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Abstract

Single-bunch instability of a short and dense positron
beam in a photo-electron plasma is studied numerically
using code LCODE. The code was originally developed
for studies of plasma wakefield acceleration. It is two-
dimensional and fully relativistic, with both the beam and
electrons modelled by macro-particles. The instability is
shown to affect the rear part of the beam, right after the
arrival of nearby electrons to the axis. As the result, the
emittance of the whole beam grows exponentially. The in-
stability can be stabilized by an external longitudinal mag-
netic field. The field does not itself stabilize the instability,
but prevents the electrons from going to axis once they are
thrown to the wall by the previous bunch.

1 INTRODUCTION

In positron rings of B-factories, the electron cloud (elec-
tron plasma) produced due to photoemission and sec-
ondary emission can cause a single-bunch instability of
the beam [1, 2]. Here we analyze the axisymmetric mode
of this instability with two-dimensional, fully relativistic,
electromagnetic hybrid code LCODE [3], which was origi-
nally developed for simulations of plasma wakefield accel-
eration. Since the motion of electrons near the beam is es-
sentially non-hydrodynamic, the code was modified to en-
able the particle (Lagrangian) description of the plasma. To
clarify the mechanism of the instability, we first study the
beam evolution without synchrotron oscillations and then
discuss the role of synchrotron motion. Finally, we exam-
ine the influence of a longitudinal magnetic field on the
instability.

2 THE CODE

We use the cylindric coordinates (r, ϕ, z) and the co-
moving simulation window (Fig. 1). Since the length scale
of beam evolution is much longer than the bunch length,
we use the so-called quasi-static approximation. Namely,
when calculating the plasma response we consider the
beam as “rigid” and find the fields as functions of r and
ξ = z−ct, where c is the speed of light. Then we use these
fields to modify the beam, etc.

The beam is modelled by macro-particles; each one is
characterized by r- and ξ-coordinates (rb and ξb), r- and z-
momenta (pbr and pbz), and angular momentum. The force
acting on the beam comes from the plasma fields and the
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Figure 1: Geometry of the problem.

external focusing:
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where �er and �ez are unit vectors, e is the elementary charge,
and F is the external focusing strength.

The fields are obtained from the full Maxwell equations
which, in quasi-static approximation, take the form
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where �j and ρ are the total current and charge densities,
respectively.

Plasma macro-particles are characterized by their radius
and three components of the momentum. We find these
quantities as functions of ξ. Since no information can prop-
agate forward in the simulation window, plasma response
and all fields can be found in a single finite-differences pas-
sage of the simulation window from right to left.

The boundary conditions for equations (2) are that of a
perfectly conducting wall. In front of the bunch the plasma
contains uniformly distributed warm electrons and no ions.
The electrons incident on the wall are reflected back with
the thermal velocity.

3 THE INSTABILITY

Unless stated otherwise, we use the parameters and no-
tation listed in Table 1. It turns out that the wall of the
vacuum chamber does not affect the beam evolution, so in
simulations we choose a wall of small radius to speed up
calculations.

The instability quickly destroys the beam (Fig. 2). We
can quantitatively describe this process by tracing the time

Proceedings of EPAC 2002, Paris, France

1643



Figure 2: Beam distribution in r − ξ plane for t = 0 (top)
and t = 0.35 msec (bottom) without synchrotron oscilla-
tions.

Figure 3: The growth rate of emittance at different beam
cross-sections. The beam center is at ξ = ξ0. Arrow shows
the arrival point location.

dependence of the emittance
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at various cross-sections of the beam. This dependence
turns out to be exponential with the growth rate Γ shown
in Fig. 3 by the thick line. The growth rate is directly
proportional to the initial electron density, which is seen
from comparison of the graphs for several electron densi-
ties (thin and dotted lines in Fig. 3).

The observed behavior of the growth rate can be under-
stood from the picture of electron motion (Fig. 4). The
electrons are attracted by the bunch electric field. Small
imperfections of the field cause small deviations of elec-
tron trajectories. Once the electrons arrive to the near-axis
region, their electric field affects the positron bunch and
heats it due to time-varying field imperfections. The driv-
ing force of the instability at a given beam cross-section is
thus roughly proportional to the near-beam electron den-

Table 1: Basic set of parameters
Number of particles per bunch, N 1011

Bunch rms radius, σr 0.3 mm
Bunch rms length, σz 1.3 cm
Bunch-to-bunch distance, L 2.4 m
Beta function (for external focusing) 16 m
Beam energy, Wb 3.1 GeV
Wall radius 0.5 cm
Unperturbed electron density, n0 106 cm−3

Initial electron temperature, Te 5 eV

Figure 4: Trajectories of the electrons in calculation win-
dow.

Figure 5: The electron density distribution in r − ξ plane.
To visualize the off-axis density distribution, the product
nr is shown.

sity. If the electron density is lower there (e.g., because of
a higher Te), the growth rate is correspondingly smaller.

Since the beam field is linear in r near the axis, nearby
electrons first arrive to the axis almost simultaneously at
some point we term “Arrival Point” (AP in Fig. 4). Behind
the AP the electron density greatly increases (Fig. 5), and
we see the beam breakup there. For a Gaussian beam, the
Arrival Point is located exactly at the beam center for

Nreσz

σ2
r

≈ 3.36, (4)

where re is the classical electron radius. Thus, the instabil-
ity can manifest itself if the left-hand side of (4) is greater
than or of the order of unity.

Note that, as follows from Fig. 5, the electron density
near the axis is strongly peaked (as r−1) behind the AP.

From the above consideration it becomes clear why the
growth rate is proportional to n0. Since the self field of
electrons is small compared to the beam field, the pattern of
electron trajectories and the shape of electron density distri-
bution do not depend on n0. Hence, the unperturbed elec-
tron density affects only the absolute value of the growth
rate and not the shape of its ξ-dependence.

To visualize the driving force of the instability, we plot
the oscillating part of the focusing force (averaged over the
beam radius) as a function of time (over one betatron pe-
riod) and position along the beam (Fig. 6). The graph is
taken at the stage of developed instability. It is seen that
ahead of AP there are no force oscillations. Near AP the
force oscillates with twice the betatron frequency because
of a small mismatch between the beam emittance and the
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Figure 6: The map of the oscillating part of the focusing
force at t ≈ 0.2 msec.

Figure 7: The betatron radius and longitudinal position
for two beam particles (a run with synchrotron motion in-
cluded).

external focusing: electrons “remember” the envelope os-
cillations of the beam head. Behind the AP the force be-
comes chaotic and heats the rest of the beam. This is just
heating, since no discernible structure is observed on the
phase plane (rb, pbr) behind the AP.

The heating model is confirmed by simulations with 20%
beam energy spread or 20% energy variation along the
beam. In both cases the growth rate was almost the same
as for the mono-energetic beam.

The synchrotron motion of the beam, when included,
does not affect the growth of the whole beam emittance,
but flattens the growth rate profile along the beam if the
frequency of synchrotron oscillations is higher than the
growth rate. With the synchrotron motion, the radius of
particle transverse oscillations increases mostly at the beam
tail (Fig. 7). Both observations are in agreement with the
heating model.

4 INFLUENCE OF THE LONGITUDINAL
MAGNETIC FIELD

Once there are electrons at the beam axis, a longitudinal
magnetic field cannot suppress the instability. As follows
from simulations, it just reduces the growth rate and some-

Figure 8: The electron density map for a bunch train in the
initially uniform plasma. Triangles show location of the
bunches.

Figure 9: Electron trajectories between successive bunch
passages.

what changes the picture of beam breakup. However, the
external field can stabilize the beam by preventing electrons
from coming to the near-axis area. This effect is observed
in modelling of bunch train propagation through an initially
uniform electron plasma (Fig. 8). Every bunch delivers a
large radial momentum to surrounding electrons. As is il-
lustrated by Fig. 9, in the magnetic field of the strength

B0 =
π(2k + 1)mc2

eL
, k = 0, 1, 2, . . . (5)

slow electrons (including secondary ones) make half-
integer of the cyclotron turn between successive bunches,
fast electrons hit the wall, and very few electrons remain
on the way of the next bunch. For L = 2.4 m we have the
minimum optimum field B0 = 22 Gs.
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