Channel Capacity Calculation at Large SNR and Small
Dispersion within Path-Integral Approach
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We develop the path-integral approach [1-

4] to the calculation of the information theory AC/M Bz)
quantities (conditional probability density func-

tion P[Y'|X], output signal correlators, mutual in-
formation Ip[x), optimal input signal distribution 0.4}

PP'[X], channel capacity C, and so on) for the
communication channel modelled by the nonlinear 0-3:
Shrédinger equation (NLSE) with additive white

Gaussian noise (AWGN). Now we consider the per- O'Zf
turbation theory in this NLSE model for small dis- 0 1
persion parameter 5 and find the first and the sec- I
ond corrections to the conditional probability den- L 5
sity function P[Y|X], to the optimal input signal 1 2 3 4 5
distribution P°P*[X], and to the channel capacity Figure 1: The correction AC/(Mf3?) to the channel ca-
C' at large signal-to-noise ratio (SNR). pacity as a function of ¥ = % for low powers
We consider the optical fiber channel modelled
by the NLSE with AWGN:
01 + B0 — | = n(z,1), (1)

where f is the dispersion coefficient, v is the Kerr nonlinearity coefficient, 7(z,t) is an additive complex
white noise with zero mean (n(z,t)), = 0 and with correlation function

(n(z, )02 )y = Qd(z — 2)o(t = t') (2)

where bar means complex conjugation, and @) is a power of the white Gaussian noise 7)(z, t) per unit length
and per unit frequency. The conditions for a complex signal 1(z,t) are as follows: ¥(z = 0,t) = X (t) and
W(z = L,t) = Y(t), where X(¢) is the input signal, and Y (¢) is the output signal.

We apply the Feynman path-integral approach for this model introduced in [3]. We use the following
representation of the conditional probability density function P[Y|X] which is convenient for the large
SNR case:

P(Lt)=Y (t)

PlY|X] = / D) exp {—Sg]]} = Aexp [— S[gdq ) (3)
P(0,6)=X(t)
A= /QS T:)L:O Doexp |~ g {SWa+ 0 - S[val}] (4)

where the action S[t] has the form which corresponds to the noise statistics (2):

L
S[] = /0 dz /T dt |01 + iBORY — inlu?] (5)



and in the leading order in 1/SNR the action difference in (4) reads (in discrete time form) [4]:

M-1 .r,
S(a+ 0] = S0l 6 3 [ dsLogglofzit)) (6)
k=0 70

_ 2
Loy sl6(z, )] = 0.0z ) + 8076z, 1) — i (26002 1) [ (2 0) P + 3(2, )02z, t0) ) [+ (7)

In  (3) Uy(z,t) is the solution of the equation of motion §S[¥,] = 0 with the boundary conditions:
Uu(z = 0,t) = X(t), Vy(z = L,t) = Y(t), see [3,4]. In (6) M is the total mesh points for the
time interval 7" in which the input signal X (¢) is periodically embedded. It means that the whole time
interval T' is assumed to be divided into M mesh points (independent time channels) with grid spacing
=T/M = 2x /W, where W is the frequency domain (bandwidth) of an input complex T-periodic signal
X(t;), and a time moment (in one period) t; = =T/24 jé;, j =0,1,....,.M —1. In (7) ®(z,t) is the
solution of NLSE (1) with zero noise and with one condition ®(z = 0 t) X(t). We have shown [4] that
U, = ®(z,t) + »(z,t) can be approximated by ®(z,t) with the small remainder »(z,t) ~ /Q. We have
used it in (7).
The general representation for the mutual information Ip(xj (in nat units) in the leading order in
1/SNR reads [4]:

A
IP[X} = M log [Pave/Pnoise] <10g [A L:l >P[X], (8)

where Agr, = (6;/(*QL))™, and for any F[X] the quantity <F[X]>P[X} = [DXP[X]F[X] is the averag-
ing over the input signal PDF P[X]. In the first logarithm in (8), i.e. in Shannon’s term log [Paye/ Proise)
Proise = QL/6y = QLW /(27), is the noise power in the bandwidth W and length L, and P, is the av-
erage power of the input signal:

1Ml

Ppe = lim [ DXP[X / | X (t)dt = Jim / H dReX (t;)dImX (t;) | X (t

T—o00 0
J:

For an input complex signal X (t) we use the notations p(t;) = p; = |X(¢;)| and ¢o(t;) = ¢o; =
arg(X (t;)).
To calculate the channel capacity C' = maxp(x) Ipx] we should find the normalization factor A =

A©) {1 + (0) + Ei; + (’)(53)}, see (4), and perform the maximization procedure over the input signal
distribution P[X] (P[X] = P°P![X] for this maximum). Here A(%) is the normalization factor for 4 = 0 [1]:

M-1
Ot

jl;[o TQL\/1+1u2/3

where in (10) we have used the dimensionless parameter p(t;) = p; = L p*(t;) characterizing the
impact of nonlinearity in the phase evolution for the NLSE (1) with 5 = 0. For the nondispersive case
the maximization procedure in question was described in [1| and the optimal input signal distribution
P)O(p HB=0) [X] was obtained in the intermediate power regime Ypnpise < 7 < (Ynoise) *. Here 7 is the
dimensionless nonlinearity parameter ¥ = vLPyye/ V3, Fnoise = yL2QW /(27v/3), so that SNR. = 5 /Fnoise-

In the first order in dimensionless dispersion parameter 3 = SLW?2/(27)? = BL/§t?> we obtained the
following result

AQ) = (10)

M—-1

AW 4Bu* BLy?
> A5

AO) - (12 +3) 105 (2 + 3) p2

p (p (2u¢502 - 15450) + 7u,5> }

{14 (202 + 15) ppcdo + 1 (1642 + 189) 2+ (11)
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It is easy to see that the correction to the channel capacity linear in /3 vanishes, since <A(1) JA©) >P°” =0 5
X

0. To calculate the first non-vanishing correction AC' to the channel capacity in small dimensionless dis-
persion parameter 3 one should find the second correction A® to the normalization factor (4), and:

A2)
A0 PE*

opt( e A2)
<B:0>[X] = /DXPXpt(B 0)[X] e (12)

AC = { NOR

We found this correction AC and demonstrated that it is positive, AC' > 0, therefore increasing the
earlier calculated capacity for a nondispersive nonlinear optical fiber channel [1]. In figure 1 we present
the ratio AC//(M 3?) as the function of 7 for low powers (Fnoise < 7 < 5). For typical fiber optical links [5]
one has: L = 1000km, v = 1.31(Wkm) ™', W = 100 GHz, Ppise = QLW/(21) = 5.3 x 10~*mW. For
these parameters one has Jneise ~ 4 X 1077, and our results are reliable if 3 < 1, i.e., 8 < 4ps?/km.
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