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Introduction. Stability of interchange modes in presence of a sheared flow has been studied

extensively in the past. It was found that all linearly unstable modes are tied either to extremum

points of the flow profile or to plasma boundaries[1]. In case of a linear flow profile there are

no unstable modes, except for the boundary ones. This result seems to indicate that even a very

slow sheared flow can stabilize the local internal interchange. We show that such conclusion is

incorrect. By solving the initial problem, we found ballistic-type modes that change form during

evolution. They are growing exponentially for a period, which is inversely proportional to the

shear-flow amplitude, and then go into the power-law growth phase. Their total kinetic energy

grows with the same threshold as for the standard interchange, i.e., such modified interchange

modes have the same stability condition as they would have without the flow! The difference

is in the constantly changing form of each perturbation. The average radial wave-number of

the ballistic interchange is growing with time (linearly, for large times). Thus, the interchange

inevitably goes into the dissipative phase and ultimately decays, at least if no other small-scale

effects (such as the FLR) are taken into account. This limitation of growth and the reduction of

the radial wavelength are the likely causes of the observed favorable influence of shear flows on

the convective transport.

Linearized equation for interchange modes. Equation describing the interchange modes in

an axially symmetric plasma column with due account for the diamagnetic and the ExB rotation,

is well known:
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Here m is the wavenumber, ω0 = ω −mωE , ψ = ϕ̃/ω0r,

S(r) = ω0

(

ω0 −ω∗

) n0r3

B2
=

(

(

ω −mωE −
ω∗

2

)2

−
ω2
∗

4

)

n0r3

B2
, (2)

and γ0 is the instability growth rate of the standard MHD-interchange in the “local approxima-

tion”.

This equation should be solved in the whole plasma column with appropriate boundary con-

ditions. However, most eigenmodes are highly localized, and if we are interested in turbulence
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at a given radius, we should consider a local approximation. In the following we try to analyze

this equation, assuming linear radial profile for ωE and keeping ω∗ constant. This can be viewed

as a local Taylor expansion of the problem.

Small Larmor radius approximation. Assume that ω∗=0 and ωE is expanded around r0

ωE = ωE0 − xω ′
E , (3)

as well as the rest of coefficients. Then the equation looks like
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where λ ∼ γ0 describes the interchange instability drive. This equation is singular, the singu-

larity being a particular case of the hydrodynamic resonance. The expansion is designed to

describe the vicinity of the singularity at small Ω.

The hydrodynamic resonance. According to Timofeev[1], various types of oscillations in

sheared flows can be described by equations of the type

ϕ ′′
xx −

[

k2 −U(x)
]

ϕ = 0, (5)

where the function U(x) vanishes when |x| → ∞, and around the hydrodynamic resonance point

(where the phase velocity of the mode is equal to the flow velocity) has the form

U(x) ∝ 1/
[

ω − kV0 (x)
]n

. (6)

Our case corresponds to a particular choice of n = 2...

Timofeev presents a proof that there are no localized solutions, i.e., all possible exponentially

growing modes are tied either to boundaries or to inflection points of the flow profile. It is

usually interpreted as local stabilization, but such result runs counter to the common sense: a

vanishingly weak sheared flow should not be able to affect the behavior of such a robust mode

as the interchange.

The initial value problem. Let’s find the time evolution of the initial interchange-like pertur-

bation in the vicinity of its hydrodynamic resonance. For this purpose we Fourier-transform the

equation in Ω and in mx/r0:
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where u = r0ω ′
E0 is the flow-velocity shear.

If we introduce new variables l = (k +uτ)/2, s = (k−uτ)/2, the equation becomes

∂ 2ψ̄
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Λ
2

(l + s)2 +1
ψ̄ = 0, (8)

where Λ = λ/u, and ψ̄ = ψ
(

k2 +1
)

Now the variable l behaves as a parameter!

The derived time-dependent equation has simple asymptotic solutions in two limiting cases

1. 1. k<<1 : ψ̄ (l,s) = a1 exp [Λs]+a2 exp [−Λs] ,

2. 2. k>>1 : ψ̄ (l,s) = b1 (l + s)σ1 +b2 (l + s)σ2 ,

where
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1

2
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Assume that the initial perturbation ψ0(k) = ψ0(2l) is localized at k<<1 (broad in radial ex-

tent). Since l behaves as a parameter, we can look for solutions of the form ψ(l,s)≈ψ0(2l)g(s),

where the amplitude g(s) satisfies

∂ 2g
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−

Λ
2
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g = 0, (10)

while the location of the perturbation in k-space moves to large |k| with constant velocity u

(retaining its form, if it is sufficiently localized).

Conclusion: For τ < 1/u = 1/r0ω ′
E0 the amplitude grows exponentially, since the k << 1

limit applies, and then changes to the power law.

Evolution of initial perturbation. In the (x, t) coordinates the found asymptotic solution for

m = 4 evolves as but it may also grow in time.

One can say that it is unstable, if its kinetic energy grows:

W ∝ t2(σ1−1) (11)
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Thus, the instability threshold is σ1 > 1 or γ0>0, which is exactly the threshold for the

standard interchange!

The ion viscosity. It is possible to take into account the finite value of ω∗ in a similar manner:
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Under the same transformations we get
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so that even a small ω∗ drastically changes the asymptotic:

3. k2>>(2λ/ω∗)
2 − 1 : ψ̄ (l,s) = c1 exp [iω∗s/2u] + c2 exp [−iω∗s/2u] ,

so that the growth stops, even if the mode is not stabilized by the FLR effects according to

the usual criterion (2λ/ω∗)
2<1 ! At this stage the fluctuation energy decreases.

Summary. We found that the evolution of an initial interchange-like perturbation in a sheared

flow goes through several stages. Throughout all of them the radial wavenumber linearly grows

with time.

If the flute mode is unstable without the flow, then it will also grow exponentially during the

first stage, and with the same growth rate. Duration of this stage is inversely proportional to the

flow shear.

The second stage starts when the radial wavenumber of the perturbation becomes larger than

the azimuthal one. The growth slows to the power law.

In the third stage the collisionless ion viscosity stops the growth altogether.

It can be concluded that the interchange can be stabilized by a sheared flow only via the drift

effects and the ion viscosity. Otherwise its threshold is unchanged, though the mode is of a

transient type, and hence the transport estimates are smaller.

Some of the results are published in [2].
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