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Abstract:

Near the β-limit of plasma equilibrium the magnetic flux tubes typically become quite
flexible, allowing the ballooning instability, and inflatable, allowing the mirror instability.
Inflating a flux tube in a mirror trap means that its volume increases, while the cross-
section of the magnetic nozzles at its ends remains essentially constant. This should lead to
an increase in the axial confinement time. The “diamagnetic” mode of plasma confinement
corresponds to the ultimate inflated state, when the main volume of a flux tube resembles
a low-field “bubble”, while the axial plasma confinement is significantly enhanced. This
type of equilibrium occurs above the threshold of the mirror instability and corresponds
to its saturated state (saturation being due to the finite number of particles in the trap).
If the vacuum magnetic field of the trap has a uniform stretch near its minimum, the
roughly cylindrical “bubble” with non-paraxial ends will occupy just this stretch. Due
to diamagnetic reduction of the internal field the cross-field transport inside the “bubble”
increases, just as the axial losses are stifled. The radial structure of the equilibrium “bubble”
is then determined by the balance of particle and energy fluxes. It has a rather sharp
boundary, of the order of one ion larmor radius, so that the finite-larmor-radius (FLR)
effects are quite strong. The confinement time can be found from solution of the system of
equilibrium and transport equations and is shown to be τE ≈

√
τ‖τ⊥. This means that the

diamagnetic confinement could allow construction of relatively short linear traps as fusion
reactors, provided that the ballooning instability can be somehow suppressed. A variant of
the conducting-shell stabilization of the boundary in conjunction with FLR suppression of
localized modes can do the trick.

1 Introduction

The linear mirror traps are mostly written off by the fusion community and the funding
authorities as possible contenders for prototyping a fusion reactor. The reasons for this
can be found in student textbooks and even a few years ago seemed quite convincing
and valid: the electron heat flux along open field lines in a simple mirror is extremely
high, while the technologies of ambipolar plugs and thermal barriers, developed in tandem
mirrors, are too costly and complicated, and, besides, never worked as well as intended.
The tandem-mirror program in US was completely terminated in 1987. The only surviving
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tandem mirror is GAMMA-10 in Japan [1] that is today engaged in the plasma-material-
interaction (PMI) research. However, two specialized linear traps, the gas-dynamic trap,
GDT [2], and the multiple-mirror trap, GOL-3 [3], in the Budker Institute in Novosibirsk
were able to obtain new important results that may change the fate of linear traps for
fusion. Both these traps bear legacies of theta-pinches, namely, the highly-collisional
regimes of axial losses, and thus are naturally compatible with high-density plasmas.
Besides, an enhanced scattering due to ever-present plasma turbulence has little (GDT)
or even a stifling effect (GOL-3) on axial losses. In the case of GDT, the gas-dynamic
outflow rate is already the upper limit of axial ion losses, since the loss-cone is full. For
the multiple-mirror confinement an enhanced ion scattering in parallel velocity is even
desirable, since the optimum period of the field corrugation should be close to the mean
free path, which is too long at fusion conditions without turbulence.

Currently, the main drawback of linear gas-dynamic traps as fusion reactors is in the
geometry: while it is easy to construct an axially symmetric tube-like reactor, it has to
be very long and thin. The reasons are as follows: the fusion power is proportional to the
plasma volume and squared density, n, while the lost power is proportional to the plasma
cross-section in mirror throats and density. The plasma occupies a magnetic flux-tube,
so that cross-sections of the mirror throats and of the active zone are related as the ratio
of the magnetic fields, i.e., the mirror ratio R = Bm/B0. As a result, QDT ∝ nRL. Now
the maximum density as well as the mirror ratio are related to the maximum attainable
confining magnetic field. Indeed, in the paraxial approximation the equilibrium is limited
by β: n ∝ βB2

v , where Bv is the confining (vacuum) field in the active zone, while the
magnetic field within the plasma is reduced as B0 = Bv

√
1− β. Thus

QDT ∝ LBvBm
β√

1− β
. (1)

It follows that both the mirror field, Bm, and the confining field, Bv, should be chosen
as high as technically possible, while the plasma radius can be made small as long as
transverse losses stay less than axial. This last requirement is actually determining the
length-to-radius ratio of the optimized reactor, L/a� 1, and its fusion power, WF . The
pure gas-dynamic scheme leads thus to L > 5km and WF > 10GW , which is clearly
unacceptable. Still, the successful GDT design with sloshing ions may be used for a
neutron driver of nuclear waste burner or a hybrid reactor [4].

Improvement of efficiency of mirror plugs may be in theory sufficient for construction
of a gas-dynamic fusion reactor with reasonable length and power. This approach can
be based on the multiple-mirror scheme as in the GDMT project [5], or on the active-
helical-mirror scheme that will be tested by SMOLA device [6]. Still, in order to pretend
to burn advanced fuels with low reactivity, the open traps need to increase the volume
of reacting plasma without increasing axial losses, and this opportunity is offered by the
very interesting β-dependent factor in Eq.(1). As β → 1 the effective mirror ratio of the
trap starts to grow rapidly due to diamagnetic radial expansion of the flux-tubes (see
Fig.1). The increase in fusion efficiency due to β can be translated into a corresponding
decrease in L, i.e., a compact fusion reactor based on a linear trap may become possible.
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FIG. 1: Expansion of flux tubes at high β leads to corresponding increase in the effective
mirror ratio of a linear trap. If there is a quasi-uniform patch of the vacuum field at the
bottom of the magnetic well, the resulting “bubble” will be roughly cylindrical. The plasma
boundary at cylinder ends needs stabilization.

The idea that equilibria with high β may have improved axial confinement in config-
urations with magnetic mirrors is rather old. For spindle cusps it is around for 60 years
[7], and just a decade less for theta pinches [8]. Since the magnetic structure of classi-
cal linear theta-pinches is essentially identical to axisymmetric mirror traps, the scaling
QDT ∝ 1/

√
1− β, derived by Taylor and Wesson, applies to all mirrors. Furthermore,

since the enhancement of confinement is essentially due to geometric factor, the diamag-
netic confinement mode is half-way between the field-reversed configuration (FRC) and
the linear gas-dynamic trap. It certainly improves on the standard GDT confinement by
offering a greatly reduced reactor size at the cost of a more tricky MHD stabilization.
The energy confinement in the diamagnetic ”bubbles” will be probably worse than that
in FRCs, but initial estimates suggest that a less stringent maintenance of equilibrium
and stability will be required.

For realization of the β → 1 limit we should address some difficult questions. How
large the 1/

√
1− β-factor can be made in realistic equilibria? Even if it is large, it may

not be as beneficial as expected. While the magnetic flux is expelled from the plasma
core, the transverse transport is also bound to increase up to infinity as the ions become
unmagnetized. Will the gain in axial confinement be sufficient to justify the increased
radial diffusion? The existence of an equilibrium state does not guarantee that it can be
realized in experiment. It should be made stable at least to the ideal MHD modes. This
is also very tricky at high β, as the predicted limit of ballooning stability in linear traps
may be significantly lower than 1 [9].

2 Equilibrium

Our aims here are very specific: to study the high-β limit of equilibrium in long and thin
axially symmetric traps. It appears that this particular limit typically results in significant
growth of the initially thin plasma in radius. That expansion is axially localized around
the minimum of the vacuum magnetic field.

The transverse pressure of plasma in a linear trap can be approximated as p⊥ ≈
p⊥ (ψ,B) , where ψ is the flux function labeling magnetic surfaces, and B is the local
magnetic field strength. Using the minimum of the magnetic field on a field line B0(ψ) for
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normalization of field, it can also be rewritten as p⊥ = p⊥(ψ,R), where R (ψ, `) = B/B0

is the local mirror ratio of the magnetic field. The equation of paraxial equilibrium looks
like B2

v = B2 + 8πp⊥ where Bv(~r) is the confining vacuum magnetic field. Let’s divide it
by the square of the minimum vacuum magnetic field on a field line, B2

v0, and normalize
the pressure by its value at the field minimum. We get

R2
v = (1− β)R2 + βP (R) , (2)

where Rv (ψ, `) = Bv/Bv0 is the mirror ratio of the vacuum field, β (ψ) = 8πp⊥ (ψ, 1) /B2
v0

is the β-value at the minimum of the field on a given field line, while P (ψ,R) =
p⊥ (ψ,R) /p⊥ (ψ, 1) is the normalized profile of pressure along the field line. This equation
should be solved for R (ψ, `) with restriction R > 1, while we are particularly interested in
the case 1− β � 1. Let’s assume that we are dealing with a typical mirror with a mono-
tonically growing field from its center. Then the left-hand side grows with `, ∂R2

v/∂` ≥ 0,
and to find a solution for all ` we should have a growing right-hand side too, then the
solubility condition becomes

∂P (R)/∂R2 > −(1− β)/β. (3)

In linear traps there are always some areas, where the pressure derivative along the field
line is negative, since the pressure should be higher inside of the trap than in the mirror
throats. Looking at Eq.(3), one can see that such decreases of pressure are restricted,
and at β → 1 they are entirely prohibited by the paraxial equilibrium. According to
Kotelnikov [10] the equilibrium solutions of the paraxial equilibrium equations can be
piecewise continuous, while the points of discontinuity can be interpreted as non-paraxial
areas. At high β the function R (`) becomes discontinuous. It is comprised of two (or
more) continuous intervals: the “bubble” branch, where condition (3) is satisfied at low
R ∼ 1, and the outer branch, where the same condition is satisfied at large R only.

In the most typical quasi-isotropic case the function P (R) is monotonously decreasing
from 1 to 0, and one can approximate the pressure profile by parabola: P (R) ≈ 1 −
δ2 (R2 − 1)

2
. Then the equilibrium equation becomes quadratic and has a positive solution

for R2 − 1 only if D = (1− β)2 − 4δ2β (R2
v (`)− 1) > 0. It follows that the solution is

discontinuous, and the length to discontinuity is defined by

R2
v (`d) = 1 +

(1− β)2

4δ2β
. (4)

One can see that Rv(`d) → 1 with β → 1, i.e., the “bubble” branch of solution collapses
to the bottom of the magnetic well. This behavior is different in presence of sloshing ions.
Then the “bubble” branch is finite-length, R2

v (`d) → Pr > 1, where Pr is the maximum
of the curve P (R) [11]. However, formation of non-paraxial ends of a “bubble” will soon
cause the pressure anisotropy to relax, so that Pr → 1 and the quasi-isotropic limit will
be restored.

The function Rv(`) is extremely important for shaping the equilibrium. It describes
the form of the magnetic well of the vacuum field of the trap along field lines. In particular,
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one can design a linear trap with a finite-length patch of uniform field at the well bottom.
Then the branch of equilibrium that exists only at Rv = 1 becomes extended into a
cylinder. The “bubble” length can thus be prescribed via the form of the vacuum field.
The bubble edges at high β will coincide with the ends of the uniform-field patch, so
that we will be able to place there some equipment for MHD stabilization. Indeed, in
the cylindrical case the interchange source term is finite only at the ends of the cylinder,
while in the middle uniform patch the plasma is marginally stable. Thus, by increasing
length we can add plasma without worsening stability. Furthermore, by placing localized
stabilizers directly at the ends of the cylinder it should be theoretically possible to suppress
even the edge ballooning modes.

3 Radial structure and transport

Let’s try to describe an axisymmetric steady-state equilibrium taking into account diffu-
sion of the external magnetic field into the cylindrical “bubble”. If everything is stationary,
this means that there is a steady flux of plasma through the magnetic field from the inside,
F⊥, and its radial divergence is closed by axial plasma losses through mirrors, F‖. The
flux continuity equation is

[rF⊥]′r + rF‖ = 0. (5)

The transverse plasma flux is due to diffusion of magnetic field,

F⊥ =
c2

4πσ

∂n

∂r
≡ D⊥n

′
r, (6)

where σ is the effective plasma resistivity, n(r) is the number density. The parallel flux
density, F‖, depends on the confinement regime. If it is gas-dynamic, then F‖ ≈ nCs/RL,
where Cs is the sound speed, R is the effective mirror ratio, and L is the length of the
“bubble”.

The continuity equation, (5), should be supplemented by the equilibrium equation. In
the cylindrical case it is, fortunately, quite simple:

B2 + 8πp = B2
v , (7)

where p is the plasma pressure, B is the local magnetic field, and Bv is the external
(confining) magnetic filed.

For the sake of simplicity let’s assume that p = 2nkT , T = const, and that the outflow
regime is gas-dynamic. Then our system can be rewritten in terms of β(r) = 8πp/B2

v

as[11]: [
ββ′r

1− β

]′

= λ−2rβ
√

1− β. (8)

Here the characteristic linear scale λ =
√
D⊥τ‖/2 can be interpreted as the skin depth

of the magnetic field by the time of the axial plasma outflow from the vacuum field of
the trap. For gas-dynamic traps it is normally very small. Qualitatively, solution for the
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FIG. 2: The radial structure of the boundary layer of the “bubble” in the MHD slab-
transport model. There is vacuum (β = 0) beyond the r = a surface, and the low-field
interior (β ≈ 1) to the left.

“developed bubble” looks as follows: over most of the radius β ≈ 1, while the transition
layer from β ≈ 1 to β ≈ 0 (the boundary) has the characteristic radial scale λ� r. This
structure can be successfully described in the slab approximation, i.e., we set r ≈ a =
const, λ−1y/a = f, and introduce the normalized radial coordinate x = (r − a) /λ.

Equation (8) can be rewritten as a system

f ′x = β
√

1− β, β′x = f (1− β) /β, (9)

with boundary conditions β (∞) = 0, f (−∞) = f0, where f0 is the normalized source of
ions. It can be partially integrated:

f 2 =
2

15

[
8−

√
1− β

(
8 + 4β + 3β2

)]
, (10)

so that f0 = 4/
√

15 ≈ 1.03. Substituting Eq.(10) into the second line of Eq.(9), we get
the radial structure as

β′ = − 4√
15

1− β
β

√
1−

√
1− β

(
1 +

β

2
+

3β2

8

)
. (11)

The plasma boundary is quite “rigid”, i.e., there is no pressure at all beyond r = a, see
Fig.2.

The particle confinement time is the ion content in the “bubble” divided by the flux
of particles that are lost from it in a stationary state. The flux can be found using f0, so
that

τn =
πa2Ln

Φ
=

a

λf0
τ‖ ≈

√
2τ⊥τ‖, (12)

where τ‖ is the axial confinement time in the vacuum field, and τ⊥ is the diffusion time
over the full “bubble” radius. If the axial electron recycling is limited by the properly
designed expanders, the energy loss is proportional to the particle loss [12], so that τE ≈
3τn/8 ≈

√
τ⊥τ‖.

The whole process can be approximately described as follows. Deep within the “bub-
ble” the radial diffusion dominates, while the axial loss is vanishingly small. In fact the
ions may not be magnetized inside of the “developed bubble” at all, having almost straight
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trajectories. All of the radial confinement is concentrated in the relatively thin boundary
layer of width ∼ 6λ. However, due to finite magnetic field within the boundary layer, the
effective mirror ratio is also finite, so that the axial losses appear. In a unit of time the
“bubble” looses particles from the layer of width λ and radius a by axial outflow, hence
τn ∼ aτ‖/λ.

The simplified model of transport used in this section assumes that the axial outflow
regime is gas-dynamic, which is justified inside of the “bubble” due to very large mirror
ratio. However, the resulting width of the “bubble” boundary is unreasonably small,
typically smaller than the ion Larmor radius. This is understandable, since the gas-
dynamic approximation can break within the boundary, where the axial loss regime can
be kinetic with value much smaller than the gas-dynamic estimate. In case of longer,
kinetic τ‖, the boundary layer should become wider, at least of the order of the Larmor
radius. This will lead to the corresponding increase of the diffusion time and the overall
improvement of the confinement estimate.

A boundary layer with width comparable to the ion Larmor radius will experience
strong stabilizing influence of the finite-larmor-radius (FLR) effects. This should help
with suppression of short-scale ballooning modes having transverse scales less than the
distance to the shell stabilizers [9]. In general, stability of the boundary layer should be
very similar to that in FRCs, where the strong FLR effects are believed to suppress most
short-scale modes [13].

4 Conclusion

A new scheme for confining high-β fusion plasmas in a linear trap is described [11].
It promises huge improvement of confinement quality as compared to the gas-dynamic
scheme. A stable confinement of the β ≈ 1 plasma cannot be easy, but there seems to be
a straightforward way to use the conducting-shell stabilization method that is shown to
work for FRCs [13]. Although there is still no detailed theory of stability and transport,
it is probably worthwhile to attempt an experimental check of the predicted “bubble”
formation and of the related improvement in confinement time. Such initial concept-
exploration experiments are now in the planning stage in the Budker Institute of Nuclear
Physics in Novosibirsk.
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