
y2.

(8.2)

Substituting

z = d1(t − t0)
−3 + b1(t − t0)

−3+r and y = − 15

8
(t − t0)

−2 + b2(t − t0)
−2+r

into (8.2) we repeat calculations and obtain that resonances and corresponding arbitrary
parameters can arise in terms proportional to (t − t0)

−2+r, where r = −1, 0, 4, 6. Root
r = −1 corresponds to arbitrary parameter t0, root r = 0 corresponds to arbitrary
parameter d1, other roots correspond to new arbitrary parameters, i.e. new constants of
integration5.

3.4 The third level: find the constants of integration

The third (and the last) level of the Painlevé test is a substitution into the original (not
simplified) system (7) the following series:

z = d1(t − t0)
−3 +

rmax∑
j=1

c̃zj−3(t − t0)
j−3 and y = − 15

8
(t − t0)

−2 +
rmax∑
j=1

c̃yj−2(t − t0)
j−2,

where rmax = 6, c̃yj and c̃zj are unknown constants.

4The simplified systems (8.1) and (8.2) are different.
5Values of roots r in the case of arbitrary C see in [5, 37].
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After this substitution system (2) is transformed to sequence of systems of linear
algebraic equations. Solving these systems we find c̃yj and c̃zj. Determinants of systems,
which correspond to resonances, have to be zero.

For example, to determine c̃y2 and c̃z1 we have obtained the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
557056d6

1 + d4
1

(
15552000λ − 4860000

)
+

d2
1

(
864000000c̃y2 + 108000000λ2 − 67500000λ + 10546875

)
= 0,

818176d4
1 + d2

1

(
15660000λ − 4893750

)
− 810000000c̃y2 − 6328125 = 0.

(11)

As one can see this system does not include c̃z1, so c̃z1 is an arbitrary parameter (a
constant of integration). For each of values of λ this system can be solved as system in
c̃y2 and d1. We obtain new constant of integration c̃z1, but we must fix d1, so number
of constants of integration is equal to 2. It is easy to verify that c̃y4 is an arbitrary
parameter, because the corresponding system is equivalent to one linear equation. So, we
obtain an asymptotic solution which depends on three parameters: t0, c̃z1 and c̃y4.

3.5 New asymptotic solutions

Now it is easy to obtain asymptotic solutions with arbitrary accuracy. For given values
of λ one has to choose d1 as one of the roots of system (11). After this the coefficients c̃zj

and c̃yj as functions of c̃z1 and c̃y4 can be found automatically due to a computer algebra
system, for example, REDUCE [39, 40]. For some values of λ asymptotic solutions have
been found as the following series (without loss the generality we can put t0 = 0):

z = d1t
−3 +

50∑
j=1

c̃zj−3t
j−3, y = − 15

8
t−2 +

50∑
j=1

c̃yj−2t
j−2.

For example, if λ = 1
9

then system (11) has the following solutions (d1 
= 0):{
d1 = ±25

√
2

16
, c̃y2 = − 1819

663552

}
,

{
d1 = ±25i

√
13

8
√

374
, c̃y2 = − 8700683

1364926464

}
.

Let us consider in detail the case d1 = 25
√

2
16

. The solution is:

z =
25
√

2

16
t−3 +

125

192
t−2 +

25
√

2

768
t−1 +

1625

82944
+ c̃z1t+

+

(
21845

47775744
−

√
2

6
c̃z1

)
t2 +

(
437425

√
2

9172942848
− 25

√
2

48
c̃y4 −

191

3456
c̃z1

)
t3 + . . .,

y = − 15

8
t−2 +

5
√

2

32
t−1 − 205

2304
+

115
√

2

13824
t − 1819

663552
t2+

+

(
1673

√
2

11943936
+

1

6
c̃z1

)
t3 + c̃y4t

4 +

(
1044461

√
2

220150628350
− 19

9216
c̃z1 − 1

2
c̃y4

)
t5 + . . ..

(12)
In the following table I present how c̃z50 and c̃y50 (coefficients of terms proportional

to t50) depend on the arbitrary parameters c̃z1 and c̃y4:
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c̃z1 c̃y4 c̃z50 c̃y50 c̃z1 c̃y4 c̃z50 c̃y50

−1 −1 4×10−12 −1×10−13 0 0 −1×10−44 2×10−45

−1 −0.6 4×10−12 5×10−14 0 0.2 −8×10−20 −3×10−20

−1 −0.2 −1×10−17 −2×10−18 0 0.4 −2×10−17 −9×10−18

−1 0 −1×10−20 3×10−22 0 0.6 −5×10−16 −5×10−16

−1 0.4 6×10−15 1×10−16 0 0.8 −5×10−15 −2×10−15

−1 1 6×10−12 8×10−14 0 1 −3×10−14 −1×10−14

−0.6 −1 3×10−12 −5×10−14 0.4 0 −4×10−25 −1×10−26

−0.6 −0.6 4×10−14 −1×10−15 0.4 0.4 −1×10−15 2×10−17

−0.6 0 −5×10−23 9×10−25 0.4 0.8 −3×10−13 2×10−15

−0.6 0.4 3×10−15 4×10−17 0.8 0 −1×10−21 −3×10−23

−0.6 1 3×10−12 2×10−14 0.8 0.4 −2×10−15 2×10−16

−0.2 −1 1×10−12 −2×10−14 0.8 0.8 −6×10−13 1×10−14

0 −1 −3×10−14 −1×10−14 1 1 −4×10−12 1×10−13

20 20 −2.2 0.051 20 40 −603 6.88
40 20 −11.1 0.01 40 40 −1128 24.5

One can see that coefficients tend to zero very rapidly when the absolute values of the
parameters are less than unit.

4 The connection between asymptotic solutions and

exact solutions

E.I. Timoshkova [21] found that solutions of the following equation:

y2
t = Ãy3 + G̃y5/2 + B̃y2 + Ẽy3/2 + C̃y + D̃, (13)

where D̃ = 0, Ã = − 32
15

, B̃, C̃, G̃ and Ẽ are some depending on λ constants, satisfy (3) in
the case of C = −16

5
. After change of variables: y = �2, we obtain the following equation:

�2
t =

1

4

(
Ã�4 + G̃�3 + B̃�2 + Ẽ� + C̃

)
. (14)

Equation (14) is of P-type. The general solution of equation (14) has only one arbitrary
parameter t0 and can be expressed by elliptic functions [41, 42].

For all values of λ the trajectories of motion are given by the following equation:

x2 ≡ z = − 1

2

(
5

2
G̃y3/2 + 2(B̃ + 1)y +

3

2
Ẽy1/2 + C̃

)
, (15)

where constants B̃, C̃, G̃ and Ẽ depend on λ.
Let us compare the asymptotic solutions (12) with these exact solutions. It is easy

to verify, for example, with help of the Painlevé test of equation (14), that at points
of singularities these solutions and our asymptotic solutions have the same asymptotic
behavior. It means that for some values of parameters c̃z1 and c̃y4 our asymptotic series
give exact solutions and, hence, converge.
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Let us consider in detail the case of λ = 1
9
. In this case the following solution has been

found [21]:

x2 ≡ z = − y

3

{
5

3
− 2i

√
5y

3

}
,

where y is a solution of the following equation:

y2
t = − 32

15
y3 − 4

9
y2 − 8i√

135
y5/2.

Without loss the generality we assume that a solution has singularity at point t = 0, then
the Laurent series for y and z are6:

z =
25
√

2

16
t−3+

125

192
t−2+

25
√

2

768
t−1+

1625

82944
+

3205
√

2

3981312
t+

9025

47775744
t2+

728395
√

2

18059231232
t3+. . .

y =−15

8
t−2+

5
√

2

32
t−1− 205

2304
+

115
√

2

13824
t− 1819

663552
t2+

6551
√

2

23887872
t3− 858455

12039487488
t4+. . .

You can see that this solution is identical with solution (12), with the following values
of parameters:

C̃y ≡ c̃y4 = − 858455

12039487488
≈ −7 × 10−5, C̃z ≡ c̃z1 =

3205
√

2

3981312
≈ 10−3,

so, our asymptotic series converge for these values of parameters. It is possible that our
asymptotic series converge also for another values of parameters, which are close to C̃y
and C̃z. I plan to investigate this question in future publications.

Conclusions

Using the Painlevé analysis one can not only define is the system integrable or not, but
also find partial asymptotic solution even in nonintegrable case as well.

We have found the partial solution of the Hénon–Heiles system with C = −16
5

. This
partial solution is an asymptotic solution and depends on three parameters. Our asymp-
totic solutions with some values of two parameters coincide with one parameter set of
exact solutions.

The author is grateful to R. I. Bogdanov and V. F. Edneral for valuable discussions
and E. I. Timoshkova for comprehensive commentary of [21]. This work has been
supported by the Russian Foundation for Basic Research under grant N◦ 00-15-96577.

6It is easy to verify that

y = − 5

3
(
1 − 3 sin

(
t−t0

3

))2 , z =
25

27
(
1 − 3 sin

(
t−t0

3

))2
{

1 +
2

1 − 3 sin
(

t−t0
3

)} .

The energy of these solutions is equal to zero: H = 0.
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[13] J. Weiss, Bäcklund Transformation and Linearizations of the Hénon–Heiles System,
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Extracting a Special Class of
Integrable Systems with the

Birkhoff-Gustavson Normalization of
Polynomial Hamiltonians

Sergue Vinitsky, Vitaly Rostovtsev, Alexander Gusev

Joint Institute for Nuclear Research,
Dubna 141980 Moscow Region, Russia

A new procedure of extracting a special class of polynomial Hamiltonians under Bertrand -
Darboux integrability condition using the ordinary Birkhoff - Gustavson normalization
is proposed. Typical examples corresponding to the integral of motion contained only
quadratic form of momenta are examined with help of this procedure implemented as a
symbolic computer algebra algorithm on REDUCE 3.6.

Thanks to RFBR for supporting by Grant No. 02-02-16716.

1 Introduction

The ordinary and inverse Birkhoff-Gustavson (BG) normalization procedures have been
applied very effectively in studies of the polynomial Hamiltonian systems [1-4]. Recently,
for example, the inverse BG normalization procedure applied to the perturbed harmonic
oscillators with homogeneous-cubic polynomial potentials (PHOCPs) and to those with
homogeneous-quartic polynomial potentials (PHOQPs) has succeeded to find a new deep
relation the Bertrand-Darboux integrability condition (BDIC) for PHOCPs and that for
PHOQPs [4]. Further, in [4], the validity of the same relation is conjectured as above
between the BDIC of the perturbed harmonic oscillators with homogeneous-polynomial
potentials of degree-k (k-PHOs) and that of 2(k − 1)-PHOs. In this paper a variant of
the above conjecture [4] is posed and the proved to be true. The proof is accomplished
by analyzing the vanishing condition for the BGNF of a given PHO. The condition is
described as a system of algebraic equations of the coefficients in the given polynomial
potential. Since both the BG normalization and the analysis of the vanish condition fit
computer algebra, a procedure for this purpose is newly implemented on REDUCE 3.6.
As a simple but an interesting application the relation conjectured in [4] between the
BDIC for k-PHOs and that for 2(k − 1)-PHOs is proved to be true at least in the case of
k = 5 besides k = 3. Integrals of motion are calculated for those PHOs, too.
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2 The Ordinary Normalization Problem

In this section, we review the ordinary and inverse problems of the BGNF expansion very
briefly following1. Let us consider the Hamiltonian systems with n degrees of freedom on
the phase space +n ×+n, which admits a stable equilibrium point in a resonance of equal
frequencies. Without a loss of generality, such an equilibrium point can be put at the
origin of the phase space. So the Hamiltonian of such a system is assumed to be expanded
into a formal power series, up to degree-2ρ, it takes the polynomial in (q, p) of the form

K(q, p) =
1

2

n∑
j=1

(
p2

j + q2
j

)
+

2ρ∑
k=3

Kk(q, p), (1)

where Kk(q, p) denotes k (k = 3, 4, · · · ) the homogeneous part of degree-k.
The ordinary normalization problem is the conversion of a given K into a polynomial

(i.e. power series) G(ξ, η) BGNF through a local canonical transformation, (q, p) → (ξ, η),
which is associated with generating function of second type,

W (q, η) =
n∑

j=1

qjηj +

2ρ∑
k=3

Wk(q, η) (2)

on writing down G(ξ, η) as

G(ξ, η) =
1

2

n∑
j=1

(
η2

j + ξ2
j

)
+

2ρ∑
k=3

Gk(ξ, η), (3)

in the degree-2ρ case, G(ξ, η) is said to be in BGNF if every homogeneous part Gk(ξ, η)
(k = 3, 4, . . . , 2ρ) in G(ξ, η) satisfies the Poisson-commuting relation,{

1

2

n∑
j=1

(
η2

j + ξ2
j

)
, Gk(ξ, η)

}
=

(
n∑

j=1

(
ξj

∂

∂ηj

− ηj
∂

∂ξj

))
Gk(ξ, η) = 0. (4)

Indeed such as conversion G(ξ, η) is determined uniquely through

G(
∂W

∂η
, η) = K(q,

∂W

∂q
), (5)

together with W (q, η) [4].

3 A background of the algorithm

Theorem 1.(Bertrand-Darboux) The hamiltonian

K(q, p) =
1

2
(p2

1 + p2
2) + V, V = V2 + V ′(q1, q2), V2 =

1

2
(q2

1 + q2
2) (6)

1Those who are interested in the inverse problem, see[4]
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has the quadratic-velocity integral of motion

I = (aq2
2 + bq2 + c)p2

1 + (aq2
1 + b′q1 + c′)p2

2

+(−2aq1q2 − bq1 − b′q2 + c1)p1p2 + K ′(q1, q2),
(7)

if the potential correction V ′ satisfy BDIC

(
∂2V ′

∂q2
2

− ∂2V ′

∂q2
1

)(−2aq1q2 − b′q2 − bq1 + c1) +
∂V ′

∂q1

(6aq2 + 3b) (8)

+2
∂2V ′

∂q1q2

(a(q2
2 − q2

1) + bq2 − b′q1 + c − c′) +
∂V ′

∂q2

(−6aq1 − 3b′) = 0,

where a, b, b′, c, c′, c1 are real-valued constants.
Non-velocity part of integral K ′ meet the conditions

∂K ′

∂q1

= 2(aq2
2 + bq2 + c)

∂V

∂q1

+ (−2aq1q2 − bq1 − b′q2 + c1)
∂V

∂q2

, (9)

∂K ′

∂q2

= 2(aq2
1 + b′q1 + c′)

∂V

∂q2

+ (−2aq1q2 − bq1 − b′q2 + c1)
∂V

∂q1

.

Assertion 1. Let Kn,M−1(q, p) and KM(q, p) be the perturbed harmonic oscillator
Hamiltonians of the form

Kn,M−1(q, p) = K2(q, p) + Vn(q) +
M−1∑
m=1

V(2n−4)m+2(q), (10)

and
KM(q, p) = K2(q, p) + V(2n−4)M+2(q),

with n = 3, 5, 7, · · · and M = 1, 2, 3, · · · , where

K2(q, p) =
1

2
(q2

1 + q2
2 + p2

1 + p2
2),

and Vk(q) for every k is a homogeneous polynomial in q of degree-k. The perturbed
oscillators with the Hamiltonian Kn,M−1(q, p) and with KM(q, p) share the same Birkhoff-
Gustavson normal form (BGNF) up to degree-(2n − 4)M + 2 if both oscillators satisfy
the Bertrand-Darboux integrability condition. The proof can be done from the following
assertion.

Assertion 2. If the hamiltonian Kn,M(q, p) has normal form

Gn,M(ξ, η) = G2(ξ, η) +
M∑

m=1

G(2n−4)m+2(ξ, η), (11)

G2(ξ, η) =
1

2
(ξ2

1 + ξ2
2 + η2

1 + η2
2)

such that Gn,M(ξ, η) − G2(ξ, η) = 0 then oscillators with polynomial hamiltonians
Kn,M−1(q, p) and KM(q, p) are satisfy the BDIC. Assertion 2 follows from the next theo-
rem.
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Theorem 2. If polynomial hamiltonian

K(p, q) = K2(p, q) +
∑
m

Vm(q), K2(p, q) =
1

2

n∑
j=1

(p2
j + q2

j ) (12)

admits an integral of motion in a polynomial form

I(p, q) = I2(p, q) +
∑
m

Im(q), I2(p, q) =
n∑

j,k=1

(ajkpjpk + a′
jkqjqk),

where ajk are real-valued parameters, then so does the polynomial hamiltonian

K∗(p, q) = K2(p, q) +
∑
m

amVm(q),

for the same parameters am in K the integral of motion

I∗(p, q) = I2(p, q) +
∑
m

amIm(q).

Proof. Since Vm(q) and Im(q) are independent of p, then Poisson bracket of K and I
results in

[K(p, q), I(p, q)] = [K2(p, q), I2(p, q)] +
∑
m

([Vm(q), I2(p, q)] + [K2(p, q), Im(q)]).

Hence under condition [K(p, q), I(p, q)] = 0, we have

[K2(p, q), I2(p, q)] = 0, [Vm(q), I2(p, q)] + [K2(p, q), Im(q)] = 0, (13)

by equating each homogeneous part in (2ρ) in [K, I]. The equation (13) leads the vanish-
ment of the Poisson bracket,

[K∗(p, q), I∗(p, q)]=[K2(p, q), I2(p, q)] +
∑
m

am([Vm(q), I2(p, q)]+[K2(p, q), Im(q)])

which proves own assertion.

4 Algorithm

The procedure of extracting the integrable class of the polynomial Hamiltonians under
consideration is realized by the following algorithm implemented by REDUCE 3.6:

1. For polynomial Hamiltonian Kn,M(q, p) (10), where Vk =
∑k

j=0 ckjq
j
1q

k−j
2 we find

BGNF Gn,M(ξ, η) (11) with help of GITA program [6].
2. We put G(2k−4)m+2(ξ, η) for m = 1 term of normal form (11) equal zero.
3. Using standard procedure coeff we have the list of equations for real-value param-

eters c(2k−4)m+2 j′ (each equation contains one of these parameters in first order) and ckj

(0 ≤ j ≤ k, 0 ≤ j′ ≤ (2k − 4)m + 2). After that we exclude the identical equations.
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4.For each derived equations with help of the standard procedure part we extract such
coefficient c(2k−4)m+2 j′ , which is contained in this(the) equation (under consideration) and
express c(2k−4)m+2 j′ via coefficients ckj.

If any coefficient c(2k−4)m+2 j′ is kept in few equations, then we chose one of these
equations and by subtraction of the chosen equation from the above equations we arrive
to requirements, i.e., equations which pose some constrain conditions on these coefficients
ckj(in other words equations keeping only such set of coefficients ckj which satisfies to
these equations).

5. We make substitution of c(2k−4)m+2 j′ expressed via ckj which has been received on
previous step in the normal form and in the initial Hamiltonian.

6. We realize steps 2.-5. at m = 2...M .
7. We solve a system of equations, composed from the requirement equations between

the set of coefficients ckj and for each of the founded solutions of such system, we calculate
a set coefficients c(2k−4)m+2 j′ (m = 2...M)versus the above mentioned set of coefficients
ckj.

Further we calculate such real-valued parametersa, b, b′, c, c′, c1 for which BDIC (8)
keeps for each of potentials V ′ = Vk and V ′ = V(2k−4)m+2, separately .

Then we calculate non-velocity part of integrals K ′ = Ik and K ′ = I(2k−4)m+2 from (9)
and corresponding integrals of motion I from (7).

At that we have, that quadratic part of integrals of the motion for different potentials
(but definite solution of the system of equations described on this step 7.) can be reduced
to the same form. Therefore, Hamiltonian (10)coefficients of which satisfy to the all above
derived conditions has a integral in the form I = I2 + Ik +

∑M
m=1 I(2k−4)m+2.

5 Examples

5.1 (n, M) = (3, 2)

For hamiltonian

K3,2(q, p) =
1

2

2∑
j=1

(
p2

j + q2
j

)
+ V3 + V4 + V6, Vk =

k∑
j=0

ckjq
j
1q

k−j
2 , k ≥ 3 (14)

where ckj are parameters chosen arbitrary, we find the normal form

G3,2(ξ, η) =
1

2

2∑
j=1

(
η2

j + ξ2
j

)
+ G3(ξ, η) + G4(ξ, η) + G6(ξ, η), (15)

where Gk(ξ, η) are homogeneous polynomial of degree k
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G3(ξ, η) = 0,

G4(ξ, η) = (ξ2
2 + η2

2)
2(−15

16
c2
30 −

5

48
c2
31 +

3

8
c40)

+(ξ2
2 + η2

2)(ξ1ξ2 + η1η2)(−5

4
c30c31 − 5

12
c31c32 +

3

8
c41)

+(ξ2
1 + η2

1)(ξ
2
2 + η2

2)(−
7

8
c30c32 +

1

12
c2
31 −

7

8
c31c33 +

1

12
c2
32 +

1

8
c42)

+(ξ1ξ2 + η1η2)
2(

1

4
c30c32 − 1

2
c2
31 +

1

4
c31c33 − 1

2
c2
32+

1

4
c42)

+(ξ2
2 + η2

2)(ξ1ξ2 + η1η2)(− 5

12
c31c32 − 5

4
c32c33 +

3

8
c43)

+(ξ2
1 + η2

1)
2(− 5

48
c2
32 −

15

16
c2
33 +

3

8
c44),

(16)

correction G6(ξ, η) is presented by 6-order polynomial of coordinates ξ, η with the coef-
ficients depended on the parameters c3j, c4j, c6j. Under condition G4(ξ, η) = 0, we find,
that the parameters c4k must be depend on the parameters c3j

c44 =
5

18
c2
32 +

5

2
c2
33, c43 =

10

9
c31c32 +

10

3
c32c33,

c42 = −c30c32 + 2c2
31 − c31c33 + 2c2

32

c41 =
10

3
c30c31 +

10

9
c31c32, c40 =

5

2
c2
30 +

5

18
c2
31.

(17)

Here, the parameters c3k are satisfy by next relation

c2
31 + c2

32 − 3(c30c32 + c31c33) = 0. (18)

Under condition G6(ξ, η) = 0, after substitution (17), we find no new relations between
parameters c3j and parameters c6j dependent from c3j

c66 = (306c30c
3
32−242c2

31c
2
32−534c31c

2
32c33−242c4

32−3780c2
32c

2
33−11340c4

33)/405,
c65 = (96c30c31c

2
32 + 324c30c

2
32c33 − 312c3

31c32 − 852c2
31c32c33

−592c31c
3
32 − 2196c31c32c

2
33 − 1788c3

32c33 − 7560c32c
3
33)/135,

c64 = (72c2
30c

2
32 − 228c30c

2
31c32 + 468c30c31c32c33 + 156c30c

3
32

+270c30c32c
2
33 − 72c4

31 − 336c3
31c33 − 412c2

31c
2
32 + 306c2

31c
2
33

−792c31c
2
32c33 + 270c31c

3
33 − 200c4

32 − 1350c2
32c

2
33)/27,

c63 = (792c2
30c31c32 − 540c2

30c32c33 − 1944c30c
3
31 + 972c30c

2
31c33

+2892c30c31c
2
32 − 540c30c31c

2
33 + 972c30c

2
32c33 − 2732c3

31c32

+2892c2
31c32c33 − 2732c31c

3
32 + 792c31c32c

2
33 − 1944c3

32c33)/81,
c62 = (270c3

30c32 − 1350c2
30c

2
31 + 270c2

30c31c33 + 306c2
30c

2
32

−792c30c
2
31c32 + 468c30c31c32c33 − 336c30c

3
32 − 200c4

31 + 156c3
31c33

−412c2
31c

2
32 + 72c2

31c
2
33 − 228c31c

2
32c33 − 72c4

32)/27,
c61 = (−7560c3

30c31 − 2196c2
30c31c32 − 1788c30c

3
31 + 324c30c

2
31c33

−852c30c31c
2
32 − 592c3

31c32 + 96c2
31c32c33 − 312c31c

3
32)/135,

c60 = (−11340c4
30−3780c2

30c
2
31−534c30c

2
31c32−242c4

31+306c3
31c33−242c2

31c
2
32)/405.

(19)

We go back to the equation (18) to solve it. Three types of solution can be obtained

1) c31 = 0, c32 = 0; 2) c31 
= 0, c32 = 0, c33 = c31/3;
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3) c32 
= 0, c30 =
(c2

31 + c2
32 − 3c31c33)

3c32

. (20)

We remark here that, in the case 1, we find that the hamiltonian (14) takes the form
separated in the variables. Further the case 2 reduces to the case 3 by changing the pairs
of variables (q1, p1) ↔ (q2, p2) in the hamiltonian (14).

In fact, that the hamiltonian (14) in which the parameters ckj are satisfied to conditions
(17), (19) and 3) from (20) has the integral of motion in form

I3,2(q, p) = (c31 − 3c33)(p1
2 + q2

1) − 2c32(p1p2 + q1q2) + I3 + I4 + I6, (21)

where Ik = Ik(q1, q2) are k-degree homogeneous polynomial functions of coordinates.

5.2 (n, M) = (5, 1)

Let us consider the hamiltonian K5,1(q, p) and finding normal form G5,1(ξ, η)

K5,1(q, p) =
1

2

2∑
j=1

(
p2

j + q2
j

)
+ V5 + V8, G5,1(ξ, η) =

1

2

2∑
j=1

(
η2

j + ξ2
j

)
+ G8(ξ, η).

Under conditionG8(ξ, η)=0, we find that the parameters c8j are depended on c5j

c88 = (9c2
54 + 225c2

55)/50, c87 = (18c53c54 + 180c54c55)/25,
c86 = (49c52c54 + 70c2

53 + 245c53c55 + 280c2
54)/75,

c85 = (−28c51c54 + 70c52c53 − 70c52c55 + 140c53c54)/25,
c84 = (−2c50c54−16c51c53−2c51c55+27c2

52−16c52c54+27c2
53)/6,

c83 = (−70c50c53 + 140c51c52 − 28c51c54 + 70c52c53)/25,
c82 = (245c50c52 + 280c2

51 + 49c51c53 + 70c2
52)/75,

c81 = (180c50c51 + 18c51c52)/25, c80 = (225c2
50 + 9c2

51)/50.

(22)

Here the parameters c5j are satisfy by next conditions

−2c52c54 + c2
53 − 10c53c55 + 4c2

54 = 0,
−4c51c54 + c52c53 − 10c52c55 + 2c53c54 = 0,
20c50c54 − 92c51c53 + 20c51c55 + 45c2

52 − 92c52c54 + 45c2
53 = 0,

−20c50c54 − 20c51c53 − 20c51c55 + 11c2
52 − 20c52c54 + 11c2

53 = 0,
−10c50c53 + 2c51c52 − 4c51c54 + c52c53 = 0,
−10c50c52 + 4c2

51 − 2c51c53 + c2
52 = 0.

(23)

If parameter c53 
= 0 then the system of equations (23) has next solution

c50 = (c3
52 − 4c2

52c54 + 2c52c
2
53 + 4c52c

2
54 − 2c2

53c54)/(10c2
53),

c51 = (c2
52 − 2c52c54 + c2

53)/(2c53), c55 = (−2c52c54 + c2
53 + 4c2

54)/(10c53)

and the integral of motion takes form

I5,1(q, p) = (c52 − 2c54)(p1
2 + q1

2) − 2c53(q2q1 + p2p1) + I5 + I8.

354



References

[1] Y.Uwano, N.A.Chekanov, V.A.Rostovtsev and S.I.Vinitsky, Computer Algebra in Sci-
entific Computing, V.Ganzha et.al. eds., 441–61 (Springer-Verlag, 1999).

[2] N.A.Chekanov, M.Hongo, V.A.Rostovtsev, Y.Uwano and S.I.Vinitsky,
Phys. Atom. Nucl. 61, 1918-22 (1998).

[3] N.Chekanov, V.Rostovtsev, Y.Uwano and S.Vinitsky, Comp. Phys. Commun. 126,
47–50 (2000).

[4] Y.Uwano, J. Phys. A 33, 6635-6653 (2000)

[5] J.K.Moser. Lectures of hamiltonian system. Memories of AMS No.81,1-60 AMS,
Providence (1968).

[6] V.Basios, N.A.Chekanov, B.L.Markovski, V.A.Rostovtsev, Y.Uwano and S.I.Vinitsky,
Comp. Phys. Commun. 90, 355–368 (1995).

355



On Numerical Stability of
Polynomial Evaluation

Eugene V. Zima
Department of Computer Science

University of Waterloo, Waterloo, Canada
e-mail: ezima@scg.uwaterloo.ca

The section “Tabulating polynomial values” in [4] gives a caution on the accumulation
of rounding errors when tables of finite differences are used for the evaluation of polynomial
values. However it does not indicate the accumulative error effect quantitatively. On the
other hand, very pessimistic bounds for the accumulated error of this kind of polynomial
evaluation are given in [1] and repeated in [2]. These bounds involve, for example, the
degree of the evaluated polynomial. We will analyze different schemes for polynomial
evaluation (forward and backward differencing [5]) and will show that the accumulated
error does not depend on the degree of a polynomial (as in the case of Horner method [3]).
This means that the numeric stability of finite differences based polynomial evaluation is
much better than it was previously thought.

We will also consider examples of applications of differencing technique to such prob-
lems as 2D and 3D plotting (in particular, algebraic curves plotting) and discuss our
implementation.

References

[1] O. Bachmann, Chains of recurrences, PhD thesis, Kent State Univ., Kent, OH -
44240, USA, December 1996.

[2] R. van Engelen, Symbolic Evaluation of Chains of Recurrences for Loop Optimiza-
tion, Technical Report TR-000102, Department of Computer Science, Florida State
University, 2000.

[3] N.J. Higham, Accuracy and stability of numerical algorithms, SIAM, 1996.

[4] D.E. Knuth, The art of computer programming. V.2. Seminumerical Algorithms,
Second edition. Addison-Wesley, 1981.

[5] E.V. Zima, On computational properties of chains of recurrences. In International
Symposium on Symbolic and Algebraic Computation (2001), London, Canada, ACM
Press (to appear).

356



Index

Abramov S.A. 9
Altaisky M.V. 11
Andonov A. 12
Bardin D. 12
Blinkov Yu.A. 71
Bochorishvili T. 27
Bondarenko S. 12
Chichurin A.V. 245
Christova P. 12
Czichowski G. 30
Dimovski I. 32
Dubovik V.M. 64
Edneral V.F. 43
Efimov G.B. 52
Gareev F.A. 62
Gareeva G.F. 62
Galperin A.G. 64,254
Gerdt V.P. 71,83,93
Glazunov N.M. 104
Golubitsky O. 114
Govorukhin V. 127
Grebenikov E.A. 27,128, 137,140
Grozin A.G. 149,157
Gusev A. 158,348
Hausdorf M. 169
Ivanov V.V. 180
Jakubiak M. 128
Kalinina N.A. 182
Kalinovskaya L. 12
Kholshevnikov K.V. 336
Khvedelidze A.M. 83
Kislenkov V.V. 183
Komarova E. 184
Kondratieva M.V. 185
Kornyak V.V. 186
Kozak–Skoworodkin D. 128
Makarevich N.A. 196
Mechveliani S.D. 203
Mitichkina A.M. 212
Mityunin V.A. 221
Mladenov D.M. 83
Nanava G. 12

Niukkanen A.W. 231
Olszanowski G. 137
Ovchinnikov A.I. 221
Paramonova O.S. 231
Passarino G. 12
Pervushin V.N. 253
Petkovšek M. 9
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