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Figure 1: The correction ∆C/(Mβ̃2) to the channel ca-
pacity as a function of γ̃ = γLPave√

3
for low powers

We develop the path-integral approach [1–
4] to the calculation of the information theory
quantities (conditional probability density func-
tion P [Y |X], output signal correlators, mutual in-
formation IP [X], optimal input signal distribution
P optX [X], channel capacity C, and so on) for the
communication channel modelled by the nonlinear
Shrödinger equation (NLSE) with additive white
Gaussian noise (AWGN). Now we consider the per-
turbation theory in this NLSE model for small dis-
persion parameter β and find the first and the sec-
ond corrections to the conditional probability den-
sity function P [Y |X], to the optimal input signal
distribution P opt[X], and to the channel capacity
C at large signal-to-noise ratio (SNR).

We consider the optical fiber channel modelled
by the NLSE with AWGN:

∂zψ + iβ∂2
t ψ − iγ|ψ|2ψ = η(z, t) , (1)

where β is the dispersion coefficient, γ is the Kerr nonlinearity coefficient, η(z, t) is an additive complex
white noise with zero mean 〈η(z, t)〉η = 0 and with correlation function

〈η(z, t)η̄(z′, t′)〉η = Qδ(z − z′)δ(t− t′) , (2)

where bar means complex conjugation, and Q is a power of the white Gaussian noise η(z, t) per unit length
and per unit frequency. The conditions for a complex signal ψ(z, t) are as follows: ψ(z = 0, t) = X(t) and
ψ(z = L, t) = Y (t), where X(t) is the input signal, and Y (t) is the output signal.

We apply the Feynman path-integral approach for this model introduced in [3]. We use the following
representation of the conditional probability density function P [Y |X] which is convenient for the large
SNR case:

P [Y |X] =

ψ(L,t)=Y (t)∫
ψ(0,t)=X(t)

Dψ exp

{
−S[ψ]

Q

}
= Λ exp

[
−S[Ψcl]

Q

]
, (3)

Λ =

∫ φ(z=L)=0

φ(z=0)=0
Dφ exp

[
− 1

Q

{
S[Ψcl + φ]− S[Ψcl]

}]
, (4)

where the action S[ψ] has the form which corresponds to the noise statistics (2):

S[ψ] =

∫ L

0
dz

∫
T
dt
∣∣∂zψ + iβ∂2

t ψ − iγψ|ψ|2
∣∣2 , (5)



and in the leading order in 1/SNR the action difference in (4) reads (in discrete time form) [4]:

S[Ψcl + φ]− S[Ψcl] ≈ δt
M−1∑
k=0

∫ L

0
dz Leff [φ(z, tk)], (6)

Leff [φ(z, tk)] =
∣∣∣∂zφ(z, tk) + iβ∂2

t φ(z, tk)− iγ
(

2φ(z, tk)|Φ(z, tk)|2 + φ̄(z, tk)Φ
2(z, tk)

)∣∣∣2. (7)

In (3) Ψcl(z, t) is the solution of the equation of motion δS[Ψcl] = 0 with the boundary conditions:
Ψcl(z = 0, t) = X(t) , Ψcl(z = L, t) = Y (t), see [3, 4]. In (6) M is the total mesh points for the
time interval T in which the input signal X(t) is periodically embedded. It means that the whole time
interval T is assumed to be divided into M mesh points (independent time channels) with grid spacing
δt = T/M = 2π/W , whereW is the frequency domain (bandwidth) of an input complex T -periodic signal
X(tj), and a time moment (in one period) tj = −T/2 + jδt, j = 0, 1, . . . ,M − 1. In (7) Φ(z, t) is the
solution of NLSE (1) with zero noise and with one condition Φ(z = 0, t) = X(t). We have shown [4] that
Ψcl = Φ(z, t) + κ(z, t) can be approximated by Φ(z, t) with the small remainder κ(z, t) ∼

√
Q. We have

used it in (7).
The general representation for the mutual information IP [X] (in nat units) in the leading order in

1/SNR reads [4]:

IP [X] = M log [Pave/Pnoise] +
〈

log

[
Λ

ΛQL

]〉
P [X]

, (8)

where ΛQL = (δt/(πQL))M , and for any F [X] the quantity
〈
F [X]

〉
P [X]

=
∫
DXP [X]F [X] is the averag-

ing over the input signal PDF P [X]. In the first logarithm in (8), i.e. in Shannon’s term log [Pave/Pnoise],
Pnoise = QL/δt = QLW/(2π), is the noise power in the bandwidth W and length L, and Pave is the av-
erage power of the input signal:

Pave = lim
T→∞

∫
DXP [X(t)]

1

T

∫
T
|X(t)|2dt = lim

T→∞

∫ M−1∏
j=0

dReX(tj)dImX(tj)P [X(t)]
1

M

M−1∑
j=0

|X(tj)|2. (9)

For an input complex signal X(t) we use the notations ρ(tj) ≡ ρj = |X(tj)| and φ0(tj) ≡ φ0,j =
arg(X(tj)).

To calculate the channel capacity C = maxP [X] IP [X] we should find the normalization factor Λ =

Λ(0)
{

1 + Λ(1)

Λ(0) + Λ(2)

Λ(0) +O(β̃3)
}
, see (4), and perform the maximization procedure over the input signal

distribution P [X] (P [X] = P opt[X] for this maximum). Here Λ(0) is the normalization factor for β = 0 [1]:

Λ(0) =

M−1∏
j=0

δt

πQL
√

1 + µ2
j/3

, (10)

where in (10) we have used the dimensionless parameter µ(tj) = µj = γLρ2(tj) characterizing the
impact of nonlinearity in the phase evolution for the NLSE (1) with β = 0. For the nondispersive case
the maximization procedure in question was described in [1] and the optimal input signal distribution
P
opt(β=0)
X [X] was obtained in the intermediate power regime γ̃noise � γ̃ � (γ̃noise)

−1. Here γ̃ is the
dimensionless nonlinearity parameter γ̃ = γLPave/

√
3, γ̃noise = γL2QW/(2π

√
3), so that SNR = γ̃/γ̃noise.

In the first order in dimensionless dispersion parameter β̃ = βLW 2/(2π)2 = βL/δt2 we obtained the
following result

Λ(1)

Λ(0)
=

M−1∑
j=0

{ 4β̃µ3

15 (µ2 + 3)
− βLµ2

105 (µ2 + 3) ρ2

{
14
(
2µ2 + 15

)
ρρ̇φ̇0 + µ

(
16µ2 + 189

)
ρ̇2 + (11)

7ρ
(
ρ
(

2µφ̇0
2

+ 15φ̈0

)
+ 7µρ̈

)}∣∣∣∣∣
t=tj

.



It is easy to see that the correction to the channel capacity linear in β̃ vanishes, since
〈

Λ(1)/Λ(0)
〉
P
opt(β=0)
X [X]

=

0. To calculate the first non-vanishing correction ∆C to the channel capacity in small dimensionless dis-
persion parameter β̃ one should find the second correction Λ(2) to the normalization factor (4), and:

∆C = 〈Λ
(2)

Λ(0)
〉
P
opt(β=0)
X [X]

=

∫
DXP opt(β=0)

X [X]
Λ(2)

Λ(0)
. (12)

We found this correction ∆C and demonstrated that it is positive, ∆C > 0, therefore increasing the
earlier calculated capacity for a nondispersive nonlinear optical fiber channel [1]. In figure 1 we present
the ratio ∆C/(Mβ̃2) as the function of γ̃ for low powers (γ̃noise < γ̃ < 5). For typical fiber optical links [5]
one has: L = 1000 km, γ = 1.31(Wkm)−1, W = 100 GHz, Pnoise = QLW/(2π) = 5.3 × 10−4mW. For
these parameters one has γ̃noise ≈ 4× 10−7, and our results are reliable if β̃ � 1, i.e., β � 4 ps2/km.

Acknowledgements: Our investigation is supported by the Russian Science Foundation (RSF), grant
No. 16-11-10133 and by the Russian Foundation for Basic Research (RFBR), grant No. 16-31-60031.

References

[1] I S Terekhov, A V Reznichenko, Ya A Kharkov and S K Turitsyn, arXiv:1508.05774 (2015)

[2] A A Panarin, A V Reznichenko and I S Terekhov, Phys. Rev. E 95, 012127 (2017)

[3] I S Terekhov, S S Vergeles and S K Turitsyn, Phys. Rev. Lett. 113, 230602 (2014)

[4] I S Terekhov, A V Reznichenko and S K Turitsyn, Phys. Rev. E 94, 042203 (2016)

[5] R-J Essiambre, G Kramer, P J Winzer, G J Foschini and B Goebel, J. Lightwave Technol. 28, 662
(2010)


