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One of the problems in creation of the neutron production target for BNCT consists in 
necessity to spread the proton beam about the whole target surface to avoid the local 
overheating, caused by inhomogeneous distribution of energy deposition. Defocusing of 
the beam up to the target size creates some technical complications.  More attractive 
looks the target moving across the beam, or the beam sweeping across the target. 

 

Temperature of target heating, caused by the energy deposition under a particle beam passing 

through, is defined by the thermal conductivity equation a
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dependence on coordinates and time.  
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In case of a permanent particle beam the temperature in target is growing until the equilibrium 
is achieved between the power deposition and evacuation.  The temperature stabilization time  is 
important to be known to make estimations on efficiency of moving target.  When  is small 
compared to a time of material exposure under the beam,  with  standing for the 
beam size in the motion direction and u  - for velocity, the target motion gives practically no effect.  
If, by the opposite, is much more than , only the last defines the maximum temperature.  
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To solve the equation (1) the operational method of complex variable function theory is 
convenient to be used. Time dependence of specific power deposition has a form 

, where )(),,(),,,( 0 tzyxqtzyxq η⋅= )(tη  is the unit function, equal to zero when t , and to 
unity when t , whose image is 
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If the transverse size of the beam is much more than the target depth, the dependence of 
energy deposition on transverse coordinates may be neglected, so that . Besides 
this may be considered equal to a constant value  within the mean range of particles 

, and to zero outside it.  Thus the temperature image U  is got in a form: 
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Here  is defined with the use of boundary condition at the outlet target surface . In 
the ideal case of zero temperature maintained here, i.e. U , the temperature image at  
is found as: 
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In the limit  this defines the equilibrium temperature, T , at inlet 
surface as: 
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Here C  stands for the heat capacity and  for temperature conductivity coefficient.  p −2a

With kJ/g, which corresponds to the heat flux of 1 kJ/cm /s, мм and 
м in molybdenum target T .  
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Temperature dependence on time is described as: 



















 −
−⋅

−
⋅

−






−

⋅−
= ∑

∞

=1
2

222

3

3
2

2
00

4
)12(exp

2
)12(sin

)12(
122

2
)2(),0(

kp

takk
kCa

q
tT

∆
π

∆
πδ

π
∆δδ∆ . 

The first term in the sum ( ) forms more than 80% of the whole sum even at . Its 

characteristic time 
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effective rate of heating appears to be by a ratio 
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which maintains during a very short time 22
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δτ  only. For м in molybdenum target this 

time is equal to s, while the stabilization time with ∆ мм is equal to мs. 
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Distribution of equilibrium temperature over target depth is found from solution of equation 
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 with above defined boundary conditions. It has a form of Fourier series 
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As a real approach to the heat evacuation scheme let’s consider the cooling of target with the 
turbulent flow of liquid metal over the outlet target surface. The boundary condition here is 
determined through an achievable value of the specific heat transfer l)TT(Nu 02 −⋅= λ

Nu

Q , defined 
with the heat conductivity of liquid , temperature difference between the target surface and liquid, 

, characteristic size of the liquid metal stream l  and the Nusselt coefficient .  With T put 

zero the boundary condition at  is got in a form 
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Temperature image at inlet surface with this new condition at the outlet one gets a form: 
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This defines the equilibrium temperature T  as being equal to [ 0==∞ p)p,z(pU),z( ]
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For liquid metal, flowing through the channels, the Nusselt coefficient is found as 

, where 8.0014.05.4 PeNu +≅ 2
0

a
lu

Pe =

Nu
o45
(T

,  - flow velocity and l  - channel diameter. For target of 

the molybdenum, cooled with the liquid gallium, flowing through the channels of diameter l mm 
with velocity v m/s, one gets . With q kJ/g the equilibrium temperature at 
outlet surface T  is equal to , while at the inlet one  -  to , more than two times 
higher as compared to the ideal case .  
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Temperature dependence on time is still described by means of expression: 
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first of roots, which defines in the main the characteristic time of temperature stabilization, is 
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becomes equal to ms.  

The equilibrium temperature distribution in target with new boundary condition still has a 
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For a beam, moving about the target with velocity  in transverse direction , for instance, 
the particle density distribution along this direction is to be taken into account, while in another one 
the beam still may be considered as homogeneous: T . 
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In the coordinate frame where the beam rests an equation for T reads:  )(xm
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Here  are the coefficients of specific power expansion in a series 

 with above defined µ . With supposition made about the specific power 

dependence on  one gets 
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Solution for - component of equilibrium temperature is got as: m
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Let  be an infinite series of rectangles of height q  and width , distant from each 

other by  between the centers. Within the rectangle, 
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and between them, 
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In a limit of extremely large velocity u  both these expressions transform into 0
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molybdenum target cooled with gallium, for the first root of equation 
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When the water is used for target cooling instead of the liquid gallium by the same geometric 
parameters and flow velocity, the equation for  definition reads . Time of 
temperature stabilization, defined with the first root , is equal to мсек. Equilibrium 
temperature at inlet target surface is by ~6.8 times higher than in the ideal case, and three times 
higher as compared to the liquid gallium cooling.  
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