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We present a quantitative analysis of the reversibility properties of classically

chaotic quantum motion by relating the degree of reversibility to the rate at
which a quantum state acquires a more and more complicated structure dur-

ing its time evolution. This complexity can be characterized by the number

M(t) of harmonics of the (initially isotropic, i.e. M(0) = 0) Wigner function,
which are generated by the time t. We show that, in contrast to the classi-

cal exponential increase, this number can grow after the Ehrenfest time tE
not faster than linearly. It follows that if the motion is reversed at some ar-
bitrary moment T immediately after applying an instant perturbation with

intensity described by the parameter ξ, then there exists a critical perturba-
tion strength, ξc ≈

√
2/M(T ), below which the initial state is well recovered,

whereas reversibility disappears when ξ & ξc(T ). In the classical limit the num-
ber of harmonics proliferates exponentially with time and the motion becomes
practically irreversible. The above results are illustrated in the example of the
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kicked quartic oscillator model.

Keywords: Quantum chaos; instability; complexity; reversibility.

1. Introduction

Extreme sensitivity of the phase space trajectories to initial conditions and
system’s parameters, which is characterized by positive Lyapunov expo-
nent or, in more general terms, positive algorithmic complexity, is the very
essence of the classical dynamical chaos. Such an exponential instability of
classical motion results in extraordinary complexity of random and unpre-
dictable classical trajectories. In computer simulations of classical motion
this leads to rapid loss of memory and practical irreversibility even though
the exact equations of motion are reversible. Any, however small, impre-
cision such as computer round-off errors, is magnified by the exponential
instability of the classical orbits to the extent that the memory of the ini-
tial conditions is effaced. In other words, due to this instability smaller and
smaller scales of the classical phase space are explored during evolution of
a phase space distribution exponentially fast with time. These fine details
are lost due to the finite accuracy of numerical simulations, and therefore
the reversibility of the evolution is destroyed.

In contrast, almost exact reversion is observed in numerical simulations
of the quantum motion of classically chaotic systems, even in the regime in
which statistical phenomena such as deterministic diffusion take place.1,2

Qualitatively, this crucial difference is explained by a much simpler struc-
ture of quantum states as compared to the complexity of random clas-
sical trajectories.3,4 Unfortunately, the concept of complexity formulated
in terms of the exponential instability of the phase trajectories cannot be
immediately transferred to quantum mechanics, where the very notion of
trajectory is irrelevant and there is no quantum analogue to the Lyapunov
exponent. At first glance, there is no means to measure comparative com-
plexity of classical and quantum states of motion.5

However, individual classical trajectories are, in essence, of minor in-
terest if the motion is chaotic. They all are alike in this case and rather
behavior of manifolds of them carries really valuable information. There-
fore the methods of the phase space and the Liouville form of the classical
mechanics become the most adequate. It is very important that, opposite to
the classical trajectories, the classical phase space distribution and the Li-
ouville equation have direct quantum analogs. Hence, a comparison between
classical and quantum dynamics can be made by studying the evolutions
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in time of the classical and quantum phase space distributions expressed in
similar canonical action I and angle θ variables and both ruled by linear
equations.

The exponentially fast structuring of the system’s phase space on finer
and finer scales, which is the paramount property of the classical chaotic
dynamics, is restricted in quantum case by the quantization of the phase
space. This makes quantal phase-space quasi-distribution, e.g. the quantum
Wigner function,“simpler” in comparison with its classical counterpart. In
particular, while in the case of chaotic motion the mean number M(t) of
θ-Fourier components of the classical phase-space distribution grows expo-
nentially in time, similar growth in the case of the quantum Wigner function
turns out, as we will show below, to be impossible. We notice in this con-
nection that this number also increases much slower (only power-like) if the
classical motion is regular.

It is intuitive that the degree of reversibility of a motion should depend
on the ratio with which complexity of the state grows. Nevertheless, a rig-
orous link between the intuitively expected different degrees of reversibility
of quantum and classical motion and the structure developed by the phase-
space distributions during dynamical evolution has never been established
before. We aim to clarify this problem.

2. The Phase Space Approach

Let Ĥ ≡ H(â†, â; t) = H(0)(n̂ = â†â) +H(1)(â†, â; t) be the Hamiltonian of
a generic nonlinear system with a bounded below discrete energy spectrum
E

(0)
n ≥ 0, which is driven by a time-dependent force of such a kind that

the classical motion exhibits a transition from integrable to chaotic behav-
ior when the strength of the driving force is increased. Here â†, â are the
bosonic, creation-annihilation operators: [â, â†] = 1 . In our analytical study
and numerical simulations we considered as an illustrative example the
kicked quartic oscillator with Hamiltonian Ĥ(0)(n̂) = ~ω0n̂ + ~2 n̂2 driven
by periodic kicks Ĥ(1)(â†, â) = −

√
~ g(t)(â+â†) where g(t) = g0

∑
s δ(t−s).

In our units, the time and parameters ~, ω0 as well as the strength of the
driving force are dimensionless. The period of the driving force is set to
one. The classical dynamics of such a non-linear oscillator becomes chaotic
when the kicking strength g0 exceeds a critical value g0,c ≈ 1. The angular
phase correlations decay in this case exponentially and the mean action
grows diffusively with the diffusion coefficient D = g2

0 .

We use the method of c-number α-phase space borrowed from the quan-
tum optics (see for example [6–8]). It is, basically, built upon the basis of
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the coherent states |α〉 = D̂
(
α√
~

)
|0〉 obtained from the ground state |0〉

of the unperturbed Hamiltonian with the help of the unitary displacement
operator D̂ (λ) = exp(λ â†−λ∗â). Here α is a complex phase space variable
independent of the effective Planck’s constant ~.

The Wigner function W in the α-phase plane is defined by the following
Fourier transformation

W (α∗, α; t) =
1
π2~

∫
d2η e

(η∗ α√
~
−η α∗√

~
)Tr
[
ρ̂(t) D̂(η)

]
, (1)

where ρ̂ is the density operator and the integration runs over the complex
η-plane. The Wigner function is normalized to unity,

∫
d2αW (α∗, α; t) = 1

and is real though, in general, not positive definite. It satisfies the evolution
equation

i
∂

∂t
W (α∗, α; t) = L̂qW (α∗, α; t), (2)

with the Hermitian “quantum Liouville operator” L̂q. This equation reduces
in the case ~ = 0 to the classical Liouville equation with respect to the
canonical pair α, iα∗ with the classical Hamiltonian function being given
by the diagonal matrix elements Hc(α∗, α; t) = 〈α|Ĥ(N)(â†, â)|α〉 of the
normal form Ĥ(N) of the quantum Hamiltonian operator. In other words,
this function is obtained from the quantum Hamiltonian by substituting
â→ α/

√
~ , â† → α∗/

√
~ .

We define the harmonic’s amplitudes Wm(I) as the Fourier components
of the Wigner function with respect to the angle variable θ introduced by the
canonical transformation α =

√
I e−iθ. The normalization condition reduces

then to
∫∞

0
dI W0(I; t) = 1 whereas the amplitudes of other harmonics are

expressed in terms of the matrix elements 〈n+m|ρ̂|n〉 of the density operator
along the mth collateral diagonal as

Wm(I; t) = 2
~ e
− 2

~ I
∑∞
n=0(−1)n

√
n!

(n+m)!×
(4I/~)

m
2 Lmn (4I/~) 〈n+m|ρ̂(t)|n〉, m ≥ 0,

(3)

with Lmn Laguerre polynomials and W−m = W ∗m. The inverted relation
reads

〈n+m
∣∣ρ̂(t)

∣∣n〉 = (−1)n 2
√

n!
(n+m)!×∫∞

0
dI e−2 I~ (4I/~)

m
2 Lmn (4I/~) Wm (I; t) .

(4)

These formulae allow us to freely translate all relations given below from
the language of the density matrix into the language of the Wigner function
and back.9,10
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3. Reversibility and Peres Fidelity

Aiming to connect the reversibility of the motion with the complexity of
the Wigner function, we follow the approach developed in [11]. We consider
first the forward evolution ρ̂(t) = Û(t)ρ̂(0)Û†(t) of a simple initial (generally
mixed) state ρ̂(0) up to some time t = T . An instantaneous Hermitian per-
turbation ξV̂ δ(t−T ) with the intensity ξ is then applied which transforms
the state ρ̂(T ) into ˆ̃ρ(T, ξ) = P̂ (ξ)ρ̂(T )P̂ †(ξ) . The resulting transformation
P̂ (ξ) = e−iξV̂ is unitary. For example this transformation is equivalent to
the global rotation W (I, θ;T )→W (I, θ+ ξ;T ) by the angle ξ in the phase
plane if the operator V̂ = n̂. In particular, we use below an infinitesimal
perturbation of such a kind to reveal complexity of the Wigner function at
the instant T .

The new state ˆ̃ρ(T, ξ) serves as the initial condition for the backward
evolution Û(−T ) = Û†(T ) during the same time T , after which the re-
versed state ˆ̃ρ(0|T, ξ) = Û†(T )ˆ̃ρ(T, ξ)Û(T ) = P̂ (ξ, T )ρ̂(0)P̂ †(ξ, T ) is finally
obtained. Here P̂ (ξ, T ) ≡ e−iξV̂ (T ), with V̂ (T ) ≡ Û†(T )V̂ Û(T ) being the
Heisenberg evolution of the perturbation during the time T . At last, to
characterize the degree of reversibility we consider the distance between
the reversed ˆ̃ρ(0|T, ξ) and the initial ρ̂(0) states, as measured by the Peres
fidelity12

Frev(ξ;T ) =
Tr[ˆ̃ρ(0|T, ξ)ρ̂(0)]

Tr[ρ̂2(0)]
=

Tr[ˆ̃ρ(t, ξ)ρ̂(t)]
Tr[ρ̂2(t)]

∣∣∣∣∣
t=T

= F (ξ; t)|t=T . (5)

The fidelity is bounded in the interval [0, 1] and is the closer to unity the
more similar are the initial and reversed states. The second equality in (5) is
a consequence of the unitary time evolution. The fidelity F (ξ;T ) measures
the complexity of the Wigner function at the moment t = T (see below).
Both the functions Frev(ξ;T ) and F (ξ;T ) are numerically identical but
expressed in different variables. The relation (5) plays the key role in our
analyses. It allows us not only to relate the degree of reversibility to the
complexity of the state at the reversal time T but also to establish a strong
restriction on the upgrowth of the numberM(t) of harmonics of the Wigner
function. The crucial point is that while in classical mechanics the number of
Fourier components has no direct physical meaning, in quantum mechanics
the number of the components of the Wigner function at any given time is
related to the degree of excitation of the system (see for example eq. (10)
below) and therefore unrestricted exponential growth of this number is not
allowed.13–16
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4. Peres Fidelity and the Number of Harmonics

First of all, let us establish a connection between fidelity and complexity
of the Wigner function at an arbitrary moment t. To do this we make the
instant rotation in the phase plane e−iξn̂ at this moment and utilize then
the second form of fidelity in Eq. (5). This yields9,10

F (ξ; t) = 1− 2
∞∑
m=1

sin2 (ξm/2)Wm(t) = 1− 1
2
ξ2 〈m2〉t +O(ξ4) , (6)

where 〈m2〉t =
∑+∞
m=0m

2Wm(t) and

Wm>0(t) =
(2− δm0)

∑∞
n=0

∣∣∣〈n+m
∣∣ρ̂(t)

∣∣n〉∣∣∣2∑∞
m=−∞

∑∞
n=0

∣∣∣〈n+m
∣∣ρ̂(t)

∣∣n〉∣∣∣2 . (7)

We define then the number of harmonics of the Wigner function at the
time t as M(t) =

√
〈m2〉

t
. This is in line with [14–16]. The set of positive

definite quantities Wm is normalized to unity,
∑+∞
m=0Wm = 1, and can be,

therefore, given a probabilistic interpretation. According to (6) the number
of harmonics at arbitrary time t is found as

M2(t) ≡ 〈m2〉t = −d
2F (ξ; t)
dξ2

∣∣∣
ξ=0

. (8)

This formula remains valid also in classical limit provided that the fidelity
is calculated with the help of the corresponding classical phase-space dis-
tribution function.

Fig. 1. Root-mean-square 〈m2〉t versus time t at g0 = 1.5. Squares, diamonds and

triangles correspond to ~ = 0.01, 0.1 and 1. Empty circles refer to classical dynamics and
the dashed line fits these data.
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Fig. 2. Quantum diffusion: mean value 〈I〉t/g20= ~ 〈n〉t/g20 in function of time t. Squares

and triangles correspond to (~, g0)=(1, 2) and (2, 3). The straight line shows the classical
diffusion law 〈I〉t = g20t.

The time evolution of M2(t) is illustrated for different values of the
effective Planck constant ~ in Fig.1. The initial state is chosen to be a
pure ground state ρ̂(0) = |0〉〈0| which corresponds to the isotropic Wigner
function W (α∗, α; 0) = 2 e−2|α|2 with the size 1/2. This size is kept con-
stant throughout all calculations whereas the quantum Liouville equation
is solved for a number of decreasing values of the Planck’s constant thus
approaching the classical dynamics. It is clearly seen that the exponential
increase of 〈m2〉t takes place only up to the Ehrenfest time scale tE ∝ ln ~,
consistently with the findings reported in [14–16]. Then, a much slower
power-law increase follows.

To reveal the reason for such a behavior we will analyse now the fidelity
Frev(ξ; t) expressed in terms of the density matrices (or, equivalently, the
Wigner functions) at the initial time of the forward – backward cycle of
evolution. This yields9,10 Frev(ξ; t) = |f(ξ, t)|2 where

f(ξ, t) = 〈0|e−iξn̂(t)|0〉 = Tr
[
e−iξn̂ρ̂(t)

]
=
∞∑
n=0

wn(t) e−iξn (9)

with wn(t) ≡ 〈n|ρ̂(t)|n〉 =
∣∣〈n|Û(t)|0

∣∣2 being the excitation number proba-
bility distribution. In such a way we relate the behavior of fidelity to evo-
lution of the excitation numbers. Equating now the ξ2 terms in expansions
of the both possible representations of fidelity we arrive at the following
significant exact relation between the number of harmonics and the root-
mean-square deviation of the action

〈m2〉t = 2χ2(t), χ2(t) ≡ 〈0|n̂(t)2|0〉 − 〈0|n̂(t)|0〉2 . (10)

Thorough numerical study9 convince us that after proper averaging over
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strong irregular fluctuations (coarse graining) the excitation number dis-
tribution wn decays exponentially with n,

wn(t) ≈ 1
〈n〉t + 1

[ 〈n〉t
〈n〉t + 1

]n
, 〈n〉t ≡ 〈0|n̂(t)|0〉 . (11)

It follows then9,10 that after the Ehrenfest time

Wm(t) = (2− δm0)
∞∑
n=0

wn+m(t)wn(t) ≈ 2− δm0

2〈n〉t + 1

[ 〈n〉t
〈n〉t + 1

]m
, (12)

and

〈m2〉t = 2χ2(t) ≈ 2〈n〉2t . (13)

The time dependence of the mean action 〈I〉t (the deterministic quan-
tum diffusion) is shown in Fig. 2. Thus the relation (13) implies that the
number of harmonics grows after the Ehrenfest time not faster than linearly.

5. Reversibility Versus the Number of Harmonics

One can readily show now that for any finite ξ � 1 fidelity equals in the
approximation (11)

Frev(ξ;T ) = F (ξ; t = T ) =
1

1 + 1
2ξ

2〈m2〉T
. (14)

More than that, in fact this formula remains valid for any time including
the times T < TE .9 This formula directly relates reversibility of the motion
to complexity of the Wigner function at the reversal T .

Fig. 3. Fidelity F (ξ;T ) versus the scaled variable ξ/ξc(T ). Data correspond to: (a)

~ = 1, g0 = 2; circles: T = 10; triangles: T = 50. The full curve shows the theoretical
prediction Eq. (14). The deviations on the tail of the curve are due to fluctuations

neglected in (14).
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According to Eq. (14) a crossover takes place near the critical value
ξc(T ) ≡

√
2/M(T ), from good, F (ξ;T ) ≈ 1, to broken, F (ξ; t) ≈

(ξ/ξc(T ))2 � 1, reversibility. Our numerical simulations (Fig. 3) nicely
confirm this formula.

6. Summary

We have established a quantitative relation between complexity of the
Wigner function and degree of reversibility of motion of a classically chaotic
quantum system. We have analytically proved that the number of harmon-
ics M(t) of this function, which can serve as a natural measure of the
complexity, increases after the Ehrenfest time not faster than linearly in
striking contrast with classical dynamics, where the number of harmonics
of phase space distribution proliferates exponentially. We have shown that
if a quantum motion has been perturbed at some moment T by an external
force with intensity ξ and then reversed, its initial state is recovered with
the accuracy ∼ (ξ/ξc)2 as long as the strength is restricted to the interval
0 < ξ < ξc(T ) =

√
2/M(T ). This interval decreases with the time T at

most linearly beyond the semi-classical domain but shrinks exponentially
due to the classical exponential instability when this domain is approached.
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