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Russia.

We have found the graviton contribution to the one-loop quantum correc-
tion to the Newton law. This correction results in interaction decreasing
with distance as 1/r® and is dominated numerically by the graviton contri-
bution. The previous calculations of this contribution to the discussed effect
are demonstrated to be incorrect.

1 Introduction

The problem of corrections to the equations of motion, arising in general
relativity, is far from being new. The classical relativistic corrections
to these equations were found long ago by Einstein, Infeld and Hoff-
mann [1], and by Eddington and Clark [2]. (A relatively simple deriva-
tion of these corrections is presented in the textbook [3].) Later this
result was reproduced by Iwasaki by means of Feynman diagrams [4].
Thus, the problem of the classical relativistic corrections to the Newton
law is solved finally.

Let us note that the general structure of the relativistic classical cor-
rection to the interaction potential of two bodies with masses m, and ma,
which would be of second order in the Newton gravitational constant
k, is clear immediately. Indeed, the quantity km/c* (c is the velocity of
light) has the dimension of length, so that with the account for the sym-
metry under the interchange m, — m, the correction should be of the

form
k2mymg(my + ma)

: (1)

(]ci = Qg 2.2

o
The dimensionless constant a,; as found in the above works equals 1/2.

There is one more linear in k combination of constants which can be
used for the construction of a power correction to the Newton potential.




We mean

kB,
—= =10,

3

where # is the Planck constant, [, = 1.6 - 107 cm is the Planck length.
Clearly, such a correction, being of course of quantum nature, should

look as follows: 5
k*h
Bl Wl (2)

U =a
qu qu o33

One has to find the numerical constant a,,. In spite of extreme smallness
of the quantum correction, its investigation certainly has a methodolog-
ical interest: this is a closed calculation of a higher order effect in the
nonrenormalizable quantum gravity.

The reason why this problem allows for a closed solution is as follows.
The Fourier-transform of 1/7? is

/dr ﬂ—z_qri = —2rlng> (3)

r3

This singularity in the momentum transfer q means that the correction
discussed can be generated only by diagrams with two massless particles
in the t-channel. The number of such diagrams of second order in £ is
finite, and their logarithmic part in ¢ can be calculated unambiguously.

Figure 1: Photon (neutrino) loop

The corresponding diagrams with photons and massless neutrinos in
the loop (see Fig. 1) were calculated in [5]-{8]. This contribution to the

numerical factor ag, is
4+ N,

. =
14 15m
where N, is the number of massless two-component neutrinos.

As to the contribution to the effect from the graviton exchange, it
was considered in [9]-[15]. However, there is no quantitative agreement

' (4)
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among the results of these works, even the predictions for the sign of the
correction differ.

We believe that the correct result for the quantum correction to the
Newton law will be sufficiently interesting from the theoretical point of
" view. This is the aim of our investigation. Among the previous works
~ on the subject, the most detailed presentation of the calculation is given
~ in [10, 15). Our approach — the direct calulation of Feynman diagrams,
the choice of the field operator for the gravitational field and of the gauge
 _ is the same as in [9]-[12], [15]. It allows for a relatively detailed
~ comparison of calculations of separate contributions to the effect. This
comparison has demonstrated that in [9]-[12], [15] not all diagrams are
taken into account, and the considered contributions are calculated in-
correctly. Below, when discussing concrete diagrams, we will come back
to the comparison with the previous works, including [13, 14]. And
. meanwhile, let us note an obvious error in [9]-{12], [15]: therein for-
" mula for the Fourier-transform of the function 1/7° (see (3)) contains 72,
instead of 7, and this error persists in the final answer as well.

Some of the considered diagrams contribute also to the classical rel-
ativistic correction. To check our calculations we computed in parallel
these classical contributions and compared them with the correspond-
ing results of [4]. As to these classical corrections, we have complete
agreement with [4] for each diagram taken separately.

2 Simple loops

It is convenient to start with the diagrams where the Feynman integrals
contain two denominators only.

el
.

a b c d

-——
-~

Figure 2: Simple loops
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The simplest of them, Fig. 2a, is missed at all in [9]-[12], [15]. The
result for this contribution to the quantum correction is

22 k*mym
B
w T

(5)

The calculation of the next diagram, Fig. 2b, and that obtained from it
by interchanging scalar particles, is also sufficiently simple and results
m 26 k2m1m2
3r 13
The result of [10] for this contribution differs from (6) only by a wrong
power of 7. The corresponding result of [15] is quite different.

As to the diagrams Fig. 2¢,d with the polarization operator of gravi-
ton, we have nothing to add here to works [9]-[12]. The calculation
is based on the effective Lagrangian corresponding to the sum of these
diagrams, with gravitons and vector ghosts, obtained by 't Hooft and
Veltman [16]:

(6)

Uqu2 =

1 1 7
L=———1 2 — R? R " a8 74
672 n|q|(120R +2OR“R ) (7

This contribution to the quantum correction is

43 kzmlmg
Vs =~ 30, — 73
m r

(8)

Let us mention that diagrams 2c,d were computed in other variables,
Yuw = hyy — 1/26,,h, in Refs. [14, 17, 18], and in the source description of
gravity (due to Schwinger) in [5].

3 Triangle diagrams

Our result for the contribution of more simple diagrams of the type
Fig. 3a is 5
- 2_;3 k n:::mg_

This contribution is also missed in [10, 15].
These diagrams contribute to the classical correction as well. An ex-
tra proof of our normalization for the seagull vertex is the agreement.

with the corresponding classical result of [4].

(9
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a b

Figure 3: Triangle diagrams

Much more tedious is the calculation of diagrams of the type Fig. 3b.

It results in e
i ) (10)

"3 13
The corresponding result of [15] differs from (10) only by sign and wrong
power of 7. The result of [10] for this contribution is quite different.

UquS =

4 Box diagrams

The box diagrams generate contributions of two types. The first one is
of the same origin as that of previous diagrams: q® serves as a small-
momenta cut-off for integrals divergent at large momenta. This contri-
bution originates from the confluence of the vertices on one “matter” line
(which effectively results in a triangle graph) or on both.

a b

Figure 4: Box diagrams

In fact, the “triangle” contributions from the s- and u-channel dia-
grams cancel, and those from the double confluence add up and result in

8 k?
Uquﬁ = m;m2 (11)
™ T
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As to the irreducible part of the box diagrams, it is infrared divergent
with g” serving as a high-momenta cut-off. This contribution is

23 k*mimas

(12)

Uppr = — —
L 37 rd

For the box diagrams as well, we have checked that our results for
thus generated classical corrections agree completely with those of [4].

The box contributions to the quantum correction are missed at all
in [9]-[12], [15], though diagrams Fig. 4a,b are considered in [19] from
another point of view.

On the other hand, neither in [13], nor in [14] we could find any
mention of the “infrared” contribution of the type (12). In fact, in [14] the
problem of classical and quantum corrections was treated in different
variables, v, = hy,, — 1/23,,h. It can be easily demonstrated that the
expressions for the box diagrams are exactly the same in both variables,
v and h. However the box contributions, as calculated in [14], disagree
both with the classical ones obtained in [4] (which are demonstrated
explicitly in [4] to be the same in both variables, 1) and h) and with our
results for the quantum correction, be it (11), or (12), or the sum of (11)
and (12).

At last few words more on Ref. [13]. The approach advocated therein
looks quite interesting and promising. However, the results for the quan-
tum correction presented in [13] do not agree with ours (neither do they
agree with those of [10, 11, 12, 15, 16]). Due to the lack of details in [13],
we cannot say with certainty what is the origin of the disagreement.
Still, an impression arises that at least it is overlooked in [13] that the
irreducible triangle diagrams generate not only classical corrections, but
quantum corrections as well.

5 Conclusions

Summing up all the contributions obtained, (5), (6), (8), (9), (10), (11),
(12), we arrive at the following result for the Newton potential, with
the discussed quantum correction due to the two-graviton exchange in-

cluded:
Ly kmimg (1 El_ ih_)
: 107 c3r2 )
Let us note that the derived overall correction enhances, but not sup-
presses the common Newton attraction.

U(r) = (13)
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