Joint Institute for Nuclear Research

IX Workshop on High Energy Spin Physics

SPIN•01

Dubna, August 2-7, 2001

Proceedings

Edited by A. V. Efremov O. B. Teryaev

Dubna 2002

УДК [539.12.01 + 539.12 ... 14 + 539.12 ... 162.8] (063) ББК [22.382.1 + 22.382.2 + 22.382.3] я 431 W83

International Committee:		Organizing Committee:	
International Comm T. Roser (Chair) D. P. Barber J. M. Cameron O. Chamberlain* E. D. Courant* D. G. Grabb A. V. Efremov H. Ejiri G. Fidecaro* W. Haeberli* W. Haeberli* W. Happer V. Hughes* K. Imai R. G. Milner Y. M. Shatunov V. Soergel L. D. Soloviev E. Steffens C. Y. Prescott A. D. Krisch (Past-Chair) W. T. H. van Oers	Brookhaven DESY Indiana Berkeley Brookhaven Virginia Dubna Osaka CERN Wisconsin Princeton Yale Kyoto MIT Novosibirsk Munich Protvino Erlangen SLAC Michigan Manitoba	A. Efremov (chair) M. Finger (co-chair) J. Nassalski (co-chair) S. Goloskokov (sc. sec.) V. Brudanin L. Mankiewicz S. Nurushev Yu. Oganessian Yu. Panebrattsev N. Piskunov I. Savin O. Selyugin (sc. secr.) M. Strikhanov V. Solovianov O. Teryaev W. Wislicki R. Zulkarneev E. Russakovich (secr.) V. Novikova (secr.)	Dubna Prague Warsaw Dubna Dubna Warsaw Protvinc Dubna Dubna Dubna Dubna Moscow Protvinc Dubna Warsaw Dubna Dubna Dubna Dubna Dubna Dubna
A. D. Krisch (Past-Chair) W. T. H. van Oers *Honorary Members	Michigan Manitoba	v. 1404)R044 (Sect.)	Duona

Sponsored by Russian Foundation for (UVO-ROSTE 875.616.1(P-5)), Internation through the programmes Heisenberg-Lan

> The contributions presented

Workshop on High Energy The Collection of Reports (SPIN 01) (Dubna, August 2-7, 20

ISBN 5-85165-703-0

The book is a collection of rep Physics (Dubna, August 2-7, 2001) branch of science. The workshop of L. I. Lapidus (1927-1986), initiato

Совещание по физике сп Дубна).

Сборник докладов совеща (SPIN 01) (Дубна, 2-7 августа 20

ISBN 5-85165-703-0

В сборник вошли доклады, при высоких энергиях (теория и экс рождения Л. И. Лапидуса (1927-19

O. Selyugin (sc. secr.) M. Strikhanov V. Solovianov O. Teryaev W. Wislicki R. Zulkarneev E. Russakovich (secr.) V. Novikova (secr.)	Dubna Moscow Protvino Dubna Warsaw Dubna Dubna Dubna	E. Christova et About the Q ² De g ₁ and F ₃ Stru A.V. Kotikov e Azimuthal Asym A.V. Efremov
r Basic Research (grant 01-02-26 nal organizing committee for spin ndau, Bogoliubov–Infeld and Blo s are reproduced directly from th by the Organizing Committee	083), UNESCO 1 symposia and JINR, okhintsev–Votruba. e originals	Transverse Asyn S.V. Goloskoko SU(3) Symmetry M. Praszałowic
Spin Physics (SPIN 01) (9; 20 of IX Workshop on High 1 2001). — Dubna: JINR, 2002	01; Dubna). Energy Spin Physics 388 p.: ill.	Electroweak Rad W-Boson Pro V.A. Zykunov
оотts presented at the IX Worksho on different theoretical and exper- was dedicated to the 75th an or of this series of workshops. пина при высоких энергиях taния по физике спина при 001 г.). — Дубна: ОИЯИ, 200 представленные на IX совеща сперимент), которое было посвя 286) — инициатора этой серии о УДК [539.12.01 + 539.12 14 ББК [22.382.1 + 22.382.2 + 22.	р on High Energy Spin rimental aspects of this niversary of the birth (SPIN 01) (9; 2001; высоких энергиях 2. — 388 с.: ил. ние по физике спина щено 75-летию со дня совещаний. + 539.12 162.8] (063) 382.3] я 431	The t-Dependen O.V. Selyugin On Probability S.I. Manayenk Flavour Asymm M.V. Polyakon Polarization Tra Y. Arestov Spin Correlation R. Lednický, V

W83

© Joint Institute for Nuclear Research, 2002

Contents

Welcome Address by JINR Vice-Director A. Sissakian 9
L.I. Lapidus and His Main Contribution to the Spin Physics S.B. Nurushev
Theory of Spin Physics
NLO QCD Polarized Parton Densities
An Alternative Approach to Semi-Inclusive DIS and a Model Independent Determination of $D_u^{\pi^+}$, $D_d^{\pi^+}$ and $D_s^{\pi^+}$ E. Christova et al
About the Q^2 Dependence of the Asymmetry A_1 from the Similarity of the g_1 and F_3 Structure Functions $? 4' \circ - 1$ $A.V.$ Kotikov et al. $? 4' \circ - 1$
Azimuthal Asymmetries in Semi-Inclusive DIS 3223 (36)
Transverse Asymmetry in Hadron Leptoproduction at Small x 3
SU(3) Symmetry Breaking and Polarized Parton Densities M. Praszałowicz et al. 46
Electroweak Radiative Corrections to the Spin Single Asymmetries of the W-Boson Production at RHIC V.A. Zykunov
The t-Dependence of the Hadron Spin-Flip Amplitude at Small Angles O.V. Selyugin 32.2.5.6
On Probability Properties of Polarization Observables S.I. Manayenkov
Flavour Asymmetry of Polarized Antiquarks in the Nucleon M.V. Polyakov
Polarization Transfer in Sidis for A Production Y. Arestov
Spin Correlations and Consequences of Quantum Mechanical Coherence R. Lednický, V.L. Lyuboshitz

Spin Structure Functions and Intrinsic Motion of the Constituents	Experimental Results
P. Závada	Recent Results and Current Status of Muon (G-2) Experiment at BNL
On Spin Content of the Proton	S.I. Redin
G. Musulmanbekov	Polarization of Λ and $\overline{\Lambda}$ Hyperons in Deep Inelastic Lepton Scattering
Polarization Phenomena in Fragmentation of Deuterons to Pions and Non-	V. Alexakhim
A. Yu. Illarionov et al	Longitudinal Spin Transfer to the Λ Hyperon in Lepto-Production S.L. Belostotski
T - Odd Fracture Functions C	Transverse Polarization of Λ Hyperons Produced Inclusively in eN -Scattering at Hermes
Leptoproduction of Polarized Vector Mesons	S.L. Belostotski, O.G. Grebenyuk
<i>B. Postler</i>	Azimuthal Asymmetries in Inclusive Single Pion Electroproduction
SSA Parameter and Twist-3 Contributions	$K.A. Oganessyan \ldots \ldots$
$I.V. Anikin et al. \dots \dots$	Hermes Measurements of the Generalized GDH Integrals
charge-Odd and Single-Spin Effects in Two-Pion Production in $e p$ Collisions	A.T. Nugursed
$E.A. Kuraev et al. \dots \dots$	The Neutron and ³ He Spin Structure Functions and the Generalized Gerasimov- Drell-Hearn Sum Rule
Single-Spin Asymmetry in Pion Production in pp Collisions and Odderon	Piotr A. Zołnierczuk
3.4.6, 9.0	Experimental Verification of the GDH Sum Rule at Elsa and Mami
The Ground and Radial Excited States of the Nucleon in a Relativistic	<i>K.</i> Helbing
S.B. Gerasimov	Helicity Dependence of Single-Pion Photoproduction: Results from the GDH Experiment at MAMI
Spin Properties of Dual Resonances in the Nucleon Structure Function	I. Preobrajenski
L.L. Jenkovszky and V.K. Magas	Single-Spin Azimuthal Asymmetries in Exclusive Electroproduction of π^+
Gluonic Effects in Vector Meson Photoproduction at Large Momentum	Mesons
Transfers 310.60	<i>E. Thomas</i>
N.I. Kochelev and V. Vento $\ldots \ldots \ldots$	Spin Physics of Vector Meson Production at Intermediate W and Q^2
Spin Partner of the Pomeron 724.15	A.B. Borissov
A.V. Vinnikov et al. \ldots 149	Deeply Virtual Compton Scattering: Motivation and First Observations
Super Black Hole as Spinning Particle: Supersymmetric Baglike Core	J. Ely
A. Ya. Burinskii	
Spin Singlet Final State David and the David State	Spin Physics with Compass
spin-singlet Final state Dominance in the Reactions $pp \rightarrow pn\pi^+$ and $pd \rightarrow pnp$ in the Δ -Region	5. 17612
Yu.N. Uzikov	Application of Neural Network to the Selection of Photon Gluon Fusion
Spin and Crowity	Events in DIS K Kennelik 977
Ivanhoe B. Pestov	11.11.0 wullk
103	

The RHIC Spin Program A. Bravar	Polarimetry of the Polarized Proton Beams at RHIC A.A. Bogdanov et al.
Measurement of Analyzing Powers of π^+ and π^- Produced on a Hydrogen and a Carbon Target with a 22 GeV/c Incident Polarized Proton Beam (BNL Experiment E925) S.B. Nurushev et al	About Optimal Target Thickness for Polarimeters 301 I.M. Sitnik 364 The Polarized Gas Target for Anke at COSY-Jülich 368
V.A. Okorokov et al. 302 Recent Results on Measurement of Tensor Analyzing Power Components in Elastic Electron-Deuteron Scattering in the Range of Momentum Transfer of 0.2-0.8 $(GeV/c)^2$ D.K. Toporkov et al. 305 Tensor Analyzing Power T_{20} in the dd \rightarrow ³ Hp and dd \rightarrow ³ Hen Reactions at Intermediate Energies in the Collinear Geometry V.P. Ladygin et al. 312	Determination of Circular Polarization of γ-Quanta with Energy > 10 MeV Using Compton Polarimeter A.P. Potylitsyn et al. 373 Development of a Spin Polarized Solid Proton Target for Experiments by the Radio-Isotope Beams H. Sakai et al. Summary of Dubna-SPIN01 A.V. Efremov
Dubna "Delta-Sigma" Experiment. Preliminary Results of the 2001 Data Taking Runs of Measurements of $\Delta \sigma_L(np)$ Energy Dependence V.I. Sharov et al	List of Participants
 Differential Cross Section, Vector and Tensor Analyzing Powers of 4.5 GeV/c Deuteron Breakup on Be with Proton Emission at 80 mrad L.S. Azhgirey et al. Three-Body Effects in P D Elastic Scattering at 250 MeV K. Hatanaka et al. K. Hatanaka et al. 	
Clear Signature of Three-Nucleon Force Effects Via the Precise Measure- ments of $\vec{d} \vec{p}$ and $\vec{n} d$ Scatterings H. Sakai	
Results of the Spin Rotation Parameters A Measurements for the Pion- Proton Elastic Scattering in the 1700 MeV and 1900 MeV Mass Region V.V. Sumachev et al.	
New Technical Developments	
Polarization at the Nuclotron 345 Yu.K. Pilipenko et al	

RECENT RESULTS ON MEASUREMENT OF TENSOR ANALYZING POWER COMPONENTS IN ELASTIC ELECTRON-DEUTERON SCATTERING IN THE RANGE OF MOMENTUM TRANSFER OF 0.2-0.8 (GeV/c)²

H. Arenhövel¹, L.M. Barkov², S.L. Belostotsky³, V.F. Dmitriev², M.V. Dyug², R. Gilman⁴, R.J. Holt⁵, L.G. Isaeva², C.W.de Jager⁶, E.R. Kinney⁷, R.S. Kowalczyk⁸, B.A. Lazarenko², A.Yu. Loginov⁹, S.I. Mishnev², V.V. Nelyubin³, D.M. Nikolenko² A.V. Osipov⁹, D.H. Potterveld⁸, I.A. Rachek², R.Sh.Sadykov², Yu.V. Shestakov², A.A. Sidorov⁹, V.N. Stibunov⁹, D.K. Toporkov^{2†}, V.V. Vikhrov³, H.de Vries⁶, and S.A. Zevakov²

(1) IKP, JGU, D-55099 Mainz, Germany
 (2) BINP, 630090 Novosibirsk, Russia
 (3) PINP, Gatchina 188350 St.Petersburg, Russia
 (4) RU, Piscataway, NJ 08855, USA
 (5) UI, Urbana-Champaign, IL 61820, USA
 (6) NIKHEF, P.O. Box41882, 1009 DB Amsterdam, The Netherlands

 (7) CU, Boulder, CO 80309, USA
 (8) ANL, Argonne, IL 60439-4843, USA
 (9) INP TPU, 634050 Tomsk, Russia
 † E-mail: D.K.Toporkov@inp.nsk.su

Abstract

An experiment on measurement of the components of tensor analyzing power in elastic and inelastic *ed* scattering successfully has been performed during the period 1999-2000 at the VEPP-3 electron storage ring, Novosibirsk. Substantial increase of the figure of merit of the experiment has been achieved with application of a novel, high intensity Atomic Beam Source of polarized atoms. The preliminary results on the measurement of the analyzing power component T_{20} in elastic scattering are presented. The measurement has been performed in the range of momentum transfer poorly investigated but important from theoretical point of view because of the node of the monopole charge form factor of the deuteron. The comparison of the other experimental data and some theories are discussed.

Key-words: Tensor analyzing power, deuteron form factors, electron scattering, polarized internal target, cryogenic atomic beam source.

Recent progress of polarization experiments in nuclear and particle physics greatly added to our understanding of the reactions under study. The polarization observables in both elastic and inelastic electron-deuteron scattering provide an important information for the investigation of the nucleon-nucleon interaction as well as for the study of nonnucleon degrees of freedom. Thus the measurement of the polarization observables in the elastic electron-deuteron scattering together with the differential cross section measurement gives a possibility for complete experimental determination of the electromagnetic form factors of the deuteron (charge monopole, quadrupole and magnetic). Starting from 80th several laboratories (BATES, BINP, Bonn University, NIKHEF, TJNAF) have performed such an experiments in a different modifications.

Here we present recent results on the T_{20} analyzing power measurement which were obtained in the experiment with the use of internal polarized deuterium target in the storage ring VEPP-3, Novosibirsk, at 2 GeV electron energy.

A new Atomic Beam Source has been designed and constructed to fill the storage cell target by polarized atoms [1]. It has a conventional design of the dissociator and high-frequency transitions units. The main difference of this ABS from the other modern sources is the usage of the superconductive sextupole magnets instead of permanent ones usually used. That allows to provide a magnetic pole-tip field three times as larger as that for the best permanent magnets and consequently a higher flux of polarized atoms is available from the source. Magnet system consisting five superconductive magnets delivers 8.2×10^{16} polarized deu-

Figure 1: Storage cell for polarized atoms.

terium atoms per second injected into the storage cell.

Figure 2: Collected beam integral.

The electron beam optics in the experimental section of VEPP-3 ring was modified to get the possibility to use a small-aperture storage cell. An aluminum (0.03 mm thick) storage cell has an elliptic cross section 13×24 mm, the length of 400 mm and coated by 'drfilm' to prevent atoms from depolarization during the wall colisions, see Fig. 1. The cel is cooled by liquid nitrogen to low temperature to get a more densed target.

The particle detector (partly described in [2]) has two identical systems. For the registration of the particle tracks different sets of drift chambers are employed. Each of the systems has a segmented C_{sl} + NaI electron calorimeter (total thickness is 16 radiation lengths) on one side of the

electron beam and a hadron scintillation hodoscope (3 layers of plastic scintillators with a total thickness of 26 cm) on the other side. Angular acceptance of each electron arm is $\theta = 20^{\circ} \dots 30^{\circ}$ and $\Delta \phi = 60^{\circ}$ and that for each hadron arm is $\theta = 60^{\circ} \dots 70^{\circ}$ $\Delta \phi = 60^{\circ}$. The detection system permits to identify the D(e, e'd), D(e, e'p)n and $D(e, pp)e'\pi^-$ events.

In March 1999 all the equipment was assembled at the VEPP-3. The electron beam current integral of 566 kC was collected during almost one year run, as shown in Fig. 2. A large amount of data for both elastic and inelastic scattering channels was collected.

The tensor polarization of the atomic beam injected into the storage cell is monitored by the Breit-Rabi polarimeter and polarization is very high, about 98%. However, the degree of the polarization in the storage cell is lower due to the depolarization effects, which couldn't be numerically accounted for. Moreover, the polarization is getting worse during the run because of degradation of the cell surface. To control the average polarization of the target during the run so-called Low-Q polarimeter based on the measurements of the asymmetry in elastic *ed* scattering was installed at a small angle ($\theta_e \approx 9^\circ$) where the absolute measurement of the analyzing power T₂₀ is

Figure 3: Polarization of the target vs time measured with Low-Q polarimeter.

available [3]. The polarization of the target versus the time extracted with the use of Low-Q polarimeter is shown in Fig. 3.

Figure 4: The correlation of the electrondeuteron polar angle in elastic scattering. See text for details.

Figure 5: The distribution for mass identification parameter in $E-\Delta E$ method.

The cross section of elastic *ed* scattering falls dramatically as compared with the quasi-elastic one when the momentum transfer is increased. To extract the events of the elastic scattering among a lot of background events three kinematical correlations and two particle identification methods were applied:

e-d polar angles correlation,

e-d azimuthal angles correlation,

scattering angle - deuteron energy correlation, E- ΔE method, time of flight method.

In Fig. 4 two histograms of Θ_{diff} are shown. The Θ_{diff} is difference between the measured electron polar angle (Θ_{ϵ}) and the one deduced from the measured hadron polar angle in assumption that events belong to elastic scattering process. One can see the wide distribution for events connected mainly with proton knock out process (solid histogram). The shaded histogram corresponds to elastic *c*-*d* scattering events that are selected by the application of the last four cuts mentioned above.

Preliminary results of the run-99/00 at VEPP-3

Theories:

- E.Hummel and J.A.Tjon, Phys. Rev. C42(1990)423
- P.G.Blunden, W.R.Greenberg and E.L.Lomon, Phys. Rev. C40(1989)1541, E.L.Lomon, nucl-th/0002026
- J.W.Van Orden, N.Devine and F.Gross, Phys. Rev. Lett. 75(1995)4369
- R.B.Wiringa, V.G.J.Stoks and R.Schiavilla, Phys. Rev. C51(1995)38
- H.Arenhövel, F.Ritz and T.Wilbois, Phys. Rev. C61(2000)034002

Figure 6: World data on T_{20} measurement in elestic ed scattering versus the square of momentum transfer and some theoretical predictions.

In Fig. 5 the distributions for identification parameter of $E-\Delta E$ method are shown. The solid histogram is obtained for the all events. The shaded histogram is for the case when four other cuts are applied. One can see two quite separable peaks (protons and deuterons).

The preliminary results obtained for the tensor analyzing power component T_{20} are shown in Fig. 6 together with the existing world data and with predictions of several theoretical models.

These data are provided by one of the detection system that is sensitive mostly to T₂₀ (the other one is sensitive mostly to T₂₁ component). Small corrections were applied to calculate T₂₀ at the conventionally accepted angle $\Theta_e = 70^{\circ}$. The shown error bars include statistical errors only. The measurement of T₂₀ was performed in the range of momentum transfer where it reaches the minimum and where the experimental data are poor. Analysis of the available theories has shown that the theoretical description of T₂₀ given by Wiringa *et al.* (v18full) and Blunden *et al.* (C') ensure almost the same good fit to our experimental data. It seems that prediction for T₂₀ given by van Orden *et al.* (CIA + $\rho\pi\gamma$) provides the best description of the experimental data in the whole range of momentum transfer available so far.

The data on the tensor analyzing power component T_{20} in elastic *ed* scattering together with the data on the unpolarized elastic differentional cross section provide a possibility to extract each form factor separately. The results for the monopole G_c charge form factor are shown in Fig. 7. The results show a node located at a lower value than inferred from the Bates measurements and agree well with the recent measurements at JLab [9].

The large amount of data are collected in inelastic channels (reactions D(e, e'p)n and $D(e, pp)e'\pi^-$). The analysis of these data are in progress.

This work was supported in part by the Russian Fund for Fundamental Research under Grants 01-02-16929, 01-02-17276 and State Scientific and Technical Programm (Fundamental Nuclear Physics) 01-31/SC-FNP.

Preliminary results of the run-99/00 at VEPP-3

Node of the G_C : at $Q = 4.05 \pm 0.08$ fm ⁴ Bates: $\pm 30 \pm 0.16$ fm ⁴ JLab + Bates: $\pm 21 \pm 0.08$ fm ⁴

Figure 7: The data on G_c measurement in elastic ed scattering and some theoretical predictions.

References

 L.G. Isaeva et al., Proc. of 13th Int. Symp. on High Energy Spin Phys., Protvino, Russia, Word Scientific, p.631 (1998).

- [2] Theunissen J.A.P. et al., Nucl. Instrum. and Methods, A 348, 61 (1994).
- [3] M. Ferro-Luzzi et al., Phys. Rev. Lett. 77, 2630 (1996).
- [4] E. Hummel and J. Tjon, Phys. Rev. C42, 423 (1990).
- [5] R.B. Wiringa, V.G.J. Stoks and R. Schiavilla, Phys. Rev. C51, 38 (1995).
- [6] P.G. Blunden, W.R. Greenberg and E.L. Lomon, Phys. Rev. C40, 1541 (1989).
- [7] J.W. Van Orden, N. Devine and F. Gross, Phys. Rev. Lett. 75, 4369 (1995).
- [8] H. Arenhövel, F. Ritz and T. Wilbois, arXiv:nucl-th/9910009 v2 1 Dec 1999.
- [9] D. Abbot et al. Phys. Rev. Lett. 84, 5053 (2000).

Discussion

Q (Piskunov): What are you planning to measure in the nearest two years?

A: In the next year, we plan to study photodisintegration of a tensor polarized deuteron with a detector specially modified for this purpose.

C(Belostotsky): My remark is to try to clarify the question by A.Efremov about T_{20} in the $e \ d$ -elastic and $d \ p$ fragmentation. In the $e \ d$ elastic, T_{20} is sensitive to the F_Q/F_C form factors ratio. In the deuteron fragmentation, T_{20} is sensitive to the $\frac{U_d}{U_s}$ ratio of the d/s state deuteron wave functions in momentum space. So, both the values are different but tightly related.

Q (Uzikov): What is the upper limit for Q^2 in T_{20} -measurements expected in the nearest future? According to potential models, T_{20} has to change sign again at $Q^2 > 1 \text{ GeV}^2$.

A: Unfortunately, I don't know any group who is going to continue the T_{20} measurements for higher momentum transfers.

Q (Efremov): Could you explain why T_{20} obtained by the Strunov group is negative for large momenta, but your T_{20} became positive?

A: In my talk, I considered T_{20} that appears in elastic *e d* scattering. If a probe particle is strongly interacting, T_{20} can probably change.

Q (Mikirtytchiants): Was the degree of dissociation along the storage-cell measured?

A: In Novosibirsk, this kind of measurements was never performed. May be, some useful information is contained in measurements from the HERMES storage cell.