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There exists a remarkable connection between the quantum mechanical LandauÄZener problem
and purely classical-mechanical problem of a ball rolling on a Cornu spiral. This correspondence
allows us to calculate a complicated multiple integral, a kind of multidimensional generalization of
Fresnel integrals. A direct method of calculation is also considered but found to be successful only
in some low-dimensional cases. As a byproduct of this direct method, an interesting new integral
representation for ζ(2) is obtained.
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INTRODUCTION

According to Vladimir Arnold [1], mathematics can be considered as some
branch of physics. In writing this note we have no intention to advocate such
a point of view. Nevertheless, in our opinion the following calculus problem
is a hard nut to crack if only mathematical considerations are being used. The
problem lies in exactly calculating the multiple integral of the type

In =

∞∫
−∞

ds1

s1∫
−∞

ds2 · · ·
s2n−1∫
−∞

ds2n cos (s2
1 − s2

2) · · · cos (s2
2n−1 − s2

2n). (1)

Because of the s1 ↔ s2 symmetry, the n = 1 case is simple

I1 =
1
2!

∞∫
−∞

ds1

∞∫
−∞

ds2

(
cos s2

1 cos s2
2 + sin s2

1 sin s2
2

)
=

π

2
, (2)
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since its calculation involves known Fresnel integrals

∞∫
−∞

ds cos s2 =

∞∫
−∞

ds sin s2 =
√

π

2
.

However, already for n � 2 the above symmetry is lost and things quickly
become messy. The n = 2 and n = 3 cases lie at the borderline. They can
be done with some efforts even though the calculations become noticeably more
involved. Unfortunately, they do not admit an apparent generalization by using
the induction method. Already for n = 4, the attempt to use the same methods
meets difˇculties. Nevertheless, we found a way to calculate such a type of
integrals by invoking some physical arguments.

1. ®IF YOU CANNOT SOLVE A PROBLEM,
THEN THERE COULD BE AN EASIER PROBLEM YOU CAN SOLVE¯

Trying to follow George P	olya's advice, let us consider the following system
of ordinary differential equations:

d

ds

⎛
⎝ x

y
z

⎞
⎠ =

1
R

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 − sin
as2

2

0 0 cos
as2

2

sin
as2

2
− cos

as2

2
0

⎞
⎟⎟⎟⎟⎟⎟⎠
⎛
⎝ x

y
z

⎞
⎠ . (3)

Such a system of equations emerges naturally when one tries to describe a motion
of a sphere S2 rolling on the 
at surface R2 without slippage. More accurately,
it describes the rolling of a sphere of radius R along the Cornu spiral on R2

whose curvature κ = as is proportional to the arc-length s [3,4]. But what is the
relation of this problem to our integral (1)?

As the matrices

M(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 − sin
as2

2

0 0 cos
as2

2

sin
as2

2
− cos

as2

2
0

⎞
⎟⎟⎟⎟⎟⎟⎠
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do not commute for different values of s, the solution of (3) is given by the time
ordered exponential

U(s, s0) = T exp

⎛
⎝ s∫

s0

M(s1) ds1

⎞
⎠ = 1 +

s∫
s0

M(s1) ds1+

+

s∫
s0

ds1

s1∫
s0

ds2M(s1)M(s2) +

s∫
s0

ds1

s1∫
s0

ds2

s2∫
s0

ds3 M(s1)M(s2)M(s3) + . . .

(4)

so that ⎛
⎝ x(s)

y(s)
z(s)

⎞
⎠ = U(s, s0)

⎛
⎝ x(s0)

y(s0)
z(s0)

⎞
⎠ . (5)

Let us take a closer look at the individual terms of the above inˇnite series (4).
Writing the matrix M(si) in the block-form

Mi ≡ M(si) =
(

0 χi

−χT
i 0

)
,

where

χi =
1
R

⎛
⎜⎝ − sin

as2
i

2

cos
as2

i

2

⎞
⎟⎠ ,

it is easy to prove by induction that

M1M2 · · ·M2n+1 =

=
(

0 (−1)nχ1χ
T
2 · · ·χ2n−1χ

T
2nχ2n+1

(−1)n+1χT
1 χ2 · · ·χT

2n−1χ2nχT
2n+1 0

)
,

and

M1M2 · · ·M2n =
(

(−1)nχ1χ
T
2 · · ·χ2n−1χ

T
2n 0

0 (−1)nχT
1 χ2 · · ·χT

2n−1χ2n

)
.

But

χT
i χi+1 =

1
R2

cos
a

2
(s2

i − s2
i+1).

Besides, then our calculation is supplemented by the following initial and bound-
ary conditions:

s0 = −∞, s = ∞, x(−∞) = y(−∞) = 0, z(−∞) = 1, (6)
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in view of these relations and taking into account (5) and (4), we ˇnally obtain

z(∞) = 1 +
∞∑

n=1

(−1)n

R2n

∞∫
−∞

ds1

s1∫
−∞

ds2 · · ·
s2n−1∫
−∞

ds2n fn(s1, s2, . . . , s2n), (7)

where

fn(s1, s2, . . . , s2n) = cos
a

2
(s2

1 − s2
2) cos

a

2
(s2

3 − s2
4) · · · cos

a

2
(s2

2n−1 − s2
2n).

After rescaling

si →
√

2
a

si, (8)

our original integral (1) indeed shows up in the series (7):

z(∞) = 1 +
∞∑

n=1

(−1)n

(
2

aR2

)n

In. (9)

Thus, if we can ˇnd z(∞), we can ˇnd In as well! But how can we ˇnd z(∞)?

2. SPINORIZATION AND THE HOPF MAP

Now we shall follow the advice of Jacques Hadamard: ®The shortest path
between two islands of truths in the real domain passes through the complex
plane¯. By adopting his suggestion to our case it is convenient at this point to
use two complex variables a and b instead of three real variables x, y, and z
through relations [5]

x = ab∗ + ba∗, y = i(ab∗ − ba∗), z = aa∗ − bb∗. (10)

Notice: introduction of two complex variables is equivalent to looking at solution
for our problem in C2! Furthermore, in view of the initial conditions and Eq. (3),
the variables x, y, and z are constrained to unit sphere S2. This causes the va-
riables a and b to be constrained to S3, that is to obey the equation |a|2+ |b|2 = 1.
See [5] for more details. Interestingly enough, under these conditions Eq. (10)
describes the Hopf map S3 → S2 [6]. From [5] it can be seen that the complex
variables a and b must satisfy the following system of differential equations:

i
d

ds

(
a
b

)
= − 1

2R

(
0 e−ias2/2

eias2/2 0

)(
a
b

)
, (11)

if the real variables x, y, and z satisfy (3). Now we can again formally solve (11)
by using the time-ordered exponential series. This time, however, the solution is
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known and it was obtained by Rojo in [2]. We just shortly repeat it to ensure the
continuity of our exposition. The solution is formally given by(

a(s)
b(s)

)
= U(s, s0)

(
a(s0)
b(s0)

)
, (12)

where

U(s, s0) = 1 − i

s∫
s0

H(s1)ds1 + (−i)2
s∫

s0

ds1

s1∫
s0

ds2 H(s1)H(s2) + . . . , (13)

with

H(s) = − 1
2R

(
0 e−ias2/2

eias2/2 0

)
.

The imposed initial conditions (6) are now translated into

a(−∞) = 1, b(−∞) = 0. (14)

Since the unitary evolution (12) conserves the norm aa∗+bb∗, from (14) we obtain
back the equation for 3-sphere, that is aa∗ + bb∗ = 1, valid for any ®time¯ s.
This result implies that

z(∞) = |a(∞)|2 − |b(∞)|2 = 2|a(∞)|2 − 1. (15)

Evidently, we need only to calculate a(∞) to obtain z(∞).
By examining the product of H(si) matrices, we observe that for the odd

number of multipliers the matrix product does not have nonzero diagonal terms
and, hence, does not contribute to a(∞) thanks to the initial conditions (14). The
remaining terms with even number of multipliers have easily calculable nonzero
diagonal elements so that we get

a(∞) = 1 +
(

i

2R

)2
∞∫

−∞

ds1 e−ias2
1/2

s1∫
−∞

ds2 eias2
2/2 + . . .

After rescaling (8), this expression acquires the form

a(∞) = 1 +
∞∑

n=1

(−1)n

(
1

2aR2

)n

Jn, (16)

where

Jn =

∞∫
−∞

ds1 e−is2
1

s1∫
−∞

ds2 eis2
2

s2∫
−∞

ds3 e−is2
3 · · ·

s2n−1∫
−∞

ds2n eis2
2n . (17)
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In contrast to In, the multiple integral Jn is doable. It can be calculated as
follows [2]. First, we write

Jn =

∞∫
−∞

ds1 · · ·
∞∫

−∞

ds2n θ(s1 − s2) · · · θ(s2n−1 − s2n) en(s2
1, . . . , s

2
2n),

with

en(s2
1, . . . , s

2
2n) = exp {−i(s2

1 − s2
2 + s2

3 − s2
4 + . . . + s2

2n−1 − s2
2n)}.

Then, we use the integral representation for the Heaviside step function

θ(s) =
1

2πi

∞∫
−∞

dω
eiωs

ω − iε
=

⎧⎨
⎩

1, if s > 0,
1/2, if s = 0,
0, if s < 0.

(18)

Using the result, we can perform the integrals over dsi. For this purpose we
sequentially complete the squares, e.g.,

i
[
s2(ω2 − ω1) + s2

2

]
= i

[(
s2 +

ω2 − ω1

2

)2

− (ω2 − ω1)2

4

]
,

and then evaluate the Gaussian integrals

∞∫
−∞

e±is2
ds =

∞∫
−∞

(cos s2 ± i sin s2) ds =
√

π

2
(1 ± i).

As a result, we ˇnally obtain

Jn = πn

∞∫
−∞

dω1

2πi
· · ·

∞∫
−∞

dω2n−1

2πi
×

×
exp

{
i

2
[ω2(ω1 − ω3) + ω4(ω3 − ω5) + . . . + ω2n−2(ω2n−3 − ω2n−1)]

}
(ω1 − iε)(ω2 − iε) · · · (ω2n−1 − iε)

.

(19)

As can be seen, the terms quadratic in ωi are all canceled thanks to the alternating
signs in exponents in (17). It is this feature that distinguishes, as we shall
demonstrate in the next section, the calculation of Jn from the calculation of
In and makes the integral Jn solvable. For this purpose we rescale even-index
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variables ω2i → 2ω2i in (19) and perform integrals in these variables taking into
account (18). The result is:

Jn = πn

∞∫
−∞

dω1

2πi

∞∫
−∞

dω3

2πi
· · ·

· · ·
∞∫

−∞

dω2n−1

2πi

θ(ω1 − ω3)θ(ω3 − ω5) · · · θ(ω2n−3 − ω2n−1)
(ω1 − iε)(ω3 − iε) · · · (ω2n−1 − iε)

,

or

Jn =

∞∫
−∞

dω1

2πi

ω1∫
−∞

dω3

2πi
· · ·

ω2n−3∫
−∞

dω2n−1

2πi

πn

(ω1 − iε)(ω3 − iε) · · · (ω2n−1 − iε)
.

(20)
It is the symmetry of the integrand in (20) that makes the calculation of (20) as
easy as the calculation of I1 from which our story had begun. In the present case
we obtain

Jn = πn 1
n!

⎡
⎣ ∞∫
−∞

dω1

2πi

1
ω1 − iε

⎤
⎦

n

=
πn

n!
[θ(0)]n =

1
n!

(π

2

)n

. (21)

Then (16) shows that

a(∞) = exp
(
− π

4aR2

)
, (22)

and from (15) we get

z(∞) = 2 exp
(
− π

2aR2

)
− 1 = 1 +

∞∑
n=1

(−1)n 2
n!

( π

2aR2

)n

.

Comparing with (9), we ˇnally obtain the desired expression for the integral In:

In =
2
n!

(π

4

)n

. (23)

3. DIRECT CALCULATION OF I2

If you are still unhappy by our use of indirect methods of calculation of
deceptively simply looking integral (1), here we discuss some features of the
direct method. Unfortunately, as far as we can see, it works well only for small
values of n.
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Indeed, let us write

I2 =

∞∫
−∞

ds1

∞∫
−∞

ds2

∞∫
−∞

ds3×

×
∞∫

−∞

ds4 θ4(s1, s2, s3, s4) cos (s2
1 − s2

2) cos (s2
3 − s2

4), (24)

where
θ4(s1, s2, s3, s4) = θ(s1 − s2) θ(s2 − s3) θ(s3 − s4). (25)

Then, as in the previous section, we use the integral representation for the step
function and notice that

∞∫
−∞

ds1

∞∫
−∞

ds2 eiω1s1 e−is2(ω1−ω2) cos (s2
1 − s2

2) =
1
2

∞∫
−∞

ds1

∞∫
−∞

ds2×

×
[
exp

(
−i

ω2
1

4
+ i

(
s1 +

ω1

2

)2

+ i
(ω1 − ω2)2

4
− i

(
s2 +

ω1 − ω2

2

)2
)

+

+ exp

(
i
ω2

1

4
− i

(
s1 −

ω1

2

)2

− i
(ω1 − ω2)2

4
+ i

(
s2 −

ω1 − ω2

2

)2
)]

=

= π cos
[
1
4
ω2(2ω1 − ω2)

]
. (26)

Similar calculations are done for integrals over ds3 and ds4. As a result, after
rescaling ω2 → 2ω2, we end up with the result:

I2 = π2

∞∫
−∞

dω1

2πi

∞∫
−∞

dω2

2πi

∞∫
−∞

dω3

2πi

cos [ω2(ω1 − ω2)] cos [ω2(ω3 − ω2)]
(ω1 − iε)(ω2 − iε)(ω3 − iε)

. (27)

The integrals over dω1 and dω3 can be easily calculated. Indeed,

∞∫
−∞

dω1

2πi

cos (ω1ω2 − ω2
2)

ω1 − iε
=

1
2

∞∫
−∞

dω1

2πi

[
eiω1ω2

ω1 − iε
e−iω2

2 +
e−iω1ω2

ω1 − iε
eiω2

2

]
=

=
1
2

[
θ(ω2) e−iω2

2 + θ(−ω2) eiω2
2

]
.

Therefore,

I2 =
π2

4

∞∫
−∞

dω2

2πi

[
θ(ω2) e−iω2

2 + θ(−ω2) eiω2
2

]2

ω2 − iε
. (28)



1694 KHOLODENKO A.L., SILAGADZE Z.K.

Now we use the well-known result

1
ω − iε

= P
1
ω

+ iπδ(ω) (29)

to split the integral (28) into the principal value and the δ-function parts:

I2 =
π2

4
(I2P + I2δ).

Of course, the δ-function part is obtained instantly

I2δ =
1
2
.

As for the principal value part, we have

I2P =
1

2πi
lim
ε→0

⎡
⎣ ∞∫

ε

e−2iω2
2

ω2
dω2 +

−ε∫
−∞

e2iω2
2

ω2
dω2

⎤
⎦ =

=
1

2πi
lim
ε→0

⎡
⎣ ∞∫

ε

e−2iω2
2

ω2
dω2 −

∞∫
ε

e2iω2
2

ω2
dω2

⎤
⎦ =

= − 1
π

∞∫
0

sin (2ω2
2)

ω2
dω2 = − 1

2π

∞∫
0

sin [(
√

2ω2)2]
(
√

2ω2)2
d[(

√
2ω2)2] = −1

4
.

In making the last step we have used the Dirichlet integral

∞∫
0

sin ω

ω
dω =

π

2
.

Putting all terms together, we obtain ˇnally

I2 =
π2

16
, (30)

which is a special case of (23), as expected.
Can we think about the general case (n > 2) by acting in the manner just

described? By repeating the above steps when n > 2, we obtain

In =
(π

2

)n
∞∫

−∞

dω2

2πi

∞∫
−∞

dω4

2πi
· · ·

· · ·
∞∫

−∞

dω2n−2

2πi

fn(ω2, ω4, . . . , ω2n−2)
(ω2 − iε)(ω4 − iε) · · · (ω2n−2 − iε)

, (31)
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where

fn(ω2, ω4, . . . , ω2n−2) =
= φ(0, ω2)φ(ω2, ω4) · · ·φ(ω2n−4, ω2n−2)φ(ω2n−2, 0), (32)

with
φ(ω1, ω2) = θ(ω1 − ω2) e−i(ω2

1−ω2
2) + θ(ω2 − ω1) e−i(ω2

2−ω2
1). (33)

Evidently, for n > 2 things begin to look rather inconclusive and the above direct
method needs some fresh input in order to be brought to completion.

4. DIRECT CALCULATION OF I3

Now let us calculate

I3 =
(π

2

)3

I,

where

I =

∞∫
−∞

dx

2πi

φ(0, x)f(x)
x − iε

, (34)

and

f(x) =

∞∫
−∞

dy

2πi

φ(x, y)φ(y, 0)
y − iε

. (35)

Using the relation (29) in (34), we get

I =
1
2
φ(0, 0)f(0) + lim

ε→0

∞∫
ε

dx

2πi

φ(0, x)f(x) − φ(0,−x)f(−x)
x

.

However, φ(0, 0) = 1, while

f(0) =

∞∫
−∞

dy

2πi

φ(0, y)φ(y, 0)
y − iε

=
1
2
φ2(0, 0) + lim

ε→0

∞∫
ε

dy

2πi

φ2(0, y) − φ2(0,−y)
y

,

and since
φ2(0, y) − φ2(0,−y) = e−2iy2

− e2iy2
,

when y � ε > 0, we get

f(0) =
1
2
− 1

π

∞∫
0

sin (2y2)
y

dy =
1
4
,
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and, therefore,

I =
1
8

+ K, (36)

where

K = lim
ε→0

∞∫
ε

dx

2πi

e−ix2
f(x) − eix2

f(−x)
x

. (37)

Now, using again (29), we have

f(x) =
1
2
φ(x, 0)φ(0, 0) + lim

ε→0

∞∫
ε

dy

2πi

φ(x, y)φ(y, 0) − φ(x,−y)φ(−y, 0)
y

and since in (37) x > 0, we get

f(x) =
1
2

e−ix2
+

+ lim
ε→0

∞∫
ε

dy

2πi

θ(x − y) e−ix2
+ θ(y − x) e−i(2y2−x2) − e−i(x2−2y2)

y
. (38)

Analogously,

f(−x) =
1
2

eix2
+

+ lim
ε→0

∞∫
ε

dy

2πi

e−i(2y2−x2) − θ(x − y) eix2 − θ(y − x) e−i(x2−2y2)

y
. (39)

In light of (37), (38), and (39),

K = K1 + K2,

where

K1 =
1
2

∞∫
0

dx

2πi

e−2ix2 − e2ix2

x
= − 1

2π

∞∫
0

sin (2x2)
x

dx = −1
8

and

K2 = −
∞∫
0

dx

x

∞∫
0

dy

y

θ(x − y) cos (2x2) + θ(y − x) cos (2y2) − cos 2(x2 − y2)
2π2

.
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After rescaling

x → x√
2
, y → y√

2
,

and using

dx

x
=

1
2

d(x2)
x2

, θ(x − y) = θ(x2 − y2), if x > 0 and y > 0,

as well as
cos (x − y) = [θ(x − y) + θ(y − x)] cos (x − y),

we end up with the result

I = K2 =
1

4π2

∞∫
0

dx

x

x∫
0

dy

y
[cos (x − y) − cosx]. (40)

To calculate the integral

Ĩ =

∞∫
0

dx

x

x∫
0

dy

y
[cos (x − y) − cosx],

we introduce a parametric integral related to it:

Ĩ(α) =

∞∫
0

dx

x

x∫
0

dy

y
[cos (x − αy) − cosx].

Note that Ĩ(0) = 0 and Ĩ(1) = Ĩ , so that

Ĩ =

1∫
0

dĨ(α)
dα

dα.

However,

dĨ(α)
dα

=

∞∫
0

dx

x

x∫
0

dy sin(x − αy) =
1
α

lim
ε→0

∞∫
ε

dx

x
[cos (1 − α)x − cosx] ,

which is the same as

dĨ(α)
dα

=
1
α

lim
ε→0

⎡
⎢⎣

∞∫
ε(1−α)

dx

x
cosx −

∞∫
ε

dx

x
cosx

⎤
⎥⎦ = lim

ε→0

Ci(ε) − Ci(ε(1 − α))
α

,
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where

Ci(x) = −
∞∫

x

dx

x
cosx

stands for the integral cosine function. Using the well-known series representation
for this function

Ci(x) = γ + lnx +
∞∑

k=1

(−x2)k

2k(2k)!
,

γ ≈ 0.5772 being the Euler constant, we get

dĨ(α)
dα

=
1
α

lim
ε→0

[ln ε − ln (1 − α)ε] = − ln (1 − α)
α

,

and, therefore,

Ĩ = −
1∫

0

ln (1 − α)
α

dα = ζ(2) =
π2

6
.

We have just proved an interesting identity which seems to be a new integral
representation for ζ(2):

ζ(2) =

∞∫
0

dx

x

x∫
0

dy

y
[cos (x − y) − cosx]. (41)

Collecting all pieces together, we get ˇnally I = 1/24 and

I3 =
π3

8
1
24

=
2
3!

(π

4

)3

,

in agreement with (23).

5. CONCLUDING REMARKS

This problem had originally aroused in the context of a remarkable corre-
spondence between the quantum mechanical LandauÄZener problem (known in
the context of molecular scattering) and purely classical problem of a ball (that
is 2-sphere) rolling on a Cornu spiral (that is on the curve in R2, known as
Cornu spiral) recently established by Bloch and Rojo in [3, 4]. In fact, the main
ingredient of this connection Å the application of the Hopf map Å goes back to
Feynman, Vernon, and Hellwarth [5] who showed that the quantum evolution of
any two-level system is determined by the classical evolution (precession) of the
magnetic dipole moment of unit strength in an effective external magnetic ˇeld.
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It is remarkable that physics helps to calculate a complicated integral (1).
However, we suspect that there should be a direct method of calculation. For low
values of n, we have provided some examples of the direct method. It is after
the readers to tackle the case of general n.
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