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The Novosibirsk free-electron laser (NovoFEL) 

is a source of monochromatic frequency-tunable 

radiation [1]. This facility belongs to the Siberian 

Synchrotron and Terahertz Radiation Center, which 

is open for Russian and foreign users. The Novo-

FEL consists of three laser oscillators, the supposed 

generation regions of which cover three regions of 

the spectrum, shown in Fig. 1 (a) with light rectan-

gles. The spectral ranges of generation currently 

available to users are marked with darker rectan-

gles. The first laser system of the facility, generat-

ing terahertz radiation in the range of 90 – 240 μm, 

was commissioned in 2003, and most studies per-

formed by users to date relates to this range. Exper-

iments using radiation of 40-50 μm have been start-

ed recently. The studies that had been performed at 

the first six workstations by 2015 are described in 

the review [2]. Since then, the facility was signifi-

cantly upgraded, and now 11 workstations, the lo-

cation of which is shown in Fig. 2, are in operation. 

Several more stations are under construction. The 

directions of research conducted at the stations are 

understandable from their names, but are not lim-

ited by them. 

The laser beams at the inputs to the user stations are 

Gaussian beams (Fig. 1(b)). The radiation is an in-

finite sequence of 30-100 ps pulses with a standard 

repetition rate of 5.6 MHz and average power of up 

to 100-200 W. Regimes in which the radiation is 

coherent are described in [3]. Such parameters ena-

bled the development of several superfast and high-

resolution techniques of molecular spectroscopy 

[4,5], and the high pulse power allowed ignition of 

a continuous optical discharge in gases at the at-

mospheric pressure [6]. 

 
(a) 

 
(b) 

Fig. 1. (a) Generation ranges of the Novosibirsk free electron laser; (b) beam shapes at the inputs to workstations (L is the 

distance from the laser oscillator).  
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Fig. 2. Beamline (filled with dry nitrogen) and workstations 

at the Novosibirsk free electron laser facility. 

Many applications require transformation of a 

Gaussian laser beam into beams of different mode 

structure or concentration of radiation in a predeter-

mined volume or on an area. A number of diffractive 

optical elements made of diamond or high-resistivity 

silicon have been designed and fabricated for this 

purpose [7-8]. In particular, using diffractive optics 

made it possible to transform the laser radiation into 

Bessel beams with an orbital angular momentum 

("vortex beams") [9-10]. The latter were converted 

into arrays of vortex beams via their diffraction on a 

2D amplitude array of circular openings [11]. Acous-

to-optical deflection of a terahertz vortex beam was 

demonstrated in [12], and production of nanosized 

metal particles by acoustic waves generated in liquids 

by the NovoFEL pulsed-intermittent radiation was 

described in [13].  

Classical holography with a monochromatic te-

rahertz radiation source was first demonstrated in 

[14]. The NovoFEL radiation enabled achievement of 

record resolution for the terahertz range in the internal 

reflection ellipsometry [15]. Studies of terahertz sur-

face plasmon polaritons on metal-dielectric-air inter-

faces revealed their particularities in comparison with 

the visible range plasmons [18-20].  

The effect of THz radiation on biological objects, 

from cells to organisms, is under investigation at the 

biological station of NovoFEL (see, e. g., [21]). Two 

new workstations have been commissioned at the fa-

cility. A one-color pump-probe setup was applied to 

research on the relaxation time in semiconductors 

with shallow donors at cryogenic temperatures [22]. 

The electron paramagnetic resonance station [23] en-

ables exploration of the influence of high-power THz 

or mid-IR radiation on spin systems.  

The study was supported by the Russian Science 

Foundation (grant 14-50-00080). The experiments 

were carried out at the collective research center sup-

ported by the Ministry of Education and Science of 

the Russian Federation (project 

RFMEFI62117X0012). 
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